Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Model
2.2. Mesh Description and Independence Test
2.3. Numerical Schemes and Settings
2.4. Boundary Conditions
2.5. Validation of Numerical Calculation
2.6. Collaborative Control Schemes of the SG and Runner
3. Results and Discussion
3.1. Comparison of External Characteristics
3.2. Comparison of Force and Moment Characteristics
3.3. Comparison of Pressure Fluctuation Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Fx | Axial force in the x direction (N) |
Fg | Wave force at the gate port (N) |
Gx | Gravity in the axial component (N) |
H | Head of the prototype pump (m) |
HM | Head of the model pump (m) |
J | Inertia moment of the runner (kg.m2) |
Ki | Value of each internal peak (N∙m) |
K | Peak intensity coefficient of Mz (N∙m) |
Mf | Mechanical resistance moment (N∙m) |
MG | Moment caused by gravity (N∙m) |
Mh | Hydraulic moment (N∙m) |
Mx | Moment in the x direction (N∙m) |
My | Moment in the y direction (N∙m) |
Mz | Moment in the z direction (N∙m) |
n | Flow rate of the prototype pump (rpm) |
nM | Flow rate of the model pump (rpm) |
P | Shaft power of the prototype pump (W) |
PM | Shaft power of the model pump (W) |
Q | Flow rate of the prototype pump (m3/s) |
QM | Flow rate of the model pump (m3/s) |
Qr | Rated flow rate (m3/s) |
ta | Time when water hammer intensifies |
tQm1~tQm5 | Time at the maximum flow rate for Case 1 to Case 5 (s) |
tsd1~tsd5 | Time when the gate shut down for Case 1 to Case 5 (s) |
twm1~twm5 | Time at the maximum rotation speed for Case 1 to Case 5 (s) |
wi | Rotation speed of the current time step (rad/s) |
wi+1 | Rotation speed of next time step (rad/s) |
β | Number of internal peaks of the MZ curve (-) |
ρ | Density of water (kg/m3) |
λ | The size ratio between the prototype pump and the model pump (-) |
ΔT | Time step size (s) |
Abbreviations
1-D | One-dimensional |
3-D | Three-dimensional |
BPF | Blade passing frequency |
CFD | Computational fluid dynamics |
MAE | Mean absolute error |
R2 | Determination coefficient |
RSME | Root mean square error |
SG | Sluice gate |
SAFP | Slanted axial-flow pump |
STFT | Short-tern Fourier transformation |
TKE | Turbulence kinetic energy |
References
- Kandler, N.; Annus, I.; Vassiljev, A. Controlling peak runoff from plots by coupling street storage with distributed real time control. Urban Water J. 2022, 19, 97–108. [Google Scholar] [CrossRef]
- Truu, M.; Annus, I.; Roosimagi, J.; Kaendler, N.; Vassiljev, A.; Kaur, K. Integrated Decision Support System for Pluvial Flood-Resilient Spatial Planning in Urban Areas. Water 2021, 13, 3340. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, L.; He, J.; Xiao, T.; Huang, H.; Wang, H. Urban flood analysis for Pearl River Delta cities using an equivalent drainage method upon combined rainfall-high tide-storm surge events. J. Hydrol. 2021, 597, 126293. [Google Scholar] [CrossRef]
- Zambrano, J.C.I.; Michavila, J.; Arenas Pinilla, E.; Diehl, J.C.; Ertsen, M.W. Water lifting water: A comprehensive spatiotemporal review on the hydro-powered water pumping technologies. Water 2019, 11, 1677. [Google Scholar] [CrossRef] [Green Version]
- Gopal, C.; Mohanraj, M.; Chandramohan, P.; Chandrasekar, P. Renewable energy source water pumping systems-A literature review. Renew. Sustain. Energy Rev. 2013, 25, 351–370. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Qin, Y.; Wei, X.; Qin, D. Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model. Renew. Energy 2018, 115, 433–447. [Google Scholar] [CrossRef]
- Kan, K.; Zheng, Y.; Fu, S.; Liu, H.; Yang, C.; Zhang, X. Dynamic stress of impeller blade of shaft extension tubular pump device based on bidirectional fluid-structure interaction. J. Mech. Sci. Technol. 2017, 31, 1561–1568. [Google Scholar] [CrossRef]
- Pei, J.; Meng, F.; Li, Y.; Yuan, S.; Chen, J. Fluid-structure coupling analysis of deformation and stress in impeller of an axial-flow pump with two-way passage. Adv. Mech. Eng. 2016, 8, 1687814016646266. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.-S.; Shi, W.-D.; Chen, B.; Guan, X.-F. Unsteady flow analysis and experimental investigation of axial-flow pump. J. Hydrodyn. 2010, 22, 35–43. [Google Scholar] [CrossRef]
- Kang, C.; Yu, X.; Gong, W.; Li, C.; Huang, Q. Influence of stator vane number on performance of the axial-flow pump. J. Mech. Sci. Technol. 2015, 29, 2025–2034. [Google Scholar] [CrossRef]
- Yang, F.; Chang, P.; Hu, W.; Mao, B.; Liu, C.; Li, Z. Numerical study on pressure pulsation in a slanted axial-flow pump device under partial loads. Processes 2021, 9, 1404. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, G.; Zhou, L.; Hu, D. Hydraulic performance of a large slanted axial-flow pump. Eng. Comput. 2010, 27, 243–256. [Google Scholar] [CrossRef]
- Yang, F.; Liu, C. Numerical and experimental investigation of slanted axial-flow pumping system. J. Eng. Sci. Technol. Rev. 2013, 6, 62–68. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, H.-X. Numerical analysis of cavitation within slanted axial-flow pump. J. Hydrodyn. 2013, 25, 663–672. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Tang, Y.; Zi, D.; Xie, L.; He, C.; Zhu, Q.; Huang, C. Investigation into the phenomenon of flow deviation in the s-shaped discharge passage of a slanted axial-flow pumping system. J. Fluids Eng. Trans. ASME 2020, 142, 041205. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Wang, L.; Jiao, L. Numerical simulation of the transient flow in a radial flow pump during stopping period. J. Fluids Eng. Trans. ASME 2011, 133, 111101. [Google Scholar] [CrossRef]
- Fu, X.; Li, D.; Wang, H.; Zhang, G.; Li, Z.; Wei, X.; Qin, D. Energy analysis in a pump-turbine during the load rejection process. J. Fluids Eng. Trans. ASME 2018, 140, 101107. [Google Scholar] [CrossRef]
- Zeng, W.; Yang, J.; Hu, J.; Yang, J. Guide-Vane Closing Schemes for Pump-Turbines Based on Transient Characteristics in S-shaped Region. J. Fluids Eng. Trans. ASME 2016, 138, 051302. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, H.; Zhang, L. Investigation of pumped storage hydropower power-off transient process using 3d numerical simulation based on sp-vof hybrid model. Energies 2018, 11, 1020. [Google Scholar] [CrossRef] [Green Version]
- Urbanowicz, K.; Bergant, A.; Kodura, A.; Kubrak, M.; Malesiska, A.; Bury, P.; Stosiak, M. Modeling transient pipe flow in plastic pipes with modified discrete bubble cavitation model. Energies 2021, 14, 6756. [Google Scholar] [CrossRef]
- Coronado-Hernandez, O.E.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Effect of a commercial air valve on the rapid filling of a single pipeline: A numerical and experimental analysis. Water 2019, 11, 1814. [Google Scholar] [CrossRef] [Green Version]
- Tong, Z.-M.; Xin, J.-G.; Tong, S.-G.; Yang, Z.-Q.; Zhao, J.-Y.; Mao, J.-H. Internal flow structure, fault detection, and performance optimization of centrifugal pumps. J. Zhejiang Univ. Sci. A 2020, 21, 85–117. [Google Scholar] [CrossRef]
- Tong, Z.; Xin, J.; Ling, C. Many-Objective Hybrid Optimization method for impeller profile design of low specific speed centrifugal pump in district energy systems. Sustainability 2021, 13, 10537. [Google Scholar] [CrossRef]
- Fu, S.; Zheng, Y.; Kan, K.; Chen, H.; Han, X.; Liang, X.; Liu, H.; Tian, X. Numerical simulation and experimental study of transient characteristics in an axial flow pump during start-up. Renew. Energy 2020, 146, 1879–1887. [Google Scholar] [CrossRef]
- Han, L.; Wang, H.J.; Gao, Y.H.; Li, D.Y.; Gong, R.Z.; Wei, X.Z. Dynamic Simulation in Guide Vane Opening Process of a Pump-Turbine in Pump Mode. J. Appl. Fluid Mech. 2017, 10, 1441–1449. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, J.; Zhou, D. Transient flow analysis in axial-flow pump system during stoppage. Adv. Mech. Eng. 2017, 9, 1687814017723280. [Google Scholar] [CrossRef] [Green Version]
- Kan, K.; Chen, H.; Zheng, Y.; Zhou, D.; Binama, M.; Dai, J. Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model. Renew. Energy 2021, 164, 109–121. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Li, Z.; Nielsen, T.K.; Goyal, R.; Wei, X.; Qin, D. Transient characteristics during the closure of guide vanes in a pump turbine in pump mode. Renew. Energy 2018, 118, 973–983. [Google Scholar] [CrossRef]
- Wang, W.; Pavesi, G.; Pei, J.; Yuan, S. Transient simulation on closure of wicket gates in a high-head Francis-type reversible turbine operating in pump mode. Renew. Energy 2020, 145, 1817–1830. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, D.; Zheng, Y.; Jiang, S.; Yu, A.; Guo, Y. Load rejection transient process simulation of a kaplan turbine model by co-adjusting guide vanes and runner blades. Energies 2018, 11, 3354. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Dal Monte, A.; Benini, E.; Zheng, Y. Numerical study on the internal flow field of a reversible turbine during continuous guide vane closing. Energies 2017, 10, 988. [Google Scholar] [CrossRef]
- Cheng, Z.; Tong, S.; Tong, Z. Bi-directional nozzle control of multistage radial-inflow turbine for optimal part-load operation of compressed air energy storage. Energy Convers. Manag. 2019, 181, 485–500. [Google Scholar] [CrossRef]
- Sun, H.; Lv, Y.; Ni, J.; Jiang, X.; Wang, Z. Effect of seal locations of pump-turbine on axial hydraulic trust. J. Mar. Sci. Eng. 2021, 9, 623. [Google Scholar] [CrossRef]
- Fu, X.; Li, D.; Wang, H.; Zhang, G.; Li, Z.; Wei, X. Numerical simulationof the transient flowin a pump-turbine duringthe load rejection processwith special emphasison the cavitation effect. J. Fluids Eng. Trans. ASME 2020, 142, 011103. [Google Scholar] [CrossRef]
- Su, W.-T.; Li, X.-B.; Xia, Y.-X.; Liu, Q.-Z.; Binama, M.; Zhang, Y.-N. Pressure fluctuation characteristics of a model pump-turbine during runaway transient. Renew. Energy 2021, 163, 517–529. [Google Scholar] [CrossRef]
- Lu, J.; Qian, Z.; Lee, Y.-H. Numerical investigation of unsteady characteristics of a pump turbine under runaway condition. Renew. Energy 2021, 169, 905–924. [Google Scholar] [CrossRef]
- Kan, K.; Zheng, Y.; Chen, H.; Zhou, D.; Dai, J.; Binama, M.; Yu, A. Numerical simulation of transient flow in a shaft extension tubular pump unit during runaway process caused by power failure. Renew. Energy 2020, 154, 1153–1164. [Google Scholar] [CrossRef]
- Tong, Z.; Miao, J.; Tong, S.; Lu, Y. Early prediction of remaining useful life for Lithium-ion batteries based on a hybrid machine learning method. J. Clean. Prod. 2021, 317, 128265. [Google Scholar] [CrossRef]
- Tong, Z.; Cheng, Z.; Tong, S. Preliminary design of multistage radial turbines based on rotor loss characteristics under variable operating conditions. Energies 2019, 12, 2550. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.C.; Fan, H.G.; Chen, N.X. Optimization of wicket-gate closing law considering different cases. In Proceedings of the 26th IAHR Symposium on Hydraulic Machinery and Systems, Beijing, China, 19–23 August 2012. [Google Scholar]
- Yao, Z.; Bi, H.L.; Huang, Q.S.; Li, Z.J.; Wang, Z.W. Analysis on influence of guide vanes closure laws of pump-turbine on load rejection transient process. In Proceedings of the 6th International Conference on Pumps and Fans with Compressors and Wind Turbines (ICPF), Beijing, China, 19–22 September 2013. [Google Scholar]
- Rezghi, A.; Riasi, A.; Tazraei, P. Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position. Renew. Energy 2020, 148, 478–491. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, G.; Liu, C. Research on closing control of the sluice gate for sudden power off of large pump. Adv. Sci. Lett. 2011, 4, 2316–2320. [Google Scholar] [CrossRef]
- Lee, B.-R.; Yun, T.-J.; Oh, W.-B.; Lee, C.-W.; Kim, H.-H.; Jeong, Y.-J.; Kim, I.-S. Study on floodgate resonance avoidance using FSI analyses. Trans. Korean Soc. Mech. Eng. A 2021, 45, 223–230. [Google Scholar] [CrossRef]
- Zhang, Q.; Tong, Z.; Tong, S.; Cheng, Z. Modeling and dynamic performance research on proton exchange membrane fuel cell system with hydrogen cycle and dead-ended anode. Energy 2021, 218, 119476. [Google Scholar] [CrossRef]
- Fu, X.; Li, D.; Wang, H.; Zhang, G.; Li, Z.; Wei, X. Influence of the clearance flow on the load rejection process in a pump-turbine. Renew. Energy 2018, 127, 310–321. [Google Scholar] [CrossRef]
- Ivanov, E.A.; Zharkovsky, A.A.; Borshchev, I.O.; Svoboda, D.G. Technique for axial pump characteristics predicting in CFD package OpenFOAM. In Oil and Gas Engineering; Myshlyavtsev, A.V., Likholobov, V.A., Yusha, V.L., Eds.; AIP Publishing: Melville, NY, USA, 2019; Volume 2141. [Google Scholar]
- Zhou, D.; Chen, H.; Zhang, J.; Jiang, S.; Gui, J.; Yang, C.; Yu, A. Numerical Study on Flow Characteristics in a Francis Turbine during Load Rejection. Energies 2019, 12, 716. [Google Scholar] [CrossRef] [Green Version]
- Tong, Z.; Chen, Y.; Tong, S.; Yu, Y.; Li, J.; Hao, G. Multi-objective optimization design of low specific speed centrifugal pumps based on NSGA-Ⅲ algorithm. China Mech. Eng. 2020, 31, 2239–2246. [Google Scholar]
- Chen, H.; Zhou, D.; Kan, K.; Guo, J.; Zheng, Y.; Binama, M.; Xu, Z.; Feng, J. Transient characteristics during the co-closing guide vanes and runner blades of a bulb turbine in load rejection process. Renew. Energy 2021, 165, 28–41. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Xie, L.; Wang, B.; Yao, Z.; Xiao, R. On the vortical characteristics of horn-like vortices in stator corner separation flow in an axial flow pump. J. Fluids Eng. Trans. ASME 2021, 143, 061201. [Google Scholar] [CrossRef]
- Burgan, H.I.; Aksoy, H. Daily flow duration curve model for ungauged intermittent subbasins of gauged rivers. J. Hydrol. 2022, 604, 127249. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, Y.; Li, S.; Tong, Z.; Tong, S.; Tang, N. Effect of lubricant viscosity on dynamics of high-precision gear considering lubricant-induced backlash reduction. Tribol. Int. 2022, 168, 107447. [Google Scholar] [CrossRef]
Mesh Scheme | Total Elements | Head (m) |
---|---|---|
1 | 3,856,261 | 5.59 |
2 | 5,173,923 | 5.67 |
3 | 6,956,973 | 5.73 |
4 | 9,046,973 | 5.76 |
5 | 12,037,248 | 5.77 |
Parameter Name | Performance Metrics | ||
---|---|---|---|
R2 | MAE | RSME | |
The maximum reverse flowrate | 0.80 | 0.7 | 0.88 |
The maximum reverse runner speed | 0.92 | 0.15 | 0.18 |
The maximum reverse head | 0.95 | 0.33 | 0.46 |
The maximum reverse axial force | 0.93 | 0.94 | 1.06 |
The maximum wave force at the gate port | 0.85 | 0.14 | 0.15 |
The maximum reverse axial moment | 0.90 | 0.70 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Z.; Yang, Z.; Huang, Q.; Yao, Q. Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition. Energies 2022, 15, 1905. https://doi.org/10.3390/en15051905
Tong Z, Yang Z, Huang Q, Yao Q. Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition. Energies. 2022; 15(5):1905. https://doi.org/10.3390/en15051905
Chicago/Turabian StyleTong, Zheming, Zhongqin Yang, Qing Huang, and Qiang Yao. 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition" Energies 15, no. 5: 1905. https://doi.org/10.3390/en15051905
APA StyleTong, Z., Yang, Z., Huang, Q., & Yao, Q. (2022). Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition. Energies, 15(5), 1905. https://doi.org/10.3390/en15051905