Autonomous Energy Management by Applying Deep Q-Learning to Enhance Sustainability in Smart Tourism Cities
Abstract
:1. Introduction
2. Literature Review
2.1. Autonomous Energy Management
2.2. Smart City
2.3. Deep Q-Learning
3. Materials and Methods
Value-Based Deep Reinforce Learning Methods
Algorithm 1 |
Initialize building parameters. Initialize Q(s,a) arbitrarily. Repeat (for each episode). Initialize s. repeat Choose a from s using the policy from Q(ϵ-greedy). Take action (a). Update building states (s’). Calculate reward (r). Q(s,a)←r + γQ(s’,a’) s ← s’ until s is terminal. end |
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jermsittiparsert, K.; Chankoson, T. Behavior of Tourism Industry under the Situation of Environmental Threats and Carbon Emission: Time Series Analysis from Thailand. Int. J. Energy Econ. Policy 2019, 6, 366–372. [Google Scholar] [CrossRef]
- Suanpang, P.; Sopha, C.; Jakjarus, C.; Leethong-in, P.; Tahanklae, P.; Panyavacharawongse, C.; Phopun, N.; Prasertsut, N. Innovation for Human Capital Development in the Tourism and Hospitality Industry (Frist S-Curve) on the Eastern Economic Corridor (EEE) (Chon Buri-Rayong-Chanthaburi-Trat) to Enrich International Standards and Prominence to High Value Services for Stimulate Thailand to Be Word Class Destination and Support New Normal Paradigm; Suan Dusit University: Bangkok, Thailand, 2021. [Google Scholar]
- Suanpang, P.; Jamjuntr, P. A Chatbot Prototype by Deep Learning Supporting Tourism. Psychol. Educ. 2021, 4, 1902–1911. [Google Scholar]
- Suanpang, P.; Jamjuntr, P. A comparative study of deep learning methods for time-Series forecasting tourism business recovery from the COVID 19 pandemic crisis. J. Manag. Inf. Decis. Sci. 2021, 24, 1–10. [Google Scholar]
- United Nation Environment Programme. SDG 7. Available online: https://www.unep.org/explore-topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-7 (accessed on 10 January 2022).
- Suanpang, P.; Pothipassa, P.; Netwong, T.; Kaewyong, P.; Niamsorn, C.; Chunhaparagu, T.; Donggitt, J.; Webb, P.; Rotprasoet, P.; Songma, S.; et al. Innovation of Smart Tourism to Promote Tourism in Suphan Buri Province; Suan Dusit University: Bangkok, Thailand, 2022. [Google Scholar]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 9, 402–411. [Google Scholar] [CrossRef]
- Jonban, M.S. Autonomous energy management system with self-healing capabilities for green buildings (microgrids). J. Build. Eng. 2020, 34, 01604. [Google Scholar] [CrossRef]
- Parpairia, K. Sustainability and Energy Use in Small Scale Greek Hotels: Energy Saving Strategies and Environmental Policies. Procedia Environ. Sci. 2017, 38, 169–177. [Google Scholar] [CrossRef]
- Calvillo, C.F.; Sánchez-Miralles, A.; Villar, J. Energy management and planning in smart citie. Renew. Sustain. Energy Rev. 2016, 55, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Arent, D.J.; Barrows, C.; Davis, S.; Grim, G.; Schaidle, J.; Kroposki, B.; Ruth, M.; Van Zandt, B. Integration of energy system. MRS Bulletin 2022, 46, 1–14. [Google Scholar] [CrossRef]
- Basit, A.; Sidhu, G.A.S.; Mahmood, A.; Gao, F. Efficient and Autonomous Energy Management Techniques for the Future Smart Homes. IEEE Trans. Smart Grid 2017, 2, 917–926. [Google Scholar] [CrossRef]
- Ramamoorty, M.; Venkata, S.N.L.L. Microgrid Protection Systems. In Micro-Grids-Applications, Solutions, Case Studies, and Demonstrations; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M. Social, Economic, and Environmental Impacts of Renewable Energy Resources. In Wind Solar Hybrid Renewable Energy System; Qubeissi, M., El-kharouf, A., Soyhan, H., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Lavrik, A.; Zhukovskiy, Y.; Tcvetkov, P. Optimizing the Size of Autonomous Hybrid Microgrids with Regard to Load Shifting. Energies 2021, 14, 5059. [Google Scholar] [CrossRef]
- Rakhshani, E.; Rouzbehi, K.; JSánchez, A.; Tobar, A.C.; Pouresmaeil, E. Integration of Large Scale PV-Based Generation into Power Systems: A Survey. Energies 2019, 8, 1425. [Google Scholar] [CrossRef] [Green Version]
- Maśloch, P.; Maśloch, G.; Kuźmiński, Ł.; Wojtaszek, H.; Miciuła, I. Autonomous Energy Regions as a Proposed Choice of Selecting Selected EU Regions—Aspects of Their Creation and Management. Energies 2020, 13, 6444. [Google Scholar] [CrossRef]
- Salvarli, M.; Salvarli, H. For Sustainable Development: Future Trends in Renewable Energy and Enabling Technologies. In Renewable Energy: Resources, Challenges and Applications; Okedu, K., Tahour, A., Aissaou, A., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Siemens. Microgrid. Available online: https://new.siemens.com/ (accessed on 29 January 2022).
- Kapiki, S. Energy Management in Hospitality: A Study of the Thessaloniki Hotels. Econ. Organ. Future Enterp. 2010, 1, 78–97. [Google Scholar]
- Raju, L.; Milton, R.S.; Morais, A.A. Autonomous Energy Management of a Micro-Grid using Multi Agent System. Indian J. Sci. Technol. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Boudoudouh, S.; Maâroufi, M. Multi agent system solution to microgrid implementation. Sustain. Cities Soc. 2018, 39, 252–261. [Google Scholar] [CrossRef]
- Chung, N.; Lee, H.; Ham, J.; Koo, C. Smart Tourism Cities’ Competitiveness Index: A Conceptual Model. In Information and Communication Technologies in Tourism 2021; Wörndl, W., Koo, C., Stienmetz, J.L., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Barrionuevo, J.M.; Berrone, P.; Ricart, J.E. Smart Cities, Sustainable Progress. IESE Insight 2012, 14, 50–57. [Google Scholar] [CrossRef]
- Harrison, C.; Eckman, B.; Hamilton, R.; Hartswick, P.; Kalagnanam, J.; Paraszczak, J.; Williams, P. Foundations for Smarter Cities. IBM J. Res. Dev. 2010, 54, 1–16. [Google Scholar] [CrossRef]
- Li, Y.; Hu, C.; Huang, C.; Duan, L. The concept of smart tourism in the context of tourism information services. Tour. Manag. 2017, 58, 293–300. [Google Scholar] [CrossRef]
- Gretzel, U.; Sigala, M.; Xiang, Z.; Koo, C. Smart tourism: Foundations and developments. Electron. Mark. 2015, 25, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Ma, H. The Construction Path and Mode of Public Tourism Information Service System Based on the Perspective of Smart City. Complexity 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Z.; Xie, Y.; Yang, Z. A Theoretical Analysis of Deep Q-Learning. PMLR 2020, 120, 486–489. [Google Scholar]
- Ong, H.Y.; Chavez, K.; Hong, A. Distributed Deep Q-Learning. Available online: https://arxiv.org/abs/1508.04186 (accessed on 28 January 2022).
- James, S.; Johns, E. 3D Simulation for Robot Arm Control with Deep Q-Learning. Available online: https://arxiv.org/abs/1609.03759 (accessed on 25 January 2022).
- Rahman, M.; Rashid, S.M.H.; Hossain, M.M. Implementation of Q learning and deep Q network for controlling a self balancing robot model. Robot. Biomim. 2018, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, J.; Wang, G.; Li, W.; Chen, M. An adaptive deep Q-learning strategy for handwritten digit recognition. Neural Netw. 2018, 107, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Song, Y.; Jiang, D.; Song, H. A New Deep-Q-Learning-Based Transmission Scheduling Mechanism for the Cognitive Internet of Things. IEEE Internet Things J. 2017, 5, 2375–2385. [Google Scholar] [CrossRef]
- Bui, Y.-H.; Hussain, A.; Kim, H.-M. Double Deep $Q$ -Learning-Based Distributed Operation of Battery Energy Storage System Considering Uncertainties. IEEE Trans. Smart Grid 2019, 11, 457–469. [Google Scholar] [CrossRef]
- Bokolo, A.J. Smart City Data Architecture for Energy Prosumption in Municipalities: Concepts, Requirements, and Future Directions. Int. J. Green Energy 2020, 13, 827–845. [Google Scholar]
- Nakabi, T.A.; Toivanen, P. Deep reinforcement learning for energy management in a microgrid with flexible demand. Sustain. Energy Grids Netw. 2020, 25, 100413. [Google Scholar] [CrossRef]
- Perera, A.; Kamalaruban, P. Applications of reinforcement learning in energy systems. Renew. Sustain. Energy Rev. 2020, 137, 110618. [Google Scholar] [CrossRef]
- Malmedal, K.; Kroposki, B.; Sen, P.K. Distributed Energy Resources and Renewable Energy in Distribution Systems: Protection Considerations and Penetration Levels. In Proceedings of the 2008 IEEE Industry Applications Society Annual Meeting, Edmonton, AB, Canada, 5–9 October 2008; pp. 1–8. [Google Scholar] [CrossRef]
Time | State | Action | Cost |
---|---|---|---|
0 | (304, 0.2) | discharge | 74.3 ฿ |
1 | (200, 0.2) | discharge | 123.7 ฿ |
2 | (200, 0.2) | discharge | 173.1 ฿ |
3 | (200, 0.2) | discharge | 222.4 ฿ |
4 | (202, 0.2) | discharge | 272.2 ฿ |
5 | (306, 0.2) | import | 347.4 ฿ |
6 | (524, 0.2) | discharge | 476.6 ฿ |
7 | (611, 0.2) | discharge | 627.9 ฿ |
8 | (568, 0.2) | discharge | 807.8 ฿ |
9 | (394, 0.2) | discharge | 932.4 ฿ |
10 | (450, 0.2) | discharge | 1074.9 ฿ |
11 | (483, 0.2) | import | 1228.0 ฿ |
12 | (470, 0.2) | discharge | 1518.1 ฿ |
13 | (389, 0.2) | import | 1758.3 ฿ |
14 | (365, 0.2) | discharge | 1983.5 ฿ |
15 | (409, 0.2) | import | 2235.8 ฿ |
16 | (593, 0.2) | import | 2599.5 ฿ |
17 | (625, 0.2) | discharge | 2979.6 ฿ |
18 | (625, 0.2) | discharge | 3170.7 ฿ |
19 | (525, 0.2) | import | 3330.7 ฿ |
20 | (525, 0.2) | import | 3490.6 ฿ |
21 | (524, 0.2) | discharge | 3613.8 ฿ |
22 | (522, 0.2) | import | 3736.8 ฿ |
23 | (533, 0.2) | discharge | 3864.0 ฿ |
24 | (305, 0.2) | discharge | 3938.7 ฿ |
25 | (200, 0.2) | discharge | 3988.4 ฿ |
26 | (200, 0.2) | discharge | 4038.2 ฿ |
27 | (200, 0.2) | discharge | 4088.0 ฿ |
28 | (202, 0.2) | discharge | 4138.4 ฿ |
29 | (306, 0.2) | import | 4214.8 ฿ |
30 | (524, 0.2) | discharge | 4345.5 ฿ |
31 | (611, 0.2) | discharge | 4498.7 ฿ |
32 | (568, 0.2) | discharge | 4680.7 ฿ |
33 | (296, 0.2) | import | 4775.4 ฿ |
34 | (334, 0.2) | discharge | 4882.1 ฿ |
35 | (393, 0.2) | import | 5007.6 ฿ |
36 | (303, 0.2) | discharge | 5195.1 ฿ |
37 | (390, 0.2) | import | 5436.2 ฿ |
38 | (351, 0.2) | discharge | 5653.3 ฿ |
39 | (432, 0.2) | import | 5919.9 ฿ |
40 | (590, 0.2) | discharge | 6282.6 ฿ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suanpang, P.; Jamjuntr, P.; Jermsittiparsert, K.; Kaewyong, P. Autonomous Energy Management by Applying Deep Q-Learning to Enhance Sustainability in Smart Tourism Cities. Energies 2022, 15, 1906. https://doi.org/10.3390/en15051906
Suanpang P, Jamjuntr P, Jermsittiparsert K, Kaewyong P. Autonomous Energy Management by Applying Deep Q-Learning to Enhance Sustainability in Smart Tourism Cities. Energies. 2022; 15(5):1906. https://doi.org/10.3390/en15051906
Chicago/Turabian StyleSuanpang, Pannee, Pitchaya Jamjuntr, Kittisak Jermsittiparsert, and Phuripoj Kaewyong. 2022. "Autonomous Energy Management by Applying Deep Q-Learning to Enhance Sustainability in Smart Tourism Cities" Energies 15, no. 5: 1906. https://doi.org/10.3390/en15051906
APA StyleSuanpang, P., Jamjuntr, P., Jermsittiparsert, K., & Kaewyong, P. (2022). Autonomous Energy Management by Applying Deep Q-Learning to Enhance Sustainability in Smart Tourism Cities. Energies, 15(5), 1906. https://doi.org/10.3390/en15051906