The Role of Anaerobic Digestion and Solar PV to Achieve GHG Neutrality in a Farm Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. LCA Model Description: System Boundaries, Functional Unit, and Data
2.2. Large Farm Characteristics
2.3. Small Farm Characteristics
2.4. Anaerobic Digestion System
2.5. Solar PV System
3. Results
3.1. Net Energy Intensity
3.2. GHG Emissions
3.3. Manure, Land, and Costs to Install AD and PV Systems in the Base-Cases
3.4. Adding AD and PV Capacity to Achieve GHG Neutrality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dairy Management Inc. Dairy Environmental Sustainability. Available online: https://www.usdairy.com/sustainability/environmental-sustainability (accessed on 15 January 2022).
- U.S. Environmental Protection Agency (U.S. EPA). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019; U.S. EPA: Washington, DC, USA, 2021. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2019 (accessed on 21 January 2022).
- The Hartman Group. Reason for Purchasing Sustainable Products. Available online: https://www.hartman-group.com/infographics/98968421/reason-for-purchasing-sustainable-products (accessed on 15 January 2022).
- Capper, J.L.; Cady, R.A.; Bauman, D.E. The Environmental Impact of Dairy Production: 1944 Compared with 2007. J. Anim. Sci. 2009, 87, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Capper, J.L.; Cady, R.A. The Effects of Improved Performance in the U.S. Dairy Cattle Industry on Environmental Impacts between 2007 and 2017. J. Anim. Sci. 2020, 98, skz291. [Google Scholar] [CrossRef] [PubMed]
- Muradov, N.Z.; Veziroǧlu, T.N. “Green” Path from Fossil-Based to Hydrogen Economy: An Overview of Carbon-Neutral Technologies. Int. J. Hydrogen Energy 2008, 33, 6804–6839. [Google Scholar] [CrossRef]
- Eckard, R.; Clark, H. Potential Solutions to the Major Greenhouse-Gas Issues Facing Australasian Dairy Farming. Anim. Prod. Sci. 2018, 60, 10–16. [Google Scholar] [CrossRef]
- De Vivo, R.; Zicarelli, L. Influence of Carbon Fixation on the Mitigation of Greenhouse Gas Emissions from Livestock Activities in Italy and the Achievement of Carbon Neutrality. Transl. Anim. Sci. 2021, 5, txab042. [Google Scholar] [CrossRef]
- Kim, D.; Stoddart, N.; Rotz, C.A.; Veltman, K.; Chase, L.; Cooper, J.; Ingraham, P.; Izaurralde, R.C.; Jones, C.D.; Gaillard, R.; et al. Analysis of Beneficial Management Practices to Mitigate Environmental Impacts in Dairy Production Systems around the Great Lakes. Agric. Syst. 2019, 176, 102660. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Larson, R.A. Evaluating Greenhouse Gas Emissions from Dairy Manure Management Practices Using Survey Data and Lifecycle Tools. J. Clean. Prod. 2017, 143, 169–179. [Google Scholar] [CrossRef]
- Uddin, M.E.; Aguirre-Villegas, H.A.; Larson, R.A.; Wattiaux, M.A. Carbon Footprint of Milk from Holstein and Jersey Cows Fed Low or High Forage Diet with Alfalfa Silage or Corn Silage as the Main Forage Source. J. Clean. Prod. 2021, 298, 126720. [Google Scholar] [CrossRef]
- Organic Valley. Carbon Positive Dairy Farming. Available online: https://www.organicvalley.coop/why-organic-valley/sustainability/carbon-positive-dairy-farming/ (accessed on 15 January 2022).
- Devine, K. An Environmental and Economic Path toward Net Zero Dairy Farm Emissions. In The Markets Institute at World Wildlife Fund; The Markets Institute at WWF: Washington, DC, USA, 2021; Available online: https://www.worldwildlife.org/publications/an-environmental-and-economic-path-toward-net-zero-dairy-farm-emissions (accessed on 21 January 2022).
- Aguirre-Villegas, H.A.; Passos-Fonseca, T.H.; Reinemann, D.J.; Armentano, L.E.; Wattiaux, M.A.; Cabrera, V.E.; Norman, J.M.; Larson, R.A. Green Cheese: Partial Life Cycle Assessment of Greenhouse Gas Emissions and Energy Intensity of Integrated Dairy Production and Bioenergy Systems. J. Dairy Sci. 2015, 98, 1571–1592. [Google Scholar] [CrossRef]
- Vida, E.; Tedesco, D.E.A. The Carbon Footprint of Integrated Milk Production and Renewable Energy Systems—A Case Study. Sci. Total Environ. 2017, 609, 1286–1294. [Google Scholar] [CrossRef]
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy Intensity of Agriculture and Food Systems. Annu. Rev. Environ. Resour. 2011, 36, 233–246. [Google Scholar] [CrossRef]
- Baldini, C.; Gardoni, D.; Guarino, M. A Critical Review of the Recent Evolution of Life Cycle Assessment Applied to Milk Production. J. Clean. Prod. 2017, 140, 421–435. [Google Scholar] [CrossRef]
- Sharpe, K.; Heins, B.; Buchanan, E.; Cotter, M.; Reese, M. Electrical Energy Consumption in Four Commercial Midwest Dairy Barns. In 2019 American Dairy Science Association Annual Meeting; Journal of Dairy Science: Cincinnati, OH, USA, 2019; p. 405. [Google Scholar]
- Hills, D.J.; Roberts, D.W. Anaerobic Digestion of Dairy Manure and Field Crop Residues. Agric. Wastes 1981, 3, 179–189. [Google Scholar] [CrossRef]
- Parsons, A. On-Farm Biogas Production NRAES-20; Northeast Regional Agricultural Engineering Service (NRAES): Ithaca, NY, USA, 1984. [Google Scholar]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.S.; Fonoll, X.; Peces, M.; Astals, S. A Critical Review on Anaerobic Co-Digestion Achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Li, B.; Patel, K.; Wang, L.B. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasir, I.M.; Mohd Ghazi, T.I.; Omar, R. Anaerobic Digestion Technology in Livestock Manure Treatment for Biogas Production: A Review. Eng. Life Sci. 2012, 12, 258–269. [Google Scholar] [CrossRef]
- Li, Y.; Han, Y.; Zhang, Y.; Luo, W.; Li, G. Anaerobic Digestion of Different Agricultural Wastes: A Techno-Economic Assessment. Bioresour. Technol. 2020, 315, 123836. [Google Scholar] [CrossRef]
- U.S. EPA—AgSTAR. Data and Trends. Available online: https://www.epa.gov/agstar/agstar-data-and-trends (accessed on 15 January 2022).
- Cho, J.; Park, S.M.; Reum Park, A.; Lee, O.C.; Nam, G.; Ra, I.H. Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture. Energies 2020, 13, 4815. [Google Scholar] [CrossRef]
- Sharpe, K.T.; Heins, B.J.; Buchanan, E.S.; Reese, M.H. Evaluation of Solar Photovoltaic Systems to Shade Cows in a Pasture-Based Dairy Herd. J. Dairy Sci. 2021, 104, 2794–2806. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle: Seventh Revised Edition; The National Academies Press: Washington, DC, USA, 2001.
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- The International Dairy Federation (IDF). A Common Carbon Footprint Approach for the Dairy Sector: The IDF Guide to Standard Life Cycle Assessment Methodology; International Dairy Federation: Schaerbeek, Belgium, 2015; Volume 48. [Google Scholar] [CrossRef]
- American Society of Agricultural and Biological Engineers (ASABE). Manure Production and Characteristics. ASAE D384.2 MAR2005; ASABE: St. Joseph, MI, USA, 2005. [Google Scholar]
- Aguirre-Villegas, H.A.; Larson, R.A.; Sharara, M.A. Anaerobic Digestion, Solid-Liquid Separation, and Drying of Dairy Manure: Measuring Constituents and Modeling Emission. Sci. Total Environ. 2019, 696, 134059. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Larson, R.A.; Reinemann, D.J. From Waste-to-Worth: Energy, Emissions, and Nutrient Implications of Manure Processing Pathways. Biofuels Bioprod. Biorefin. 2014, 8, 770–793. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Catalog of CHP Technologies; U.S. Environmental Protection Agency: Washington, DC, USA, 2015.
- Hashimoto, A.G.; Varel, V.H.; Chen, Y.R. Factors Affecting Methane Yield and Production Rate. In ASAE Paper No. 79-4583; ASAE: St. Joseph, MI, USA, 1979. [Google Scholar]
- Jalalzadeh-Azar, A.; Saur, G.; Lopez, A. Biogas Resources Characterization. In 2010 Hydrogen Program Annual Merit Review; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2010. [Google Scholar]
- Rotz, C.A.; Corson, M.S.; Chianese, D.S.; Hafner, S.D.; Jarvis, R.; Coiner, C.U. The Integrated Farm System Model—Reference Manual—Version 4.4, p. 250; United States Department of Agriculture (USDA): Happy Valley, PA, USA, 2018.
- Veltman, K.; Rotz, C.A.; Chase, L.; Cooper, J.; Ingraham, P.; Izaurralde, R.C.; Jones, C.D.; Gaillard, R.; Larson, R.A.; Ruark, M.; et al. A Quantitative Assessment of Beneficial Management Practices to Reduce Carbon and Reactive Nitrogen Footprints and Phosphorus Losses on Dairy Farms in the US Great Lakes Region. Agric. Syst. 2018, 166, 10–25. [Google Scholar] [CrossRef]
- Sphera Solutions GmbH. GaBi 5 Software-System and Databases for Life Cycle Engineering; Sphera Solutions GmbH: Leinfelden-Echterdingen, Germany, 2022. [Google Scholar]
- Lazarus, W.F. Economics of Anaerobic Digesters for Processing Animal Manure. Available online: https://lpelc.org/economics-of-anaerobic-digesters-for-processing-animal-manure/ (accessed on 7 April 2021).
- Faulhaber, C.R.; Raman, D.R.; Burns, R. An Engineering-Economic Model for Analyzing Dairy Plug-Flow Anaerobic Digesters: Cost Structures and Policy Implications. Trans. ASABE 2012, 55, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Fusi, A.; Bacenetti, J.; Fiala, M.; Azapagic, A. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion. Front. Bioeng. Biotechnol. 2016, 4, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, J.W. Wisconsin Utility Wants to Tax the Sun 24%. PV Magazine. 2019. Available online: https://pv-magazine-usa.com/2019/05/06/wisconsin-utility-wants-to-tax-the-sun-24/ (accessed on 6 February 2022).
- Sendy, A. How Long Do Solar Panels Actually Last? Available online: https://www.solarreviews.com/blog/how-long-do-solar-panels-last (accessed on 30 August 2021).
- Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G. Land-Use Requirements for Solar Power Plants in the United States Land-Use Requirements for Solar Power Plants in the United States; National Renewable Laboratory: Denver, CO, USA, 2013. [Google Scholar]
- Feldman, D.; Ramasamy, V.; Fu, R.; Ramdas, A.; Desai, J.; Margolis, R.U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2020; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021. Available online: https://www.nrel.gov/docs/fy21osti/77324.pdf (accessed on 21 January 2022).
- Rotz, C.A.; Stout, R.; Leytem, A.; Feyereisen, G.; Waldrip, H.; Thoma, G.; Holly, M.; Bjorneberg, D.; Baker, J.; Vadas, P.; et al. Environmental Assessment of United States Dairy Farms. J. Clean. Prod. 2021, 315, 128153. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture Economic Research Service (USDA-ERS). Milk Cost of Production Estimates. Available online: https://www.ers.usda.gov/data-products/milk-cost-of-production-estimates/ (accessed on 6 February 2022).
- Tergast, H. Size Matters—Production Costs on US Dairy Farms. Available online: http://www.agribenchmark.org/agri-benchmark/did-you-know/einzelansicht/artikel//size-matters.html (accessed on 6 February 2022).
- We Energies. 2021 Customer Generation Rates. Available online: https://www.we-energies.com/services/pdf/customer_generation_rates.pdf (accessed on 6 February 2022).
- Regan, K.B.; Andersen, D.S. What Is It Worth? The Economic Value of Manure Testing. Trans. ASABE 2014, 57, 1845–1852. [Google Scholar] [CrossRef] [Green Version]
- Laboski, C.A.M.; Peters, J.B. Nutrient Application Guidelines for Field, Vegetable, and Fruit Crops in WI (A2890); University of Wisconsin-Extension: Madison, WI, USA, 2012. [Google Scholar]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited Review: Enteric Methane in Dairy Cattle Production: Quantifying the Opportunities and Impact of Reducing Emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [Green Version]
Feed | Lactating Cows | Young Heifers | Growing Heifers | Old Heifers and Dry Cows |
---|---|---|---|---|
kg of DMI/Animal/Day | ||||
Alfalfa silage | 8.0 | 2.01 | 6.55 | 3.99 |
Corn silage | 5.0 | 1.77 | 5.36 | 3.26 |
Cottonseed | 2.0 | - | - | - |
Corn grain | 6.6 | 0.46 | - | - |
Soybean meal * | 0.8 | 0.81 | - | - |
Total | 22.3 | 5.05 | 11.91 | 7.25 |
Variable | Value | Reference |
---|---|---|
Hydraulic retention time | 28 days | [33] |
Generator efficiency | Electric: 35% Thermal: 50% | [34] |
Energy consumed by the digester (of produced energy) | Electricity: 17% Thermal: 20% | [33] |
Biogas composition | 65% CH4 35% CO2 | [34] |
CH4 production | CH4 = Methane production rate (volume of gas produced per volume of digester per day, L/L/day); Bo = Ultimate methane yield per gram of volatile solids added (L/g/VS); HRT = Hydraulic retention time (days); So = Influent volatile solids concentration (g/L); µm = Bacterial growth rate (per day, µm = 0.013 × T − 0.129); T = Temperature of the digester (°C); K = kinetic parameter [dimensionless, K = 0.8 + 0.0016 × exp(0.06 × So)] | [35] |
Lower heating value of CH4 | 36 MJ/m3 | [36] |
VS destruction | 30% | [37] |
Increase in ammoniacal nitrogen after digestion | 15% | [32] |
CH4 leaks from digester | 1.0% | [38] |
Resources Use | Base-Case Large | Base-Case Small | ||
---|---|---|---|---|
AD | Solar PV | AD | Solar PV | |
Manure (ton/day) | 93 | NA | 14 | NA |
Area (HA) | NA | 34 | NA | 3 |
Capital costs (US$ total) | 1,734,328 | 4,116,216 | 498,322 | 494,291 |
O&M (US$/year) | 98,120 | 50,667 | 56,700 | 5222 |
Total costs (US$/year) | 184,836 | 215,316 | 81,616 | 24,993 |
Additional Resources Use for GHG Neutrality | Base-Case Large | Base-Case Small | ||
---|---|---|---|---|
AD | Solar PV | AD | Solar PV | |
Manure (ton/day) | 282 | NA | 47 | NA |
Area (HA) | NA | 125 | NA | 19 |
Capital costs (US$ total) | 3,058,961 | 11,747,808 | 1,044,693 | 2,528,318 |
O&M (US$/year) | 246,609 | 166,740 | 75,009 | 26,709 |
Total costs (US$/year) | 399,557 | 636,652 | 127,244 | 127,842 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguirre-Villegas, H.A.; Cortus, E.; Reinemann, D.J. The Role of Anaerobic Digestion and Solar PV to Achieve GHG Neutrality in a Farm Setting. Energies 2022, 15, 1975. https://doi.org/10.3390/en15061975
Aguirre-Villegas HA, Cortus E, Reinemann DJ. The Role of Anaerobic Digestion and Solar PV to Achieve GHG Neutrality in a Farm Setting. Energies. 2022; 15(6):1975. https://doi.org/10.3390/en15061975
Chicago/Turabian StyleAguirre-Villegas, Horacio Andres, Erin Cortus, and Douglas J. Reinemann. 2022. "The Role of Anaerobic Digestion and Solar PV to Achieve GHG Neutrality in a Farm Setting" Energies 15, no. 6: 1975. https://doi.org/10.3390/en15061975