Permeability Prediction Using Machine Learning Methods for the CO2 Injectivity of the Precipice Sandstone in Surat Basin, Australia
Abstract
:1. Introduction
2. Data Acquisition and Preparation
Data Preparation
3. Permeability Prediction with Machine Learning
3.1. Results and Discussion
The Base Case Model
- Number of layers = 3
- Number of hidden layers = 1
- Number of neurons in hidden layer = 12
- Activation function = Rectified Linear Unit (ReLU)
- Cross-validation type = K-fold (K = 5)
- Learning rate = 0.001
- Solver = with Limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)
- Alpha = 0.001
4. Uncertainty Quantification
5. Multi-Regression Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bradshaw, J. Regional Scale Assessment-Results & Methodology Queensland CO2 Storage Atlas. In Second EAGE CO2 Geological Storage Workshop 2010; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2010. [Google Scholar]
- Hodgkinson, J.; Grigorescu, M. Background research for selection of potential geostorage targets—Case studies from the Surat Basin, Queensland. Aust. J. Earth Sci. 2013, 60, 71–89. [Google Scholar] [CrossRef]
- He, J.; La Croix, A.D.; Wang, J.; Ding, W.; Underschultz, J. Using neural networks and the Markov Chain approach for facies analysis and prediction from well logs in the Precipice Sandstone and Evergreen Formation, Surat Basin, Australia. Mar. Pet. Geol. 2019, 101, 410–427. [Google Scholar] [CrossRef]
- Bianchi, M.; Kearsey, T.; Kingdon, A. Integrating deterministic lithostratigraphic models in stochastic realizations of subsurface heterogeneity. Impact on predictions of lithology, hydraulic heads and groundwater fluxes. J. Hydrol. 2015, 531, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Philip, R.; Mark, B. Reservoir Model Design: A Practitioner’s Guide. In Reservoir Model Design, 2015th ed.; Spring: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- La Croix, A.D.; Harfoush, A.; Rodger, I.; Gonzalez, S.; Undershultz, J.R.; Hayes, P.; Garnett, A. Reservoir modelling notional CO2 injection into the Precipice Sandstone and Evergreen Formation in the Surat Basin, Australia. Pet. Geosci. 2019, 26, 127–140. [Google Scholar] [CrossRef]
- Cinar, Y.; Riaz, A.; Tchelepi, H.A. Experimental study of CO2 injection into saline formations. Spe J. 2009, 14, 588–594. [Google Scholar] [CrossRef]
- Sundal, A.; Miri, R.; Nystuen, J.P.; Dypvik, H.; Aagaard, P. Modeling CO2 distribution in a heterogeneous sandstone reservoir: The Johansen Formation, northern North Sea. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 7–12 April 2013. [Google Scholar]
- Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Control. 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, K.; Wu, N. Numerical investigation of the storage efficiency factor for CO2 geological sequestration in saline formations. Energy Procedia 2013, 37, 5267–5274. [Google Scholar] [CrossRef] [Green Version]
- Mohaghegh, S.; Balan, B.; Ameri, S. State-of-the-art in permeability determination from well log data: Part 2-verifiable, accurate permeability predictions, the touch-stone of all models. In SPE Eastern Regional Meeting; Society of Petroleum Engineers: Dallas, TX, USA, 1995. [Google Scholar]
- Chehrazi, A.; Rezaee, R. A systematic method for permeability prediction, a Petro-Facies approach. J. Pet. Sci. Eng. 2012, 82, 1–16. [Google Scholar] [CrossRef]
- Wills, E. AI vs. MACHINE LEARNING: The Devil Is in the Details. Mach. Des. 2019, 91, 56–60. [Google Scholar]
- Jakhar, D.; Kaur, I. Artificial intelligence, machine learning and deep learning: Definitions and differences. Clin. Exp. Dermatol. 2020, 45, 131–132. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Mcculloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, I. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Liu, C.H.B.; Chamberlain, B.P.; Little, D.A.; Cardoso, Â. Generalising Random Forest Parameter Optimisation to Include Stability and Cost. In Machine Learning and Knowledge Discovery in Databases; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Jain, R.; Chotani, A.; Anuradha, G. 9-Disease diagnosis using machine learning: A comparative study. In Data Analytics in Biomedical Engineering and Healthcare; Lee, K.C., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 145–161. [Google Scholar]
- Laber, E.; Molinarom, M.; Pereira, F.M. Binary Partitions with Approximate Minimum Impurity. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2854–2862. [Google Scholar]
- Liu, Q.; Liu, W.; Mei, J.; Si, G.; Xia, T.; Quan, J. A New Support Vector Regression Model for Equipment Health Diagnosis with Small Sample Data Missing and Its Application. Shock. Vib. 2021, 2021, 6675078. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Allen, D.M. The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction. Technometrics 1974, 16, 125–127. [Google Scholar] [CrossRef]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Stone, M. An Asymptotic Equivalence of Choice of Model by Cross-Validation and Akaike’s Criterion. J. R. Stat. Soc. Ser. B 1977, 39, 44–47. [Google Scholar] [CrossRef]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef] [PubMed]
- Erofeev, A.; Orlov, D.; Ryzhov, A.; Koroteev, D. Prediction of Porosity and Permeability Alteration Based on Machine Learning Algorithms. Transp. Porous Media 2019, 128, 677–700. [Google Scholar] [CrossRef] [Green Version]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence-Volume 2, Montreal, QC, Canada, 20–25 August 1995; Morgan Kaufmann Publishers Inc.: Montreal, QC, Canada, 1995; pp. 1137–1143. [Google Scholar]
- Moss, H.; Leslie, D.; Rayson, P. Using J-K fold Cross Validation to Reduce Variance When Tuning NLP Models. In Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018. [Google Scholar]
- Eskandari, H.; Rezaee, M.; Mohammadnia, M. Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir South-West Iran. CSEG Rec. 2004, 42, 48. [Google Scholar]
- Rezaee, M.R.; Jafari, A.; Kazemzadeh, E. Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks. J. Geophys. Eng. 2006, 3, 370–376. [Google Scholar] [CrossRef]
Case ID | Features |
---|---|
case_1 | RHOB, Vsh |
case_2 | RHOB, Vsh, PHIDEFF |
case_3 | RHOB, Vsh, PEF |
case_4 | RHOB, Vsh, PHIDEFF, PEF |
case_5 | RHOB, Vsh, NPHI, PHIDEFF |
case_6 | RHOB, Vsh, LLD, PHIDEFF |
case_7 | RHOB, Vsh, DT, PHIDEFF |
case_8 | RHOB, Vsh, NPHI, PEF |
case_9 | RHOB, Vsh, LLD, PEF |
case_10 | RHOB, Vsh, DT, PEF |
case_11 | RHOB, Vsh, NPHI, DT, PHIDEFF |
case_12 | RHOB, Vsh, LLD, DT, PHIDEFF |
case_13 | RHOB, Vsh, NPHI PHIDEFF, PEF |
case_14 | RHOB, Vsh, LLD, PHIDEFF, PEF |
case_15 | RHOB, Vsh, NPHI, LLD, PHIDEFF |
case_16 | RHOB, Vsh, NPHI, LLD, PHIDEFF, PEF |
case_17 | RHOB, Vsh, NPHI, DT, PHIDEFF, PEF |
case_18 | RHOB, Vsh, LLD, DT, PHIDEFF, PEF |
case_19 | RHOB, Vsh, NPHI, LLD, DT, PHIDEFF |
case_20 | RHOB, Vsh, NPHI, LLD, DT, PHIDEFF, PEF |
Model | Parameter | Search Space |
---|---|---|
RF | max_depth | 80, 90, 100 |
min_samples_split | 8, 10, 12, 15 | |
min_samples_leaf | 3, 4, 5 | |
n_estimators | 300, 400 | |
NN | activation | identity, logistic, tanh, relu |
alpha | 0.0000001–0.001 | |
hidden_layer_sizes | 7–16 | |
max_iter | 200, 400, 1000,1500 | |
GBR | min_impurity_decrease | 0.0, 0.001, 0.00001 |
learning_rate | 0.0001, 0.001, 0.01, 0.1 | |
min_samples_split | 8, 10, 20 | |
min_samples_leaf | 1, 2, 5 | |
n_estimators | 300, 500 | |
SVR | kernel | RBF, Sigmoid |
C | 1, 3, 5, 7, 9 | |
degree | 3–6 | |
coef0 | 0.01, 0.5, 10 | |
gamma | 0.001, 0.01, 0.1 |
Models | Equations | R2 |
---|---|---|
1 | Log k = 50.47 + (−18.266 × RHOB) + (−1.443 × Vsh) + (−1.74 × PHIDeffe) + (−0.041 × NPHI) + (0.001 × LLD) + (−0.195 × PEF) + (−0.051 × DT) | 0.902 |
2 | Log k = 52.202 + (−18.931 × RHOB) + (−1.519 × Vsh) + (−0.689 × PHIDeffe) + (−0.039 × NPHI) + (−0.181 × PEF) + (−0.053 × DT) | 0.902 |
3 | Log k =51.667 + (−18.896 × RHOB) + (−1.43 × Vsh) + (−0.042 × NPHI) + (−0.053 × DT) | 0.902 |
4 | Log k = 56.659 + (−20.123 × RHOB) + (−1.701 × Vsh) + (−1.298 × PHIDeffe) + (−0.233 × PEF) + (−0.081 × DT) | 0.900 |
5 | Log k = 56.472 + (−20.225 × RHOB) + (−1.55 × Vsh) + (−0.083 × DT) | 0.899 |
6 | Log k = 43.026 + (−16.671 × RHOB) + (−1.809 × Vsh) + (−0.069 × NPHI) | 0.898 |
7 | Log k = 22.109 + (−8.669 × RHOB) + (−1.311 × Vsh) + (9.959 × PHIDeffe) + (−0.454 × PEF) | 0.886 |
8 | Log k = 26.461 + (−10.794 × RHOB) + (−1.582 × Vsh) + (8.739 × PHIDeffe) | 0.883 |
9 | Log k = 9.825 + (−4.605 × RHOB) + (20.043 × PHIDeffe) | 0.883 |
10 | Log k = 39.739 + (−15.763 × RHOB) + (−2.735 × Vsh) | 0.883 |
11 | Log k = −1.738 + (24.746 × PHIDeffe) | 0.881 |
12 | Log k =56.329 + (−23.06 × RHOB) | 0.848 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaee, R.; Ekundayo, J. Permeability Prediction Using Machine Learning Methods for the CO2 Injectivity of the Precipice Sandstone in Surat Basin, Australia. Energies 2022, 15, 2053. https://doi.org/10.3390/en15062053
Rezaee R, Ekundayo J. Permeability Prediction Using Machine Learning Methods for the CO2 Injectivity of the Precipice Sandstone in Surat Basin, Australia. Energies. 2022; 15(6):2053. https://doi.org/10.3390/en15062053
Chicago/Turabian StyleRezaee, Reza, and Jamiu Ekundayo. 2022. "Permeability Prediction Using Machine Learning Methods for the CO2 Injectivity of the Precipice Sandstone in Surat Basin, Australia" Energies 15, no. 6: 2053. https://doi.org/10.3390/en15062053
APA StyleRezaee, R., & Ekundayo, J. (2022). Permeability Prediction Using Machine Learning Methods for the CO2 Injectivity of the Precipice Sandstone in Surat Basin, Australia. Energies, 15(6), 2053. https://doi.org/10.3390/en15062053