Voltage Fluctuations and Flicker in Prosumer PV Installation
Abstract
:1. Introduction
2. Voltage Fluctuations in a Power System Network
- φ—the angle between real and apparent power,
- ψ—the angle that describes the impedance of supply line,
- —change of consumed or generated current/power, and
- —short circuit power.
- -
- electrical machines—voltage fluctuations causing changes of electrical torque, which can lead to engine vibrations, which in turn can lead to failure and can shorten the engine life. Moreover, the torque variation leads to increased losses and deterioration of product quality,
- -
- power electronic—voltage fluctuation can cause the reduction of power factor and generation of noncharacteristic harmonics and interharmonics,
- -
- devices for electrolysis—shortening the life of electrodes,
- -
- electrothermal devices—replacement of the effectiveness,
- -
- light—a variation of the light flux,
- -
- uninterruptible power sources (UPS)—unnecessary utilization of the UPS batteries, which increases the power losses.
3. Measurements
4. Measurement Analysis
4.1. Impact of PV Sources Connected to Ideal LV Network
4.2. Impact of PV Sources Connected to Real LV Network
4.3. Procedure of PST Assessment
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Huda, A.N.; Živanović, R. Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools. Renew. Sustain. Energy Rev. 2017, 76, 974–988. [Google Scholar] [CrossRef]
- Caamano-Martin, E.; Laukamp, H.; Jäntsch, M.; Erge, T.; Thornycroft, J.; De Moor, H.; Cobben, S.; Suna, D.; Gaiddon, B. Interaction between photovoltaic distributed generation and electricity networks. Prog. Photovolt. Res. Appl. 2008, 16, 629–643. [Google Scholar] [CrossRef]
- Kacejko, P.; Pijarski, P. Optimal Voltage Control in MV Network with Distributed Generation. Energies 2021, 14, 469. [Google Scholar] [CrossRef]
- Pijarski, P.; Kacejko, P.; Adamek, S. Analysis of Voltage Conditions in Low Voltage Networks Highly Saturated with Photovoltaic Micro Installations. Acta Energetica 2018, 3, 4–9. [Google Scholar]
- Zawodniak, J.J.; Łowczowski, K.; Czerniak, M. Connection of PV Sources Into Transmission Grid vs. Thermal Overload Risk of Wires and Cables. Autom. Elektr. Zakłócenia 2021, 13, 48–56. [Google Scholar] [CrossRef]
- Reno, M.J.; Lave, M.; Quiroz, J.E.; Broderick, R.J. PV ramp rate smoothing using energy storage to mitigate increased voltage regulator tapping. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016. [Google Scholar]
- Hoff, T.E.; Perez, R. Modeling PV fleet output variability. Sol. Energy 2012, 86, 2177–2189. [Google Scholar] [CrossRef]
- Chen, X.; Du, Y.; Lim, E.; Wen, H.; Yan, K.; Kirtley, J. Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling. Appl. Energy 2020, 268, 114980. [Google Scholar] [CrossRef]
- IEEE Power and Energy Society. IEEE 1453—IEEE Recommended Practice for the Analysis of Fluctuating Installations on Power Systems; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Pakonen, P.; Hilden, A.; Suntio, T.; Verho, P. Grid-connected PV power plant induced power quality problems—Experimental evidence. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Lim, Y.S.; Tang, J.H. Experimental study on flicker emissions by photovoltaic systems on highly cloudy region: A case study in Malaysia. Renew. Energy 2014, 64, 61–70. [Google Scholar] [CrossRef]
- Aziz, T.; Ketjoy, N. PV Penetration Limits in Low Voltage Networks and Voltage Variations. IEEE Access 2017, 5, 16784–16792. [Google Scholar] [CrossRef]
- Hanzelka, Z. Wahania napięcia. Autom. Elektr. Zakłócenia 2011, 5, 6–22. [Google Scholar]
- Smart, B.H.P. Power Quality A Guide to Voltage Fluctuation and Light Flicker; BC Hydro: Vancouver, BC, Canada, 2005. [Google Scholar]
- Musiał, E. Ocena Jakości Energii Elektrycznej w Sieciach Przemysłowych. Autom. Elektr. Zakłócenia 2010, 1, 30–45. [Google Scholar]
- Hanzelka, Z. Voltage Fluctuations in Power Networks (”Flicker”), EU: European Copper Institute, 2014. Available online: http://leonardo-energy.org/sites/leonardo-energy/files/documents-and-links/cu0208_an_voltage_fluctuations_v1.pdf (accessed on 3 February 2022).
- Otomański, P.; Wiczyński, G. The usage of voltage and current fluctuation for localization of disturbing loads supplied from power grid. Przegląd Elektrotechniczny 2011, 87, 107–111. [Google Scholar]
- Commssion, I.E. Electromagnetic Compatibility (EMC)—Part 3: Limits—Section 3: Limitation of Voltage Fluctuations and Flicker in Low Voltage Supply Systems for Equipment with Rated Current ≤16 A; International Electrotechnical Commission: Geneva, Switzerland, 1994. [Google Scholar]
- Waghmare, S. Induction motor voltage flicker analysis and its mitigation. Int. J. Eng. Sci. Technol. 2010, 2, 7626–7640. [Google Scholar]
- Kot, A.; Szpyra, W. Optymalna regulacja napięcia w sieciach rozdzielczych średniego napięcia. Acta Energetica 2009, 2, 89–105. [Google Scholar]
- Chmura i Partnerzy Radcowie Prawni Sp. p., Rozliczenia Prosumentów w Latach 2022–2024 (Fotowoltaika, Odnawialne źródła Energii). Co się Zmieni? Od kiedy? January 2022. Available online: https://www.infor.pl/prawo/nowosci-prawne/5393258,Rozliczenia-prosumentow-w-latach-20222024-fotowoltaika-odnawialne-zrodla-energii-Co-sie-zmieni-Od-kiedy.html (accessed on 9 February 2022).
- Bhattacharyya, S.; Cobben, S.; Myrzik, J.; Kling, W. Flicker propagation and emission coordination study in a simulated low voltage network. Eur. Trans. Electr. Power 2010, 20, 52–67. [Google Scholar] [CrossRef]
- Rozehna, P.; Krejčí, P. Power quality complaints and monitoring of flicker in selected area s of northern Moravia. In Proceedings of the 18th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 17–19 May 2017. [Google Scholar]
- Bhattacharyya, S.; Cai, R.; Cobben, S.; Myrzik, J.; Kling, W. Flicker propagation study in a typical Dutch grid. In Proceedings of the CIRED 2009—20th International Conference and Exhibition on Electricity Distribution-Part 1, Prague, Czech Republic, 8–11 June 2009; p. 102. [Google Scholar] [CrossRef] [Green Version]
- Chmielowiec, K.; Kuwałek, P.; Wiczyński, G. Zastosowanie Liczników AMI do Oceny Jakości Energii Elektrycznej; PTPiREE: Poznań, Poland, 2020. [Google Scholar]
- Mandelli, S.; Merlo, M.; Colombo, E. Novel procedure to formulate load profiles for off-grid rural areas. Energy Sustain. Dev. 2016, 31, 130–142. [Google Scholar] [CrossRef]
- Elspec, Pure BlackBox. Available online: https://www.elspec-ltd.com/metering-protection/power-quality-analyzers/purebb-power-quality-analyzer-handheld/ (accessed on 9 February 2022).
- IEEE. IEEE 929-2000 Recommended Practice for Utility Interface of Photovoltaic (PV) Systems. 0.1109/IEEESTD.2000.91304; IEEE: Piscataway, NJ, USA, 2000. [Google Scholar]
- Inzunza, R.; Tawada, Y.; Furukawa, M.; Shibata, N.; Sumiya, T.; Tanaka, T.; Kinoshita, M. ∆r of a Photovoltaic Inverter Under Sudden Increase in Irradiance due to Reflection in Clouds. In Proceedings of the 4th International Conference on Renewable Energy Research and Applications, Palermo, Italy, 22–25 November 2015. [Google Scholar]
- Olex, Catalogue—Aerial. Available online: https://www.se.com/ww/library/SCHNEIDER_ELECTRIC/SE_LOCAL/APS/212274_DC2A/Olex_cables.pdf (accessed on 25 February 2022).
- Yang, X.; Kratz, M. Power System Flicker Analysis by RMS Voltage Values and Numeric Flicker Meter Emulation. IEEE Trans. Power Deliv. 2009, 24, 1310–1318. [Google Scholar] [CrossRef]
- PV Monitor. Available online: https://pvmonitor.pl/index.php (accessed on 24 February 2022).
- Wiczyński, G. Porównanie miar wahań napięcia. Pozn. Univ. Uf Technol. Acad. J. 2012, 72, 9–16. [Google Scholar]
Length of the Power Lines | Stable Local Consumption (Cable Lengths 250 and 50 m | |||||
---|---|---|---|---|---|---|
Lutility [m] | Lconsumer [m] | apv | apcc | Plocal [kW] | apv | apcc |
150 | 50 | 0.1922 | 0.0433 | 0 | 0.2555 | 0.17 |
250 | 25 | 0.2133 | 0.17 | 5 | 0.2566 | 0.1722 |
250 | 50 | 0.2555 | 0.17 | 10 | 0.2577 | 0.1733 |
500 | 50 | 0.4098 | 0.3255 | 15 | 0.2599 | 0.1743 |
750 | 50 | 0.562 | 0.4776 | 20 | 0.2621 | 0.1755 |
1000 | 50 | 0.7007 | 0.6175 | 25 | 0.2644 | 0.1777 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łowczowski, K.; Nadolny, Z. Voltage Fluctuations and Flicker in Prosumer PV Installation. Energies 2022, 15, 2075. https://doi.org/10.3390/en15062075
Łowczowski K, Nadolny Z. Voltage Fluctuations and Flicker in Prosumer PV Installation. Energies. 2022; 15(6):2075. https://doi.org/10.3390/en15062075
Chicago/Turabian StyleŁowczowski, Krzysztof, and Zbigniew Nadolny. 2022. "Voltage Fluctuations and Flicker in Prosumer PV Installation" Energies 15, no. 6: 2075. https://doi.org/10.3390/en15062075
APA StyleŁowczowski, K., & Nadolny, Z. (2022). Voltage Fluctuations and Flicker in Prosumer PV Installation. Energies, 15(6), 2075. https://doi.org/10.3390/en15062075