Understanding Microgrid Sustainability: A Systemic and Comprehensive Review
Abstract
:1. Introduction
2. Overview of Existing Microgrid Literature
3. Energy Field
3.1. Energy Elements
3.2. Energy Architectures
Architecture | Type | Advantages and Drawbacks | Articles |
---|---|---|---|
AC | AC microgrid | AC microgrid is really easy to implement and reconfigure but requires a complex power electronic interface and a generally poor quality energy | [40,110] |
DC | DC microgrid | DC microgrids are relatively simple to control with a relatively good quality of energy but tend to be limited in terms of expansion and their lack of reliability with a distribution grid connection | [39,111] |
AC-DC microgrid | Combines the advantages of AC and DC architecture but cannot be suited for all applications | [112] | |
AC microgrid with DC storage | More reliable storage devices and has similar performance to the hybrid AC-DC, but the energy storage must be centralized | [113] | |
Hybrid | DC-zonal microgrid | Allows different busses voltage and management technique but increases the complexity of the control | [114] |
Solid state transformer based microgrid | Very high quality of energy and high compatibility with AC or DC devices, but the entire grid is dependent on the solid state transformer | [115,116] | |
Swarm architecture | Easy development and high overall reliability and flexibility, but requires a complex power electronic interface | [119] |
3.3. Energy Issues
4. Information Field
4.1. Information Elements
4.2. Information Architecture
4.3. Information Issues
4.3.1. Control Issues
4.3.2. Data Issues
Collection∖Processing Issues | Volume | Variety | Validity | Volatility | Veracity | Velocity | Value |
---|---|---|---|---|---|---|---|
Description | All the Data | Diversity of Sources | Accuracy of the Raw Data | Data Storage | Quality of the Data | Acquisition Speed | Final Aggregation |
Acquisition [161] | X | X | X | ||||
Management and Storage [107,162] | X | X | X | ||||
Analysis [163] | X | X | |||||
Disclosing [164,165] | X | ||||||
Protection [166,167] | X | X | X | X | X | X |
4.3.3. Communication Issues
5. Financial Field
5.1. Financial Elements
5.2. Financial Architecture
5.3. Financial Issues
6. Social Field
6.1. Social Elements
6.2. Social Architecture
6.3. Social Issues
7. Discussion
7.1. On the Lack of Studies on the Interdependence of Issues
7.2. On the Lack of a Sustainability Diagnosis Tool
7.3. On the Lack of an Integrated Microgrid Design Methodology
7.4. On the Lack of a Systemic Model for Microgrid Study and Simulation
7.5. On the Lack of Studies on the Expansion of a Microgrid System
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nations, U. Sustainable UN. Dev. Goal 2019, 7. Available online: https://sdgs.un.org/goals/goal7 (accessed on 6 April 2019).
- World Bank. More People Have Access to Electricity Than Ever Before, but World Is Falling Short of Sustainable Energy Goals. Available online: https://www.worldbank.org/en/news/press-release/2019/05/22/tracking-sdg7-the-energy-progress-report-2019 (accessed on 6 April 2019).
- The Evolution of Distributed Energy Resources. Microgrid Knowl. 2020. Available online: https://microgridknowledge.com/white-paper/evolution-distributed-energy-resources/ (accessed on 6 April 2020).
- Chatterjee, A.; Burmester, D.; Brent, A.; Rayudu, R. Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries. Energies 2019, 12, 2008. [Google Scholar] [CrossRef] [Green Version]
- Narayan, N.; Vega-Garita, V.; Qin, Z.; Popovic-Gerber, J.; Bauer, P.; Zeman, M. The Long Road to Universal Electrification: A Critical Look at Present Pathways and Challenges. Energies 2020, 13, 508. [Google Scholar] [CrossRef] [Green Version]
- Tenenbaum, B.; Greacen, C.; Siyambalapitiya, T.; Knuckles, J. From the Bottom Up: How Small Power Producers and Mini-Grids Can Deliver Electrification and Renewable Energy in Africa; Directions in Development—Energy and Mining; The World Bank: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Hanna, R.; Ghonima, M.; Kleissl, J.; Tynan, G.; Victor, D.G. Evaluating business models for microgrids: Interactions of technology and policy. Energy Policy 2017, 103, 47–61. [Google Scholar] [CrossRef]
- Schwieters, N Delphi Energy Future 2040. 2016. Available online: https://www.pwc.com/gx/en/energy-utilities-mining/pdf/delphi-energy-future.pdf (accessed on 6 April 2016).
- Ubilla, K.; Jiménez-Estévez, G.A.; Hernádez, R.; Reyes-Chamorro, L.; Hernández Irigoyen, C.; Severino, B.; Palma-Behnke, R. Smart Microgrids as a Solution for Rural Electrification: Ensuring Long-Term Sustainability Through Cadastre and Business Models. IEEE Trans. Sustain. Energy 2014, 5, 1310–1318. [Google Scholar] [CrossRef]
- Khodayar, M.E. Rural electrification and expansion planning of off-grid microgrids. Electr. J. 2017, 30, 68–74. [Google Scholar] [CrossRef]
- Santos, A.Q.; Ma, Z.; Olsen, C.G.; Jørgensen, B.N. Framework for Microgrid Design Using Social, Economic, and Technical Analysis. Energies 2018, 11, 2832. [Google Scholar] [CrossRef] [Green Version]
- Kanagawa, M.; Nakata, T. Assessment of access to electricity and the socio-economic impacts in rural areas of developing countries. Energy Policy 2008, 36, 2016–2029. [Google Scholar] [CrossRef]
- Suk, H.; Yadav, A.; Hall, J. Scalability Considerations in the Design of Microgrids to Support Socioeconomic Development in Rural Communities. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, Pittsburgh, PA, USA, 9–15 November 2018; Volume 52187, p. V013T05A068. [Google Scholar]
- Gunnarsdottir, I.; Davidsdottir, B.; Worrell, E.; Sigurgeirsdottir, S. Sustainable energy development: History of the concept and emerging themes. Renew. Sustain. Energy Rev. 2021, 141, 110770. [Google Scholar] [CrossRef]
- Shah Danish, M.S.; Senjyu, T.; Funabashia, T.; Ahmadi, M.; Ibrahimi, A.M.; Ohta, R.; Rashid Howlader, H.O.; Zaheb, H.; Sabory, N.R.; Sediqi, M.M. A sustainable microgrid: A sustainability and management-oriented approach. Energy Procedia 2019, 159, 160–167. [Google Scholar] [CrossRef]
- Gaona, E.E.; Trujillo, C.L.; Guacaneme, J.A. Rural microgrids and its potential application in Colombia. Renew. Sustain. Energy Rev. 2015, 51, 125–137. [Google Scholar] [CrossRef]
- Cust, J.; Singh, A.; Neuhoff, K. Rural Electrification in India: Economic and Institutional Aspects of Renewables; Technical Report ID 2760810; SSRN: Rochester, NY, USA, 2007. [Google Scholar] [CrossRef]
- Schnitzer, D.; Lounsbury, D.S.; Carvallo, J.P.; Deshmukh, R.; Apt, J.; Kammen, D.M. Microgrids for Rural Electrification: A Critical Review of Best Practices Based on Seven Case Studies; United Nations Foundation: New York, NY, USA, 2014. [Google Scholar]
- Almeshqab, F.; Ustun, T.S. Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects. Renew. Sustain. Energy Rev. 2019, 102, 35–53. [Google Scholar] [CrossRef]
- Hartvigsson, E. To Be or Not to Be: On System Dynamics and the Viability of Mini-Grids in Rural Electrification; Chalmers Tekniska Hogskola: Göteborg, Sweden, 2018. [Google Scholar]
- Tsikalakis, A.G.; Hatziargyriou, N.D. Centralized control for optimizing microgrids operation. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Gui, E.M.; Diesendorf, M.; MacGill, I. Distributed energy infrastructure paradigm: Community microgrids in a new institutional economics context. Renew. Sustain. Energy Rev. 2017, 72, 1355–1365. [Google Scholar] [CrossRef]
- Hossain, M.A.; Pota, H.R.; Hossain, M.J.; Blaabjerg, F. Evolution of microgrids with converter-interfaced generations: Challenges and opportunities. Int. J. Electr. Power Energy Syst. 2019, 109, 160–186. [Google Scholar] [CrossRef]
- Sen, S.; Kumar, V. Microgrid control: A comprehensive survey. Annu. Rev. Control 2018, 45, 118–151. [Google Scholar] [CrossRef]
- Hossain, M.A.; Pota, H.R.; Issa, W.; Hossain, M.J. Overview of AC Microgrid Controls with Inverter-Interfaced Generations. Energies 2017, 10, 1300. [Google Scholar] [CrossRef]
- Shahgholian, G. A brief review on microgrids: Operation, applications, modeling, and control. Int. Trans. Electr. Energy Syst. 2021, 31, e12885. [Google Scholar] [CrossRef]
- Giotitsas, C.; Nardelli, P.H.J.; Kostakis, V.; Narayanan, A. From private to public governance: The case for reconfiguring energy systems as a commons. Energy Res. Soc. Sci. 2020, 70, 101737. [Google Scholar] [CrossRef]
- Syed, M.M.; Morrison, G.M. A Rapid Review on Community Connected Microgrids. Sustainability 2021, 13, 6753. [Google Scholar] [CrossRef]
- Gjorgievski, V.Z.; Cundeva, S.; Georghiou, G.E. Social arrangements, technical designs and impacts of energy communities: A review. Renew. Energy 2021, 169, 1138–1156. [Google Scholar] [CrossRef]
- Akinyele, D.; Belikov, J.; Levron, Y. Challenges of Microgrids in Remote Communities: A STEEP Model Application. Energies 2018, 11, 432. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Kumar, V. Microgrid modelling: A comprehensive survey. Annu. Rev. Control 2018, 46, 216–250. [Google Scholar] [CrossRef]
- Al-Ismail, F.S. DC Microgrid Planning, Operation, and Control: A Comprehensive Review. IEEE Access 2021, 9, 36154–36172. [Google Scholar] [CrossRef]
- Sandelic, M.; Peyghami, S.; Sangwongwanich, A.; Blaabjerg, F. Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges. Renew. Sustain. Energy Rev. 2022, 159, 112127. [Google Scholar] [CrossRef]
- Chandak, S.; Rout, P.K. The implementation framework of a microgrid: A review. Int. J. Energy Res. 2021, 45, 3523–3547. [Google Scholar] [CrossRef]
- Gacitua, L.; Gallegos, P.; Henriquez-Auba, R.; Lorca, Á.; Negrete-Pincetic, M.; Olivares, D.; Valenzuela, A.; Wenzel, G. A comprehensive review on expansion planning: Models and tools for energy policy analysis. Renew. Sustain. Energy Rev. 2018, 98, 346–360. [Google Scholar] [CrossRef]
- Ardeshiri, A.; Lotfi, A.; Behkam, R.; Moradzadeh, A.; Barzkar, A. Introduction and Literature Review of Power System Challenges and Issues; Springer International Publishing: Cham, Switzerland, 2021; pp. 19–43. [Google Scholar] [CrossRef]
- Suri, D.; Shekhar, J.; Mukherjee, A.; Singh Bajaj, A. Designing Microgrids for Rural Communities: A Practitioner Focused Mini-Review. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I CPS Europe), Madrid, Spain, 9–12 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Hooshyar, A.; Iravani, R. Microgrid Protection. Proc. IEEE 2017, 105, 1332–1353. [Google Scholar] [CrossRef]
- Sarangi, S.; Sahu, B.K.; Rout, P.K. A comprehensive review of distribution generation integrated DC microgrid protection: Issues, strategies, and future direction. Int. J. Energy Res. 2021, 45, 5006–5031. [Google Scholar] [CrossRef]
- Sarangi, S.; Sahu, B.K.; Rout, P.K. Review of distributed generator integrated AC microgrid protection: Issues, strategies, and future trends. Int. J. Energy Res. 2021, 45, 14117–14144. [Google Scholar] [CrossRef]
- Dagar, A.; Gupta, P.; Niranjan, V. Microgrid protection: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 149, 111401. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Ahmadiahangar, R.; Husev, O.; Roasto, I.; Jalakas, T.; Blinov, A. Recent Contributions, Future Prospects and Limitations of Interlinking Converter Control in Hybrid AC/DC Microgrids. IEEE Access 2021, 9, 7960–7984. [Google Scholar] [CrossRef]
- Cheng, Z.; Duan, J.; Chow, M.Y. To Centralize or to Distribute: That Is the Question: A Comparison of Advanced Microgrid Management Systems. IEEE Ind. Electron. Mag. 2018, 12, 6–24. [Google Scholar] [CrossRef]
- Moharm, K. State of the art in big data applications in microgrid: A review. Adv. Eng. Inform. 2019, 42, 100945. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, T.; Bompard, E.F. Big data analytics in smart grids: A review. Energy Inform. 2018, 1, 8. [Google Scholar] [CrossRef]
- Huaiying, S.; Yan, L.; Angang, Z.; Songfeng, Q.; Yong, W.; Wulei, Z. Research on Technical Architecture and Application of Big Data Cloud Platform for Electric Power Measurement. J. Phys. Conf. Ser. 2019, 1213, 042040. [Google Scholar] [CrossRef]
- Ruiguang, M.A.; Haiyan, W.; Quanming, Z.; Yuan, L. Technical Research on the Electric Power Big Data Platform of Smart Grid. MATEC Web Conf. 2017, 139, 00217. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.u.d.; Uddin, M.F.; Gupta, N. Seven V’s of Big Data understanding Big Data to extract value. In Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education, Bridgeport, CT, USA, 3–5 April 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Serban, I.; Céspedes, S.; Marinescu, C.; Azurdia-Meza, C.A.; Gómez, J.S.; Hueichapan, D.S. Communication Requirements in Microgrids: A Practical Survey. IEEE Access 2020, 8, 47694–47712. [Google Scholar] [CrossRef]
- Faheem, M.; Shah, S.B.H.; Butt, R.A.; Raza, B.; Anwar, M.; Ashraf, M.W.; Ngadi, M.A.; Gungor, V.C. Smart grid communication and information technologies in the perspective of Industry 4.0: Opportunities and challenges. Comput. Sci. Rev. 2018, 30, 1–30. [Google Scholar] [CrossRef]
- Veilleux, G.; Potisat, T.; Pezim, D.; Ribback, C.; Ling, J.; Krysztofinski, A.; Ahmed, A.; Papenheim, J.; Pineda, A.M.; Sembian, S.; et al. Techno-economic analysis of microgrid projects for rural electrification: A systematic approach to the redesign of Koh Jik off-grid case study. Energy Sustain. Dev. 2020, 54, 1–13. [Google Scholar] [CrossRef]
- Murugaperumal, K.; Ajay D Vimal Raj, P. Feasibility design and techno-economic analysis of hybrid renewable energy system for rural electrification. Solar Energy 2019, 188, 1068–1083. [Google Scholar] [CrossRef]
- Emmanouil, S.; Philhower, J.; Macdonald, S.; Khadim, F.K.; Yang, M.; Atsbeha, E.; Nagireddy, H.; Roach, N.; Holzer, E.; Anagnostou, E.N. A Comprehensive Approach to the Design of a Renewable Energy Microgrid for Rural Ethiopia: The Technical and Social Perspectives. Sustainability 2021, 13, 3974. [Google Scholar] [CrossRef]
- Mandelli, S.; Barbieri, J.; Mereu, R.; Colombo, E. Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renew. Sustain. Energy Rev. 2016, 58, 1621–1646. [Google Scholar] [CrossRef]
- Domenech, B.; Ferrer-Martí, L.; Lillo, P.; Pastor, R.; Chiroque, J. A community electrification project: Combination of microgrids and household systems fed by wind, PV or micro-hydro energies according to micro-scale resource evaluation and social constraints. Energy Sustain. Dev. 2014, 23, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Leary, J.; Czyrnek-Delêtre, M.; Alsop, A.; Eales, A.; Marandin, L.; Org, M.; Craig, M.; Ortiz, W.; Casillas, C.; Persson, J.; et al. Finding the niche: A review of market assessment methodologies for rural electrification with small scale wind power. Renew. Sustain. Energy Rev. 2020, 133, 110240. [Google Scholar] [CrossRef]
- Eras-Almeida, A.A.; Fernández, M.; Eisman, J.; Martín, J.G.; Caamaño, E.; Egido-Aguilera, M.A. Lessons Learned from Rural Electrification Experiences with Third Generation Solar Home Systems in Latin America: Case Studies in Peru, Mexico, and Bolivia. Sustainability 2019, 11, 7139. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.J.; Jaramillo, P.; Taneja, J.; Ustun, T.S. Enabling private sector investment in microgrid-based rural electrification in developing countries: A review. Renew. Sustain. Energy Rev. 2015, 52, 1268–1281. [Google Scholar] [CrossRef]
- Cornélusse, B.; Savelli, I.; Paoletti, S.; Giannitrapani, A.; Vicino, A. A community microgrid architecture with an internal local market. Appl. Energy 2019, 242, 547–560. [Google Scholar] [CrossRef] [Green Version]
- Levin, T.; Thomas, V.M. Utility-maximizing financial contracts for distributed rural electrification. Energy 2014, 69, 613–621. [Google Scholar] [CrossRef]
- Khandker, S.R.; Barnes, D.F.; Samad, H.A. Welfare Impacts of Rural Electrification: A Panel Data Analysis from Vietnam. Econ. Dev. Cult. Chang. 2013, 61, 659–692. [Google Scholar] [CrossRef] [Green Version]
- Lillo, P.; Ferrer-Martí, L.; Boni, A.; Fernández-Baldor, Á. Assessing management models for off-grid renewable energy electrification projects using the Human Development approach: Case study in Peru. Energy Sustain. Dev. 2015, 25, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Gui, E.M.; MacGill, I.; Betz, R. Community Microgrid Investment Planning: A Conceptual Framework. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Vahidinasab, V.; Tabarzadi, M.; Arasteh, H.; Alizadeh, M.I.; Mohammad Beigi, M.; Sheikhzadeh, H.R.; Mehran, K.; Sepasian, M.S. Overview of Electric Energy Distribution Networks Expansion Planning. IEEE Access 2020, 8, 34750–34769. [Google Scholar] [CrossRef]
- Wyse, S.M.; Hoicka, C.E. “By and for local people”: Assessing the connection between local energy plans and community energy. Local Environ. 2019, 24, 883–900. [Google Scholar] [CrossRef]
- Parag, Y.; Ainspan, M. Sustainable microgrids: Economic, environmental and social costs and benefits of microgrid deployment. Energy Sustain. Dev. 2019, 52, 72–81. [Google Scholar] [CrossRef]
- Kumar, J.; Suryakiran, B.V.; Verma, A.; Bhatti, T.S. Analysis of techno-economic viability with demand response strategy of a grid-connected microgrid model for enhanced rural electrification in Uttar Pradesh state, India. Energy 2019, 178, 176–185. [Google Scholar] [CrossRef]
- Rosenthal-Sabroux, C.; Grundstein, M. A Global Vision of Information Management. In Proceedings of the MoDISE-EUS, Montpellier, France, 16–17 June 2008; pp. 55–66. [Google Scholar]
- Kirubi, C.; Jacobson, A.; Kammen, D.M.; Mills, A. Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya. World Dev. 2009, 37, 1208–1221. [Google Scholar] [CrossRef]
- Zekaria, Y.; Chitchyan, R. Qualitative study of skills needs for community energy projects. In Proceedings of the Presentación en la Conferencia Sobre Comunidades Energéticas Organizada por Eco-SESA de la Universidad de Grenoble Alpes, Energy Communities for Collective Self-Consumption: Frameworks, Practices and Tools, Grenoble, France, 15 June 2020; Volume 16. [Google Scholar]
- Hicks, J.; Ison, N. An exploration of the boundaries of ‘community’ in community renewable energy projects: Navigating between motivations and context. Energy Policy 2018, 113, 523–534. [Google Scholar] [CrossRef]
- Ali, A.; Li, W.; Hussain, R.; He, X.; Williams, B.W.; Memon, A.H. Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China. Sustainability 2017, 9, 1146. [Google Scholar] [CrossRef] [Green Version]
- Derks, M.; Romijn, H. Sustainable performance challenges of rural microgrids: Analysis of incentives and policy framework in Indonesia. Energy Sustain. Dev. 2019, 53, 57–70. [Google Scholar] [CrossRef]
- Girbau-Llistuella, F.; Sumper, A.; Gallart-Fernandez, R.; Martinez-Farrero, S. Smart Rural Grid Pilot in Spain; Woodhead Publishing: Cambridge, UK, 2019; Chapter 14; pp. 315–345. [Google Scholar] [CrossRef]
- Torero, M. The Impact of Rural Electrification: Challenges and Ways Forward. Rev. d’Econ. Dev. 2015, 23, 49–75. [Google Scholar] [CrossRef]
- Suk, H.; Hall, J. Integrating Quality of Life in Sociotechnical Design: A Review of Microgrid Design Tools and Social Indicators. In Proceedings of the American Society of Mechanical Engineers Digital Collection, Anaheim, CA, USA, 18–21 August 2019. [Google Scholar] [CrossRef]
- Carpintero-Rentería, M.; Santos-Martín, D.; Guerrero, J.M. Microgrids Literature Review through a Layers Structure. Energies 2019, 12, 4381. [Google Scholar] [CrossRef] [Green Version]
- Martin-Martínez, F.; Sánchez-Miralles, A.; Rivier, M. A literature review of Microgrids: A functional layer based classification. Renew. Sustain. Energy Rev. 2016, 62, 1133–1153. [Google Scholar] [CrossRef]
- Sachs, T.; Gründler, A.; Rusic, M.; Fridgen, G. Framing Microgrid Design from a Business and Information Systems Engineering Perspective. Bus. Inf. Syst. Eng. 2019, 61, 729–744. [Google Scholar] [CrossRef] [Green Version]
- Alrashed, S. Key performance indicators for Smart Campus and Microgrid. Sustain. Cities Soc. 2020, 60, 102264. [Google Scholar] [CrossRef]
- Rahmann, C.; Núñez, O.; Valencia, F.; Arrechea, S.; Sager, J.; Kammen, D. Methodology for Monitoring Sustainable Development of Isolated Microgrids in Rural Communities. Sustainability 2016, 8, 1163. [Google Scholar] [CrossRef] [Green Version]
- González-Jiménez, J.; Asencio-Yace, J.I.; Pérez-Lugo, M.; Irizarry-Rivera, A. Compound Index: Reliability, Resilience, and Social Forces for the Sustainability of Isolated Community Microgrids (ICMGs) After Catastrophic Weather Events (CWE); INESI: London, UK, 2017. [Google Scholar]
- Jadav, K.A.; Karkar, H.M.; Trivedi, I.N. A Review of Microgrid Architectures and Control Strategy. J. Inst. Eng. (India) Ser. 2017, 98, 591–598. [Google Scholar] [CrossRef]
- Vanadzina, E.; Mendes, G.; Honkapuro, S.; Pinomaa, A.; Melkas, H. Business models for community microgrids. In Proceedings of the 2019 16th International Conference on the European Energy Market (EEM), Ljubljana, Slovenia, 18–20 September 2019; pp. 1–7. [Google Scholar]
- Sahoo, S.K.; Sinha, A.K.; Kishore, N.K. Control Techniques in AC, DC, and Hybrid AC–DC Microgrid: A Review. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 738–759. [Google Scholar] [CrossRef]
- Marzal, S.; Salas, R.; González-Medina, R.; Garcerá, G.; Figueres, E. Current challenges and future trends in the field of communication architectures for microgrids. Renew. Sustain. Energy Rev. 2018, 82, 3610–3622. [Google Scholar] [CrossRef] [Green Version]
- Espina, E.; Llanos, J.; Burgos-Mellado, C.; Cárdenas-Dobson, R.; Martínez-Gómez, M.; Sáez, D. Distributed Control Strategies for Microgrids: An Overview. IEEE Access 2020, 8, 193412–193448. [Google Scholar] [CrossRef]
- Wolsink, M. Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids. Renew. Sustain. Energy Rev. 2020, 127, 109841. [Google Scholar] [CrossRef]
- Louie, H.; Dauenhauer, P.; Wilson, M.; Zomers, A.; Mutale, J. Eternal Light: Ingredients for Sustainable Off-Grid Energy Development. IEEE Power Energy Mag. 2014, 12, 70–78. [Google Scholar] [CrossRef]
- Sirviö, K.H.; Laaksonen, H.; Kauhaniemi, K.; Hatziargyriou, N. Evolution of the Electricity Distribution Networks—Active Management Architecture Schemes and Microgrid Control Functionalities. Appl. Sci. 2021, 11, 2793. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Matayoshi, H.; Howlader, H.R.; Chakraborty, S.; Mandal, P.; Senjyu, T. Microgrid Planning and Design: Resilience to Sustainability. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 19–23 March 2019; pp. 253–258. [Google Scholar] [CrossRef]
- Zia, M.F.; Benbouzid, M.; Elbouchikhi, E.; Muyeen, S.M.; Techato, K.; Guerrero, J.M. Microgrid Transactive Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis. IEEE Access 2020, 8, 19410–19432. [Google Scholar] [CrossRef]
- Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl. Energy 2018, 222, 1033–1055. [Google Scholar] [CrossRef]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Cagnano, A.; De Tuglie, E.; Mancarella, P. Microgrids: Overview and guidelines for practical implementations and operation. Appl. Energy 2020, 258, 114039. [Google Scholar] [CrossRef]
- Wei, X.; Xiangning, X.; Pengwei, C. Overview of key microgrid technologies. Int. Trans. Electr. Energy Syst. 2018, 28, e2566. [Google Scholar] [CrossRef]
- Pinto, R.; Mariano, S.; Calado, M.D.R.; De Souza, J.F. Impact of Rural Grid-Connected Photovoltaic Generation Systems on Power Quality. Energies 2016, 9, 739. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; Sievert, M.; Toman, M.A. Rural electrification through mini-grids: Challenges ahead. Energy Policy 2019, 132, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Mariam, L.; Basu, M.; Conlon, M.F. Microgrid: Architecture, policy and future trends. Renew. Sustain. Energy Rev. 2016, 64, 477–489. [Google Scholar] [CrossRef]
- Bayindir, R.; Hossain, E.; Kabalci, E.; Perez, R. A Comprehensive Study on Microgrid Technology. Int. J. Renew. Energy Res. 2014, 4, 1094–1107. [Google Scholar]
- Akorede, M.F.; Hizam, H.; Pouresmaeil, E. Distributed energy resources and benefits to the environment. Renew. Sustain. Energy Rev. 2010, 14, 724–734. [Google Scholar] [CrossRef]
- Gunasekaran, M.; Mohamed Ismail, H.; Chokkalingam, B.; Mihet-Popa, L.; Padmanaban, S. Energy Management Strategy for Rural Communities’ DC Micro Grid Power System Structure with Maximum Penetration of Renewable Energy Sources. Appl. Sci. 2018, 8, 585. [Google Scholar] [CrossRef] [Green Version]
- Habib, H.F.; Lashway, C.R.; Mohammed, O.A. A Review of Communication Failure Impacts on Adaptive Microgrid Protection Schemes and the Use of Energy Storage as a Contingency. IEEE Trans. Ind. Appl. 2018, 54, 1194–1207. [Google Scholar] [CrossRef]
- Hajiaghasi, S.; Salemnia, A.; Hamzeh, M. Hybrid energy storage system for microgrids applications: A review. J. Energy Storage 2019, 21, 543–570. [Google Scholar] [CrossRef]
- Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the art in research on microgrids: A review. IEEE Access 2015, 3, 890–925. [Google Scholar] [CrossRef]
- Takalani, R.; Bekker, B. Load and load growth models for rural microgrids, and how to future-proof designs. In Proceedings of the 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa, 29–31 January 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, X.; Guerrero, J.M.; Blaabjerg, F.; Chen, Z. A Review of Power Electronics Based Microgrids. Int. J. Power Electron. 2012, 12, 181–192. [Google Scholar] [CrossRef]
- Arfeen, Z.A.; Khairuddin, A.B.; Larik, R.M.; Saeed, M.S. Control of distributed generation systems for microgrid applications: A technological review. Int. Trans. Electr. Energy Syst. 2019, 29, e12072. [Google Scholar] [CrossRef] [Green Version]
- Lede, A.M.R.; Molina, M.G.; Martinez, M.; Mercado, P.E. Microgrid architectures for distributed generation: A brief review. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America), Quito, Ecuador, 20–22 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Dragicevic, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues. IEEE Trans. Power Electron. 2016, 31, 3528–3549. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Doolla, S.; Chatterjee, K. Hybrid AC–DC Microgrid: Systematic Evaluation of Control Strategies. IEEE Trans. Smart Grid 2018, 9, 3830–3843. [Google Scholar] [CrossRef]
- Petrucci, L.; Boccaletti, C.; Francois, B.; Di Felice, P. Hybrid trigeneration system management with a double DC-bus configuration on the electrical side. In Proceedings of the 2009 8th International Symposium on Advanced Electromechanical Motion Systems Electric Drives Joint Symposium, Lillie, France, 1–3 July 2009; pp. 1–6. [Google Scholar] [CrossRef]
- She, X.; Lukic, S.; Alex, Q.H. DC zonal micro-grid architecture and control. In Proceedings of the IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 2988–2993. [Google Scholar] [CrossRef]
- De Silva, H.; Jayamaha, D.; Lidula, N. Review on design and control of solid state transformer based microgrids. AIMS Energy 2019, 7, 901–923. [Google Scholar] [CrossRef]
- Chalbi, M.; Boukettaya, G. Review on Solid State Transformer Based on Microgrids Architectures. In Proceedings of the 2021 18th International Multi-Conference on Systems, Signals Devices (SSD), Monastir, Tunisia, 22–25 March 2021; pp. 1120–1126. [Google Scholar] [CrossRef]
- Patrao, I.; Figueres, E.; Garcerá, G.; González-Medina, R. Microgrid architectures for low voltage distributed generation. Renew. Sustain. Energy Rev. 2015, 43, 415–424. [Google Scholar] [CrossRef]
- Bullich-Massagué, E.; Díaz-González, F.; Aragüés-Peñalba, M.; Girbau-Llistuella, F.; Olivella-Rosell, P.; Sumper, A. Microgrid clustering architectures. Appl. Energy 2018, 212, 340–361. [Google Scholar] [CrossRef]
- Groh, S.; Philipp, D.; Lasch, B.E.; Kirchhoff, H. Swarm Electrification: Investigating a Paradigm Shift Through the Building of Microgrids Bottom-up. In Proceedings of the Decentralized Solutions for Developing Economies; Groh, S., van der Straeten, J., Edlefsen Lasch, B., Gershenson, D., Leal Filho, W., Kammen, D.M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–22. [Google Scholar] [CrossRef]
- Motjoadi, V.; Bokoro, P.N.; Onibonoje, M.O. A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework. Energies 2020, 13, 2193. [Google Scholar] [CrossRef]
- Moslehi, K.; Kumar, R. Smart grid-a reliability perspective. In Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT), Gaithersburg, MD, USA, 19–21 January 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–8. [Google Scholar]
- Moslehi, K.; Kumar, R. A Reliability Perspective of the Smart Grid. IEEE Trans. Smart Grid 2010, 1, 57–64. [Google Scholar] [CrossRef]
- Aguero, J.R.; Takayesu, E.; Novosel, D.; Masiello, R. Modernizing the Grid: Challenges and Opportunities for a Sustainable Future. IEEE Power Energy Mag. 2017, 15, 74–83. [Google Scholar] [CrossRef]
- Marnay, C.; Chatzivasileiadis, S.; Abbey, C.; Iravani, R.; Joos, G.; Lombardi, P.; Mancarella, P.; von Appen, J. Microgrid Evolution Roadmap. In Proceedings of the 2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST), Vienna, Austria, 8–11 September 2015; pp. 139–144. [Google Scholar] [CrossRef]
- Garba, M.; Tankari, M.A.; Lefebvre, G. Using of distributed energy ressources for microgrid resilience achieving. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; pp. 659–663. [Google Scholar] [CrossRef]
- Hussain, A.; Bui, V.H.; Kim, H.M. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience. Appl. Energy 2019, 240, 56–72. [Google Scholar] [CrossRef]
- Alsaidan, I.; Alanazi, A.; Gao, W.; Wu, H.; Khodaei, A. State-Of-The-Art in Microgrid-Integrated Distributed Energy Storage Sizing. Energies 2017, 10, 1421. [Google Scholar] [CrossRef] [Green Version]
- Jhunjhunwala, A.; Kaur, P. Solar Energy, dc Distribution, and Microgrids: Ensuring Quality Power in Rural India. IEEE Electrif. Mag. 2018, 6, 32–39. [Google Scholar] [CrossRef]
- Akikur, R.K.; Saidur, R.; Ping, H.W.; Ullah, K.R. Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review. Renew. Sustain. Energy Rev. 2013, 27, 738–752. [Google Scholar] [CrossRef]
- Eriksson, E.L.V.; Gray, E.M. Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems—A critical review. Appl. Energy 2017, 202, 348–364. [Google Scholar] [CrossRef]
- Sharma, S.; Sood, Y.R. Microgrids: A Review of Status, Technologies, Software Tools, and Issues in Indian Power Market. IETE Tech. Rev. 2020, 1–22. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Mokhlis, H.; Mekhilef, S.; Mubin, M. Enhancing power system resilience leveraging microgrids: A review. J. Renew. Sustain. Energy 2019, 11, 035503. [Google Scholar] [CrossRef]
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in microgrid control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Farhangi, H. The path of the smart grid. IEEE Power Energy Mag. 2010, 8, 18–28. [Google Scholar] [CrossRef]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart Grid — The New and Improved Power Grid: A Survey. IEEE Commun. Surv. Tutor. 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Ma, R.; Chen, H.H.; Huang, Y.R.; Meng, W. Smart Grid Communication: Its Challenges and Opportunities. IEEE Trans. Smart Grid 2013, 4, 36–46. [Google Scholar] [CrossRef]
- Kuzlu, M.; Pipattanasomporn, M. Assessment of communication technologies and network requirements for different smart grid applications. In Proceedings of the 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 24–27 February 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Saleh, M.; Esa, Y.; Hariri, M.E.; Mohamed, A. Impact of Information and Communication Technology Limitations on Microgrid Operation. Energies 2019, 12, 2926. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, D.Y.; Vechiu, I.; Gaubert, J.P. A review of hierarchical control for building microgrids. Renew. Sustain. Energy Rev. 2020, 118, 109523. [Google Scholar] [CrossRef]
- Zhou, Q.; Shahidehpour, M.; Paaso, A.; Bahramirad, S.; Alabdulwahab, A.; Abusorrah, A. Distributed Control and Communication Strategies in Networked Microgrids. IEEE Commun. Surv. Tutor. 2020, 22, 2586–2633. [Google Scholar] [CrossRef]
- Feng, X.; Shekhar, A.; Yang, F.; Hebner, R.E.; Bauer, P. Comparison of Hierarchical Control and Distributed Control for Microgrid. Electr. Power Components Syst. 2017, 45, 1043–1056. [Google Scholar] [CrossRef]
- Bani-Ahmed, A.; Rashidi, M.; Nasiri, A.; Hosseini, H. Reliability Analysis of a Decentralized Microgrid Control Architecture. IEEE Trans. Smart Grid 2019, 10, 3910–3918. [Google Scholar] [CrossRef]
- Shuai, Z.; Sun, Y.; Shen, Z.J.; Tian, W.; Tu, C.; Li, Y.; Yin, X. Microgrid stability: Classification and a review. Renew. Sustain. Energy Rev. 2016, 58, 167–179. [Google Scholar] [CrossRef]
- Basak, P.; Chowdhury, S.; Halder nee Dey, S.; Chowdhury, S.P. A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid. Renew. Sustain. Energy Rev. 2012, 16, 5545–5556. [Google Scholar] [CrossRef]
- Kakran, S.; Chanana, S. Smart operations of smart grids integrated with distributed generation: A review. Renew. Sustain. Energy Rev. 2018, 81, 524–535. [Google Scholar] [CrossRef]
- Boqtob, O.; El Moussaoui, H.; El Markhi, H.; Lamhamdi, T. Microgrid energy management system: A state-of-the-art review. J. Electr. Syst. 2019, 15, 53–67. [Google Scholar]
- Mahmoud, M.S.; Alyazidi, N.M.; Abouheaf, M.I. Adaptive intelligent techniques for microgrid control systems: A survey. Int. J. Electr. Power Energy Syst. 2017, 90, 292–305. [Google Scholar] [CrossRef]
- Zeng, Z.; Yang, H.; Zhao, R.; Cheng, C. Topologies and control strategies of multi-functional grid-connected inverters for power quality enhancement: A comprehensive review. Renew. Sustain. Energy Rev. 2013, 24, 223–270. [Google Scholar] [CrossRef]
- Kim, M.S.; Haider, R.; Cho, G.J.; Kim, C.H.; Won, C.Y.; Chai, J.S. Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems. Energies 2019, 12, 837. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Tan, D.; Shuai, Z.; Luo, A. Control Techniques for Bidirectional Interlinking Converters in Hybrid Microgrids: Leveraging the advantages of both ac and dc. IEEE Power Electron. Mag. 2019, 6, 39–47. [Google Scholar] [CrossRef]
- Wang, Y.; Rousis, A.O.; Strbac, G. On microgrids and resilience: A comprehensive review on modeling and operational strategies. Renew. Sustain. Energy Rev. 2020, 134, 110313. [Google Scholar] [CrossRef]
- Roslan, M.F.; Hannan, M.A.; Ker, P.J.; Uddin, M.N. Microgrid control methods toward achieving sustainable energy management. Appl. Energy 2019, 240, 583–607. [Google Scholar] [CrossRef]
- El-Hendawi, M.; Gabbar, H.A.; El-Saady, G.; Ibrahim, E.N.A. Control and EMS of a Grid-Connected Microgrid with Economical Analysis. Energies 2018, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Zhou, K.; Yang, S.; Lu, X. Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting. Energy 2019, 171, 1053–1065. [Google Scholar] [CrossRef]
- Yoder, E.; Williams, N.J. Load Profile Prediction Using Customer Characteristics. In Proceedings of the 2020 IEEE PES/IAS PowerAfrica, Nairobi, Kenya, 25–28 August 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Ma, J.; Ma, X. State-of-the-art forecasting algorithms for microgrids. In Proceedings of the 2017 23rd International Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 September 2017; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Reber, T.; Booth, S. Tariff Structures to Encourage Micro-Grid Deployment in Sub-Saharan Africa: Review and Recent Trends. Curr. Sustain. Energy Rep. 2018, 5, 199–204. [Google Scholar] [CrossRef]
- Barrios-O’Neill, D.; Schuitema, G. Online engagement for sustainable energy projects: A systematic review and framework for integration. Renew. Sustain. Energy Rev. 2016, 54, 1611–1621. [Google Scholar] [CrossRef]
- Wang, R.; Hsu, S.C.; Zheng, S.; Chen, J.H.; Li, X.I. Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy. Appl. Energy 2020, 274, 115287. [Google Scholar] [CrossRef]
- Zhao, S.; Blaabjerg, F.; Wang, H. An Overview of Artificial Intelligence Applications for Power Electronics. IEEE Trans. Power Electron. 2021, 36, 4633–4658. [Google Scholar] [CrossRef]
- Ye, K.; Cao, Y.; Xiao, F.; Bai, J.; Ma, F.; Hu, Y. Research on unified information model for big data analysis of power grid equipment monitoring. In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017; pp. 2334–2337. [Google Scholar] [CrossRef]
- Neto, J.T.C.; de Andrade, P.H.M.; Vilanueva, J.M.; Santos, F.A.O. Big Data Analytics of Smart Grids using Artificial Intelligence for the Outliers Correction at Demand Measurements. In Proceedings of the 2018 3rd International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT), Bento Goncalves, Brazil, 27–31 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Marino, C.A.; Marufuzzaman, M. A microgrid energy management system based on chance-constrained stochastic optimization and big data analytics. Comput. Ind. Eng. 2020, 143, 106392. [Google Scholar] [CrossRef]
- Sun, Y.X.; Yan, Q.Y. The application mode of Energy Big Data and its enlightenment for power grid enterprises. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2014; Volume 1008, pp. 1452–1455. [Google Scholar]
- Liu, D.; Li, G.; Fan, R.; Guo, G. Research About Big Data Platform of Electrical Power System. In Proceedings of the Industrial IoT Technologies and Applications; Wan, J., Humar, I., Zhang, D., Eds.; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer International Publishing: Cham, Switzerland, 2016; pp. 36–43. [Google Scholar] [CrossRef]
- Paramkusem, K.M.; Aygun, R.S. Classifying Categories of SCADA Attacks in a Big Data Framework. Ann. Data Sci. 2018, 5, 359–386. [Google Scholar] [CrossRef]
- Chen, P.C.; Dokic, T.; Kezunovic, M. The Use of Big Data for Outage Management in Distribution Systems; International Conference on Electricity Distribution (CIRED) Workshop: Rome, Italy, 2014. [Google Scholar]
- Saputro, N.; Akkaya, K.; Uludag, S. A survey of routing protocols for smart grid communications. Comput. Netw. 2012, 56, 2742–2771. [Google Scholar] [CrossRef]
- Kabalci, Y. A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 2016, 57, 302–318. [Google Scholar] [CrossRef]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga-Lamas, P.; Fernández-Caramés, T.M.; Castedo, L. Towards the Internet of Smart Trains: A Review on Industrial IoT-Connected Railways. Sensors 2017, 17, 1457. [Google Scholar] [CrossRef] [Green Version]
- Ramathulasi, T.; Rajasekhara Babu, M. Comprehensive Survey of IoT Communication Technologies. In Proceedings of the Emerging Research in Data Engineering Systems and Computer Communications; Venkata Krishna, P., Obaidat, M.S., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; pp. 303–311. [Google Scholar] [CrossRef]
- Walker, G.; Devine-Wright, P. Community renewable energy: What should it mean? Energy Policy 2008, 36, 497–500. [Google Scholar] [CrossRef]
- Andreini, D.; Bettinelli, C. Business Model Definition and Boundaries; International Series in Advanced Management Studies; Springer International Publishing: Cham, Switzerland, 2017; pp. 25–53. [Google Scholar] [CrossRef]
- Piterou, A.; Coles, A.M. A review of business models for decentralised renewable energy projects. Bus. Strategy Environ. 2021, 30, 1468–1480. [Google Scholar] [CrossRef]
- Asmus, P.; Lawrence, M. Emerging microgrid business models. Navig. Res. Brief 2016, 23, 72–82. [Google Scholar]
- Dibaba, H.; Vanadzina, E.; Mendes, G.; Pinomaa, A.; Honkapuro, S. Business Model Design for Rural Off-the-Grid Electrification and Digitalization Concept. In Proceedings of the 2020 17th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 16–18 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Söderholm, J. Powered by Actors and Business Models: Analysing the Potential for Energy Community Development in New Regions Using the Case of Kökar Island. Master’s Thesis, Lunds University, Lund, Sweden, 2020. [Google Scholar]
- Weston, P.; Kalhoro, W.; Lockhart, E.; Reber, T.J.; Booth, S.S. Financial and Operational Bundling Strategies for Sustainable Micro-Grid Business Models; Technical Report; National Renewable Energy Lab.: Golden, CO, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Robert, F.C.; Sisodia, G.S.; Gopalan, S. The critical role of anchor customers in rural microgrids: Impact of load factor on energy cost. In Proceedings of the 2017 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), Melmaruvathur, India, 22–23 March 2017; pp. 398–403. [Google Scholar] [CrossRef]
- Booth, S.; Li, X.; Baring-Gould, I.; Kollanyi, D.; Bharadwaj, A.; Weston, P. Productive Use of Energy in African Micro-Grids: Technical and Business Considerations; Technical Report; OSTI.GOV: Golden, CO, USA, 2018. [CrossRef]
- Moreno, A.; Bareisaite, A. Scaling Up Access to Electricity: Pay-as-You-Go Plans in Off-Grid Energy Services. Live Wire; World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Trabish, H.K. Public Purpose Microgrids: Mixed-Ownership Models Spur Utility Investment in Growing Sector. 2016. Available online: http://www.utilitydive.com/news/public-purpose-microgrids-mixedownership-models-spur-utility-investment-i/425296 (accessed on 6 April 2022).
- Hawkey, D.; Webb, J.; Winskel, M. Organisation and governance of urban energy systems: District heating and cooling in the UK. J. Clean. Prod. 2013, 50, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Bird, S.; Hotaling, C.; Enayati, A.; Ortmeyer, T. Resilient Community Microgrids: Governance and Operational Challenges; Woodhead Publishing: Cambridge, UK, 2019; Chapter 4; pp. 65–95. [Google Scholar] [CrossRef]
- Says, D.A.S. New Business Models for Microgrids: Energy-as-a-Services (EaaS) Leads in Popularity. In Proceedings of the 16th International Conference on the European Energy Market, Łódź, Poland, 1–7 June 2018. [Google Scholar]
- Ingalalli, A.; Kamalasadan, S. Participation of Networked Microgrids in Energy-as-a-Service Model for Enhancing Grid Resiliency. In Proceedings of the 2021 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16–18 February 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Paukstadt, U.; Becker, J. From Energy as a Commodity to Energy as a Service—A Morphological Analysis of Smart Energy Services. Schmalenbach J. Bus. Res. 2021, 73, 207–242. [Google Scholar] [CrossRef]
- Koirala, B.P.; Koliou, E.; Friege, J.; Hakvoort, R.A.; Herder, P.M. Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems. Renew. Sustain. Energy Rev. 2016, 56, 722–744. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, L.; Önen, A.; Muyeen, S.M.; Kamwa, I. Transformation of microgrid to virtual power plant – a comprehensive review. Iet Gener. Transm. Distrib. 2019, 13, 1994–2005. [Google Scholar] [CrossRef]
- Rathnayaka, A.D.; Potdar, V.M.; Dillon, T.S.; Kuruppu, S. Formation of virtual community groups to manage prosumers in smart grids. Int. J. Grid Util. Comput. 2014, 6, 47–56. [Google Scholar] [CrossRef]
- Cui, S.; Wang, Y.W.; Xiao, J.W.; Liu, N. A Two-Stage Robust Energy Sharing Management for Prosumer Microgrid. IEEE Trans. Ind. Inform. 2019, 15, 2741–2752. [Google Scholar] [CrossRef]
- Bowes, J.; Booth, C.; Strachan, S. System interconnection as a path to bottom up electrification. In Proceedings of the 2017 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece, 28–31 August 2017; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wu, J.; Zhou, Y.; Cheng, M.; Long, C. Peer-to-Peer energy trading in a Microgrid. Appl. Energy 2018, 220, 1–12. [Google Scholar] [CrossRef]
- Sousa, T.; Soares, T.; Pinson, P.; Moret, F.; Baroche, T.; Sorin, E. Peer-to-peer and community-based markets: A comprehensive review. Renew. Sustain. Energy Rev. 2019, 104, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Valdivia, A.; Poblet, M. Connecting the Grids: A Review of Blockchain Governance in Distributed Energy Transitions; SSRN Scholarly Paper ID 3777293; Energy Research & Social Science: Rochester, NY, USA, 2020. [Google Scholar] [CrossRef]
- Kulkarni, V.; Kulkarni, K. A Blockchain-based Smart Grid Model for Rural Electrification in India. In Proceedings of the 2020 8th International Conference on Smart Grid (icSmartGrid), Paris, France, 17–19 June 2020; pp. 133–139. [Google Scholar] [CrossRef]
- Ahl, A.; Yarime, M.; Tanaka, K.; Sagawa, D. Review of blockchain-based distributed energy: Implications for institutional development. Renew. Sustain. Energy Rev. 2019, 107, 200–211. [Google Scholar] [CrossRef]
- Chen, T.; Pourbabak, H.; Su, W. Electricity Market Reform; Woodhead Publishing: Cambridge, UK, 2019; Chapter 5; pp. 97–121. [Google Scholar] [CrossRef]
- Diego Jiménez, J.; Vives, S.M.; Jiménez, E.G.; Mendoza, A.P. Development of a methodology for planning and design of microgrids for rural electrification. In Proceedings of the 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Pucon, Chile, 18–20 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Loka, P.; Moola, S.; Polsani, K.; Reddy, S.; Fulton, S.; Skumanich, A. A case study for micro-grid PV: Lessons learned from a rural electrification project in India. Prog. Photovolt. Res. Appl. 2014, 22, 733–743. [Google Scholar] [CrossRef]
- Ahmad, F.; Alam, M.S. Economic and ecological aspects for microgrids deployment in India. Sustain. Cities Soc. 2018, 37, 407–419. [Google Scholar] [CrossRef]
- Juanpera, M.; Blechinger, P.; Ferrer-Martí, L.; Hoffmann, M.M.; Pastor, R. Multicriteria-based methodology for the design of rural electrification systems. A case study in Nigeria. Renew. Sustain. Energy Rev. 2020, 133, 110243. [Google Scholar] [CrossRef]
- Bracco, S.; Delfino, F.; Pampararo, F.; Robba, M.; Rossi, M. A pilot facility for analysis and simulation of smart microgrids feeding smart buildings. Renew. Sustain. Energy Rev. 2016, 58, 1247–1255. [Google Scholar] [CrossRef]
- Rodrigues, D.L.; Ye, X.; Xia, X.; Zhu, B. Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community. Appl. Energy 2020, 262, 114498. [Google Scholar] [CrossRef]
- Yadav, P.; Davies, P.J.; Palit, D. Distributed solar photovoltaics landscape in Uttar Pradesh, India: Lessons for transition to decentralised rural electrification. Energy Strategy Rev. 2019, 26, 100392. [Google Scholar] [CrossRef]
- Gradl, C.; Knobloch, C. Energize the BoP!: Energy Business Model Generator for Low-Income Markets: A Practitioners’ Guide; Endeva UG: Berlin, Germany, 2011. [Google Scholar]
- Daneshvar, M.; Pesaran, M.; Mohammadi-ivatloo, B. Transactive energy integration in future smart rural network electrification. J. Clean. Prod. 2018, 190, 645–654. [Google Scholar] [CrossRef]
- Paudel, A.; Beng, G.H. A Hierarchical Peer-to-Peer Energy Trading in Community Microgrid Distribution Systems. In Proceedings of the 2018 IEEE Power Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, H.; Peng, Z.; Zhao, M. Methods and tools for community energy planning: A review. Renew. Sustain. Energy Rev. 2015, 42, 1335–1348. [Google Scholar] [CrossRef]
- Oueid, R.K. Microgrid finance, revenue, and regulation considerations. Electr. J. 2019, 32, 2–9. [Google Scholar] [CrossRef]
- Sharma, A. ‘We Do Not Want Fake Energy’: The Social Shaping of a Solar Micro-grid in Rural India. Sci. Technol. Soc. 2020, 25, 308–324. [Google Scholar] [CrossRef]
- Azarova, V.; Cohen, J.; Friedl, C.; Reichl, J. Designing local renewable energy communities to increase social acceptance: Evidence from a choice experiment in Austria, Germany, Italy, and Switzerland. Energy Policy 2019, 132, 1176–1183. [Google Scholar] [CrossRef] [Green Version]
- Busse, M.; Siebert, R. Acceptance studies in the field of land use—A critical and systematic review to advance the conceptualization of acceptance and acceptability. Land Use Policy 2018, 76, 235–245. [Google Scholar] [CrossRef]
- Gaede, J.; Rowlands, I.H. Visualizing social acceptance research: A bibliometric review of the social acceptance literature for energy technology and fuels. Energy Res. Soc. Sci. 2018, 40, 142–158. [Google Scholar] [CrossRef]
- Wolsink, M. The research agenda on social acceptance of distributed generation in smart grids: Renewable as common pool resources. Renew. Sustain. Energy Rev. 2012, 16, 822–835. [Google Scholar] [CrossRef]
- Wolsink, M. Social acceptance, lost objects, and obsession with the ‘public’—The pressing need for enhanced conceptual and methodological rigor. Energy Res. Soc. Sci. 2019, 48, 269–276. [Google Scholar] [CrossRef]
- Blau, P.M. A macrosociological theory of social structure. Am. J. Sociol. 1977, 83, 26–54. [Google Scholar] [CrossRef]
- Creamer, E.; Eadson, W.; Veelen, B.v.; Pinker, A.; Tingey, M.; Braunholtz-Speight, T.; Markantoni, M.; Foden, M.; Lacey-Barnacle, M. Community energy: Entanglements of community, state, and private sector. Geogr. Compass 2018, 12, e12378. [Google Scholar] [CrossRef]
- Wüstenhagen, R.; Wolsink, M.; Bürer, M.J. Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy 2007, 35, 2683–2691. [Google Scholar] [CrossRef] [Green Version]
- Muza, O.; Debnath, R. Disruptive innovation for inclusive renewable policy in sub-Saharan Africa: A social shaping of technology analysis of appliance uptake in Rwanda. Renew. Energy 2021, 168, 896–912. [Google Scholar] [CrossRef]
- Von Wirth, T.; Gislason, L.; Seidl, R. Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance. Renew. Sustain. Energy Rev. 2018, 82, 2618–2628. [Google Scholar] [CrossRef]
- Moody, J.; White, D.R. Structural Cohesion and Embeddedness: A Hierarchical Concept of Social Groups. Am. Sociol. Rev. 2003, 68, 103–127. [Google Scholar] [CrossRef] [Green Version]
- Upham, P.; Oltra, C.; Boso, À. Towards a cross-paradigmatic framework of the social acceptance of energy systems. Energy Res. Soc. Sci. 2015, 8, 100–112. [Google Scholar] [CrossRef]
- Wolsink, M. Social acceptance revisited: Gaps, questionable trends, and an auspicious perspective. Energy Res. Soc. Sci. 2018, 46, 287–295. [Google Scholar] [CrossRef]
- Stern, P.C. Individual and household interactions with energy systems: Toward integrated understanding. Energy Res. Soc. Sci. 2014, 1, 41–48. [Google Scholar] [CrossRef]
- Cohen, J.J.; Reichl, J.; Schmidthaler, M. Re-focussing research efforts on the public acceptance of energy infrastructure: A critical review. Energy 2014, 76, 4–9. [Google Scholar] [CrossRef]
- Friedl, C.; Reichl, J. Realizing energy infrastructure projects—A qualitative empirical analysis of local practices to address social acceptance. Energy Policy 2016, 89, 184–193. [Google Scholar] [CrossRef]
- Ponce, P.; Polasko, K.; Molina, A. End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust. Renew. Sustain. Energy Rev. 2016, 60, 587–598. [Google Scholar] [CrossRef]
- Karytsas, S.; Vardopoulos, I.; Theodoropoulou, E. Factors Affecting Sustainable Market Acceptance of Residential Microgeneration Technologies. A Two Time Period Comparative Analysis. Energies 2019, 12, 3298. [Google Scholar] [CrossRef] [Green Version]
- Mengelkamp, E.; Staudt, P.; Gärttner, J.; Weinhardt, C.; Huber, J. Quantifying Factors for Participation in Local Electricity Markets. In Proceedings of the 2018 15th International Conference on the European Energy Market (EEM), Lodz, Poland, 27–29 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Li, N.; Hakvoort, R.; Lukszo, Z. Cost Allocation in Integrated Community Energy Systems—Social Acceptance. Sustainability 2021, 13, 9951. [Google Scholar] [CrossRef]
- Peters, D.; Axsen, J.; Mallett, A. The role of environmental framing in socio-political acceptance of smart grid: The case of British Columbia, Canada. Renew. Sustain. Energy Rev. 2018, 82, 1939–1951. [Google Scholar] [CrossRef]
- Dermont, C.; Ingold, K.; Kammermann, L.; Stadelmann-Steffen, I. Bringing the policy making perspective in: A political science approach to social acceptance. Energy Policy 2017, 108, 359–368. [Google Scholar] [CrossRef]
- Rygg, B.J.; Ryghaug, M.; Yttri, G. Is local always best? Social acceptance of small hydropower projects in Norway. Int. J. Sustain. Energy Plan. Manag. 2021, 31, 161–174. [Google Scholar] [CrossRef]
- Assefa, G.; Frostell, B. Social sustainability and social acceptance in technology assessment: A case study of energy technologies. Technol. Soc. 2007, 29, 63–78. [Google Scholar] [CrossRef]
- Alvial-Palavicino, C.; Garrido-Echeverría, N.; Jiménez-Estévez, G.; Reyes, L.; Palma-Behnke, R. A methodology for community engagement in the introduction of renewable based smart microgrid. Energy Sustain. Dev. 2011, 15, 314–323. [Google Scholar] [CrossRef]
- Hirmer, S.; Guthrie, P. The benefits of energy appliances in the off-grid energy sector based on seven off-grid initiatives in rural Uganda. Renew. Sustain. Energy Rev. 2017, 79, 924–934. [Google Scholar] [CrossRef]
- Stigka, E.K.; Paravantis, J.A.; Mihalakakou, G.K. Social acceptance of renewable energy sources: A review of contingent valuation applications. Renew. Sustain. Energy Rev. 2014, 32, 100–106. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H. Smart grid customers’ acceptance and engagement: An overview. Renew. Sustain. Energy Rev. 2016, 65, 1285–1298. [Google Scholar] [CrossRef]
- Anderson, A.; Suryanarayanan, S. An Enterprise Systems Engineering Approach to Electrification: Looking at the Bigger Picture Through Life-Cycle Analysis of Community Microgrids: A Case Study in Papua New Guinea. IEEE Electrif. Mag. 2018, 6, 18–31. [Google Scholar] [CrossRef]
- Boon, F.P.; Dieperink, C. Local civil society based renewable energy organisations in the Netherlands: Exploring the factors that stimulate their emergence and development. Energy Policy 2014, 69, 297–307. [Google Scholar] [CrossRef]
- Geelen, D.; Reinders, A.; Keyson, D. Empowering the end-user in smart grids: Recommendations for the design of products and services. Energy Policy 2013, 61, 151–161. [Google Scholar] [CrossRef]
- Sauter, R.; Watson, J. Strategies for the deployment of micro-generation: Implications for social acceptance. Energy Policy 2007, 35, 2770–2779. [Google Scholar] [CrossRef]
- Jager, W. Stimulating the diffusion of photovoltaic systems: A behavioural perspective. Energy Policy 2006, 34, 1935–1943. [Google Scholar] [CrossRef]
- Adil, A.M.; Ko, Y. Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy. Renew. Sustain. Energy Rev. 2016, 57, 1025–1037. [Google Scholar] [CrossRef]
- Müller, M.O.; Stämpfli, A.; Dold, U.; Hammer, T. Energy autarky: A conceptual framework for sustainable regional development. Energy Policy 2011, 39, 5800–5810. [Google Scholar] [CrossRef]
- Chmutina, K.; Wiersma, B.; Goodier, C.I.; Devine-Wright, P. Concern or compliance? Drivers of urban decentralised energy initiatives. Sustain. Cities Soc. 2014, 10, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Raven, R.P.J.M.; Mourik, R.M.; Feenstra, C.F.J.; Heiskanen, E. Modulating societal acceptance in new energy projects: Towards a toolkit methodology for project managers. Energy 2009, 34, 564–574. [Google Scholar] [CrossRef]
- Niez, A. Comparative Study on Rural Electrification Policies in Emerging Economies: Keys to Successful Policies; IEA Energy Papers, No. 2010/03; OECD Publishing: Paris, France, 2010. [Google Scholar]
- Lopez-Arboleda, E.; Sarmiento, A.T.; Cardenas, L.M. Systematic Review of Integrated Sustainable Transportation Models for Electric Passenger Vehicle Diffusion. Sustainability 2019, 11, 2513. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.; Liu, X.; Morrison, G.M. Agent-based modelling and socio-technical energy transitions: A systematic literature review. Energy Res. Soc. Sci. 2019, 49, 41–52. [Google Scholar] [CrossRef]
- Salehi, V.; Veitch, B.; Smith, D. Modeling complex socio-technical systems using the FRAM: A literature review. Hum. Factors Ergon. Manuf. Serv. Ind. 2021, 31, 118–142. [Google Scholar] [CrossRef]
- Villanueva-Rosario, J.A.; Santos-García, F.; Aybar-Mejía, M.E.; Mendoza-Araya, P.; Molina-García, A. Coordinated ancillary services, market participation and communication of multi-microgrids: A review. Appl. Energy 2022, 308, 118332. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, P.; Zheng, C.; Zhang, Y.; Peng, J.; Zeng, Z. Analysis on the organization and Development of multi-microgrids. Renew. Sustain. Energy Rev. 2018, 81, 2204–2216. [Google Scholar] [CrossRef]
- Yoo, H.J.; Nguyen, T.T.; Kim, H.M. Multi-Frequency Control in a Stand-Alone Multi-Microgrid System Using a Back-To-Back Converter. Energies 2017, 10, 822. [Google Scholar] [CrossRef]
- Chiu, W.Y.; Sun, H.; Vincent Poor, H. A Multiobjective Approach to Multimicrogrid System Design. IEEE Trans. Smart Grid 2015, 6, 2263–2272. [Google Scholar] [CrossRef] [Green Version]
Component | Issues | Description | Reference |
---|---|---|---|
Sizing | Proper sizing of the electrical infrastructure | [32,33,34] | |
Energy | Quality | High quality and efficiency of the electrical infrastructure | [35,36,37] |
Protection | High safety for the infrastructure and the users | [38,39,40,41] | |
Control | High quality of energy control | [24,42,43] | |
Information | Data | High transcription of the data for the other components | [44,45,46,47,48] |
Communication | Fast and reliable communication | [49,50] | |
Design | Right economic design of the microgrid | [51,52,53,54,55,56] | |
Finance | Management | Good management of capital and employees | [57,58,59,60,61,62] |
Planning | Good long-term vision for the evolution of the microgrid | [7,63,64,65,66,67] | |
Knowledge | Good knowledge of microgrid operation and usage | [68,69,70] | |
Social | Rules | Rules adapted to the community and the microgrid | [71,72,73] |
Perception | High confidence in the community and the microgrid operator | [74,75,76] |
Energy | Financial | Information | Social | Type | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
References | Quality | Sizing | Protection | AC | DC | Hybrid | Sizing | Planing | Management | Gathered | Federated | Networked | Control | Data | Communication | Centralized | Decentralized | Distributed | Hierarchical | Knowledge | Perception | Rules | Micro | Meso | Macro | Analytic | Systemic |
[78] | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||
[83] | x | x | x | x | x | x | x | ||||||||||||||||||||
[71] | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||
[45] | x | x | |||||||||||||||||||||||||
[84] | x | x | x | x | x | x | x | x | x | ||||||||||||||||||
[30] | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||
[85] | x | x | x | x | x | x | x | x | x | ||||||||||||||||||
[86] | x | x | x | x | x | x | x | ||||||||||||||||||||
[87] | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||
[22] | x | x | x | x | x | x | x | x | x | ||||||||||||||||||
[88] | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||
[89] | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||
[90] | x | x | x | x | x | x | x | x | x | ||||||||||||||||||
[11] | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||
[79] | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||
[24] | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||
[91] | x | x | x | x | x | x | x | x | |||||||||||||||||||
[92] | x | x | x | x | x | x | x | x | x | ||||||||||||||||||
[93] | x | x | x | x | x | x | x | ||||||||||||||||||||
[18] | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||
[77] | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||
[94] | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||
[95] | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||
[72] | x | x | x | x | x | x | |||||||||||||||||||||
[96] | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||
[70] | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||
[42] | x | x | x | x | x | x | x | x | x | x |
Centralized [21] | Hierarchical [49,139] | Distributed [140,141] | Decentralized [142] | ||
---|---|---|---|---|---|
Layer | Node part | All nodes connected to a central node | Nodes are connected in a pyramid | Nodes are connected peer-to-peer | Nodes are not connected to one another |
Control | Source/Load controller | Source/Load controller | Source/Load controller | Source/Load controller | |
Low Layer | Data | Source/Load measurement | Source/Load measurement | Source/Load measurement | Source/Load measurement |
Communication | HAN IAN | HAN IAN | HAN IAN | HAN IAN | |
Control | Source/Load balancing | Local source/Load balancing | Source/Load droop control | Source/Load droop control | |
Intermediate Layer | Data | All lower layer measurements | Area-wide measurements | Only connected lower layer nodes measurements | No data from other nodes |
Communication | FAN NAN BAN WAN | FAN NAN BAN | FAN NAN BAN | HAN, IAN | |
Control | Long-term dispatch for all sources | Long-term dipatch for area-wide sources | Long-term dispatch for local source | Long-term disptach for local source | |
High Layer | Data | All lower layer measurements and outside measurements | All intermediary layer measurements and outside measurements | All lower layer connected nodes measurements and outside measurements | Only the local data available |
Communication | FAN NAN BAN WAN | WAN | FAN NAN BAN | - | |
Advantages | Easy to implement | Compromise between implementation and expansion | Easy to expand | Easy to expand | |
Drawbacks | Hard to expand | Complex communication system | Communication overhead | No communication |
Control Architectures | V/I Regulation | Power Quality | Transitions | Protection | Power Flow | Optimization | |
---|---|---|---|---|---|---|---|
Low | X | X | X | ||||
Centralized | Intermediate | X | X | X | X | ||
High | X | X | X | X | |||
Low | X | X | X | X | |||
Hierarchical | Intermediate | X | X | X | |||
High | X | X | X | ||||
Low | X | X | X | X | |||
Decentralized | Intermediate | X | X | X | |||
High | |||||||
Low | X | X | X | X | |||
Distributed | Intermediate | X | X | X | |||
High | X | X |
Control Architectures | V/I Regulation | Power Quality | Transitions | Protection | Power Flow | Optimization |
---|---|---|---|---|---|---|
Description | Regulation on a small time frame and a specific location [143] | Secondary loop regulation of the voltage and frequency [144] | Operation of the microgrid through disturbances [42] | Operation of the microgrid through failure, notably short circuits [41] | Coordination and improvement of the energy fluxes [145] | Entire microgrid improvement [146] |
Implementation | Droop, PID, model predictive, fuzzy, neuro-fuzzy, learning, virtual generator [147] | P/Q control, parallel BIC operation and harmonic mitigation [148] | Islanding detection, grid sync, and the BIC management [149,150] | Over/under I/V, fault detection, ground leakage, black start [40], cybersecurity, and other [103,151] | Storage coordination, V/f improvement, and demand response [152] | Economic dispatch, optimal load dispatch or prediction, and forecasting algorithms [153,154,155,156] |
Architecture | Type | Description | Articles |
---|---|---|---|
Government utility ownership | The microgrid is owned by a public entity which takes care of its entire operation | [179] | |
Third-party ownership | The microgrid is owned by a private entity which takes care of its operation | [58] | |
Gathered—One main owner and maintainer of the microgrid [22] | Anchor customer business model | The owner cooperates with a large infrastructure to ensure a minimum energy consumption | [180] |
Productive use of energy | The microgrid is linked with small businesses to ensure minimum revenues | [181] | |
Pay as you go | The community has more flexibility with its consumption of energy, paying just what they consume | [182] | |
Mixed ownership | Customers own a part of the microgrid | [183] | |
Community-owned microgrid | The community owns the microgrid and takes care of its operation | [184] | |
Federated—Multiple owners and maintainers of the microgrid [175] | Distributed model | A centralized entity owns the microgrid but shares the governance with the community | [185] |
Energy as a service | The business model focuses on the best energy quality possible to develop the community | [186,187,188] | |
ICES | Integrated community energy system where the community participates in optimizing production | [189] | |
Virtual power plant | Prosumers can be assembled in a bigger entity that faciliates the operation of the microgrid | [190,191] | |
Standalone systems | The combination of a distributed energy resource and a storage system allowing anybody to create their own microgrid | [129,193] | |
Networked—Community owns and operates the microgrid [192] | Decentralized prosumers | Prosumers are connected together in a decentralized way, and each actor takes care of its own sources, exchanging energy with a peer-to-peer market | [118,194,195] |
Blockchain-based energy market | A decentralized peer-to-peer market where the price of energy fluctuates depending on the demand with some blockchains applications | [118,196,197,198] | |
Energy internet model | The community is connected through a decentralized online tool for a network organization | [199] |
Social Architecture Layers | ||||
---|---|---|---|---|
Macro Layer | Meso Layer | Micro Layer | ||
User | Public acceptance: all the groups containing end-users [227] | Local public acceptance: groups and organizations of end-users [228] | End-user acceptance: households and individual end-users [229] | |
Social elements | Owner/Manager | Market acceptance: all the groups containing owners/managers [230,231] | Local stakeholder acceptance: groups and organizations of owners/managers [232] | Owner/Manager acceptance: local companies and/or individual owners/managers [222] |
Policy/Decision-maker | Socio-political acceptance: all the groups containing policy/decision-makers [233,234] | Local political acceptance: groups and organizations of policy/decision-makers [235] | Policy/Decision-maker acceptance: local government bodies and/or individual policy/decision-makers |
Social Acceptance Issues | ||||
---|---|---|---|---|
Knowledge | Rules | Perception | ||
User community | Educational events, door-to-door campaigns, usage tutorials, community maintenance engagement [240,241] | Preliminary community survey, community feedback framework on rules acceptance [242] | Local stakeholder/manager presence, consumption monitoring system, community ownership integration [243,244,245] | |
Social acceptance elements | Market | Training sessions, microgrid knowledge sharing locally or on the web [240,241] | Detailed business model documentation, microgrid design co-construction with the user community [246,247] | Detailed planning of the microgrid project, supervision of rules compliance, financial feasibility study [248,249] |
Institution | Microgrid policy training, energy educational programs, practical experience report [30] | Impact workshop design, detailed ownership and governance definition [250] | Lobbyist or association campaign, presence of representatives in the field [120] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boche, A.; Foucher, C.; Villa, L.F.L. Understanding Microgrid Sustainability: A Systemic and Comprehensive Review. Energies 2022, 15, 2906. https://doi.org/10.3390/en15082906
Boche A, Foucher C, Villa LFL. Understanding Microgrid Sustainability: A Systemic and Comprehensive Review. Energies. 2022; 15(8):2906. https://doi.org/10.3390/en15082906
Chicago/Turabian StyleBoche, Antoine, Clément Foucher, and Luiz Fernando Lavado Villa. 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review" Energies 15, no. 8: 2906. https://doi.org/10.3390/en15082906
APA StyleBoche, A., Foucher, C., & Villa, L. F. L. (2022). Understanding Microgrid Sustainability: A Systemic and Comprehensive Review. Energies, 15(8), 2906. https://doi.org/10.3390/en15082906