Study of Methane Fermentation of Cattle Manure in the Mesophilic Regime with the Addition of Crude Glycerine
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Experimental Study of Biogas Yield during Fermentation of Cattle Manure with the Addition of Crude Glycerine
3.2. Simulation of Biogas Yield with Gradual Loading of the Digester Based on the Results of Experimental Studies of Biogas Yield with Periodic Loading
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COI | chemical oxygen index |
DOM | dry organic matter |
VS | volatile solids |
DM | dry matter |
HRT | hydraulic retention time |
References
- Hryniewicz, M.; Roman, K. Simulations of fuels consumption in the CHP system based on modernised GTD-350 turbine engine. J. Water Land Dev. 2021, 51, 250–255. [Google Scholar] [CrossRef]
- Hryniewicz, M.; Strzelczyk, M.; Helis, M.; Paszkiewicz-Jasińska, A.; Steinhoff-Wrzesniewska, A.; Roman, K. Mathematical models use to yield prognosis of perennials on marginal land according to fertilisers doses. J. Water Land Dev. 2021, 51, 233–242. [Google Scholar] [CrossRef]
- Olugbade, T.; Ojo, O.; Mohammed, T. Influence of binders on combustion properties of biomass briquettes: A recent review. Bioenergy Res. 2019, 12, 241–259. [Google Scholar] [CrossRef]
- Olugbade, T.O.; Ojo, O.T. Biomass torrefaction for the production of high-grade solid biofuels: A Review. Bioenergy Res. 2020, 13, 1–17. [Google Scholar] [CrossRef]
- Lijo, L.; Gonzalez-Garcia, S.; Bacenetti, J.; Moreira, M.T. The environmental effect of substituting energy crops for food waste as feedstock for biogasproduction. Energy 2017, 137, 1130–1143. [Google Scholar] [CrossRef]
- Rogovskii, I.L.; Polishchuk, V.M.; Titova, L.L.; Sivak, I.M.; Vyhovskyi AYu Drahnev, S.V.; Voinash, S.A. Study of Biogas During Fermentation of Cattle Manure Using a Stimulating Additive in Form of Vegetable Oil Sediment. ARPN J. Eng. Appl. Sci. 2020, 15, 2652–2663. [Google Scholar]
- Polishchuk, V.M.; Shvorov, S.A.; Krusir, G.V.; Didur, V.V.; Witaszek, K.; Pasichnyk, N.A.; Dvornyk, Y.e.O.; Davidenko, T.S. Using soap waste from biodiesel production to intensify biogas generation during anaerobic digestion of cow dung. Probl. Energeticii Reg. 2022, 1, 97–107. [Google Scholar] [CrossRef]
- Polishchuk, V.M.; Shvorov, S.A.; Tarasenko, S.Y.E.; Antypov, I.O. Increasing the Biogas Release During the Cattle Manure Fermentation by Means of Rational Addition of Substandard Flour as a Cosubstrate. Sci. Innov. 2020, 16, 25–35. [Google Scholar] [CrossRef]
- Polishchuk, V.M.; Shvorov, S.A.; Zablodskiy, M.M.; Kucheruk, P.P.; Davidenko, T.S.; Dvornyk, Y.e.O. Effectiveness of Adding Extruded Wheat Straw to Poultry Manure to Increase the Rate of Biogas Yield. Probl. Energeticii Reg. 2021, 3, 111–124. [Google Scholar] [CrossRef]
- Polishchuk, V.M.; Shvorov, S.A.; Flonts, I.V.; Davidenko, T.S.; Dvornyk, Y.e.O. Increasing the Yield of Biogas and Electricity during Manure Fermentation Cattle by Optimally Adding Lime to Extruded Straw. Probl. Energeticii Reg. 2021, 1, 73–85. [Google Scholar] [CrossRef]
- Polishchuk, V.; Tarasenko, S.; Antypov Je Kozak, N.; Zhyltsov, A.; Okushko, O. Study of Methods of Biodiesel Neutralization with Aqueous Solution of Lymonic Acid. In Proceedings of the E3S Web of Conferences, 6th International Conference—Renewable Energy Sources (ICoRES 2019), Krynica, Poland, 12–14 June 2019; Volume 154, p. 02007. [Google Scholar] [CrossRef] [Green Version]
- Polishchuk, V.; Tarasenko, S.; Antypov Je Kozak, N.; Zhyltsov, A.; Bereziuk, A. Investigation of the Efficiency of Wet Biodiesel Purification. In Proceedings of the E3S Web of Conferences, 6th International Conference—Renewable Energy Sources (ICoRES 2019), Krynica, Poland, 12–14 June 2019; Volume 154, p. 02006. [Google Scholar] [CrossRef] [Green Version]
- Andriamanohiarisoamanana, F.J.; Saikawa, A.; Kan, T.; Qi, G.D.; Pan, Z.F.; Yamashiro, T.; Iwasaki, M.; Ihara, I.; Nishida, T.; Umetsu, K. Semi-continuous anaerobic co-digestion of dairy manure, meat and bone meal and crude glycerol: Process performance and digestate valorization. Renew. Energy 2018, 128, 1–8. [Google Scholar] [CrossRef]
- Simm, S.; Orrico, A.C.A.; Orrico, M.A.P.; Sunada, N.D.; Schwingel, A.W.; Lopes, W.R.T.; Lima Whittinghill, K.; Miranda de Vargas, F.; Sarolli Silva de Mendonça Costa, M. Contribute of crude glycerin to increase the efficiency of anaerobic digestion process of dairy cattle manure. Environ. Prog. Sustain. Energy 2018, 37, 1305–1311. [Google Scholar] [CrossRef]
- Simm, S.; Orrico, A.C.A.; Orrico, M.A.P.; Sunada, N.D.; Schwingel, A.W.; Costa, M.S.S.D. Crude glycerin in anaerobic co-digestion of dairy cattle manure increases methane production. Sci. Agric. 2017, 74, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Pazuch, F.A.; Siqueira, J.; Friedrich, L.; Lenz, A.M.; Nogueira, C.E.C.; de Souza, S.N.M. Co-digestion of crude glycerin associated with cattle manure in biogas production in the State of Parana, Brazil. Acta Sci. Technol. 2017, 39, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Regueiro, L.; Carballa, M.; Alvarez, J.A.; Lema, J.M. Enhanced methane production from pig manure anaerobic digestion using fish and biodiesel wastes as co-substrates. Bioresour. Technol. 2012, 123, 507–513. [Google Scholar] [CrossRef]
- Cremonez, P.A.; Feiden, A.; Teleken, J.G.; de Souza, S.N.M.; Feroldi, M.; Meier, T.W.; Teleken, J.T.; Dieter, J. Comparison between biodegradable polymers from cassava starch and glycerol as additives to biogas production. Semin. Cienc. Agrar. 2016, 37, 1827–1843. [Google Scholar] [CrossRef] [Green Version]
- Andriamanohiarisoamanana, F.J.; Yamashiro, T.; Ihara, I.; Iwasaki, M.; Nishida, T.; Umetsu, K. Farm-scale thermophilic co-digestion of dairy manure with a biodiesel byproduct in cold regions. Energy Convers. Manag. 2016, 128, 273–280. [Google Scholar] [CrossRef]
- Aguilar, F.A.A.; Nelson, D.L.; Pantoja, L.D.; dos Santos, A.S. Study of Anaerobic Co-digestion of Crude Glycerol and Swine Manure for the Production of Biogas. Rev. Virtual Quim. 2017, 9, 2383–2403. [Google Scholar] [CrossRef]
- Alvarez, J.A.; Otero, L.; Lema, J.M. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour. Technol. 2010, 101, 1153–1158. [Google Scholar] [CrossRef]
- Andriamanohiarisoamanana, F.J.; Saikawa, A.; Tarukawa, K.; Qi, G.D.; Pan, Z.F.; Yamashiro, T.; Iwasaki, M.; Ihara, I.; Nishida, T.; Umetsu, K. Anaerobic co-digestion of dairy manure, meat and bone meal, and crude glycerol under mesophilic conditions: Synergistic effect and kinetic studies. Energy Sustain. Dev. 2017, 40, 11–18. [Google Scholar] [CrossRef]
- Khuntia, H.K.; Chanakya, H.N.; Siddiqha, A.; Thomas, C.; Mukherjee, N.; Janardhana, N. Anaerobic digestion of the inedible oil biodiesel residues for value addition. Sustain. Energy Technol. Assess. 2017, 22, 9–17. [Google Scholar] [CrossRef]
- Ferreira, J.D.; Volschan, I.; Cammarota, M.C. Co-digestion of sewage sludge with crude or pretreated glycerol to increase biogas production. Environ. Sci. Pollut. Res. 2018, 25, 21811–21821. [Google Scholar] [CrossRef]
- Ferreira, J.S.; Volschan, I.; Cammarota, M.C. Enhanced biogas production in pilot digesters treating a mixture of sewage sludge, glycerol, and food waste. Energy Fuels 2018, 32, 6839–6846. [Google Scholar] [CrossRef]
- Maragkaki, A.E.; Fountoulakis, M.; Kyriakou, A.; Lasaridi, K.; Manios, T. Boosting biogas production from sewage sludge by adding small amount of agro-industrial by-products and food waste residues. For results 6th International Symposium on Energy from Biomass and Waste. Waste Manag. 2018, 71, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Maragkaki, A.E.; Fountoulakis, M.; Gypakis, A.; Kyriakou, A.; Lasaridi, K.; Manios, T. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants. Waste Manag. 2017, 59, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, L.D.; Nguyen, T.T.; Manassa, P.; Fitzgerald, S.K.; Dawson, M.; Vierboom, S. Co-digestion of sewage sludge and crude glycerol for on-demand biogas production. Int. Biodeterior. Biodegrad. 2016, 95, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Athanasoulia, E.; Melidis, P.; Aivasidis, A. Co-digestion of sewage sludge and crude glycerol from biodiesel production. Renew. Energy 2014, 62, 73–78. [Google Scholar] [CrossRef]
- Panpong, K.; Srisuwan, G.; O-Thong, S.; Kongjan, P. Anaerobic Co-digestion of canned seafood wastewater with glycerol waste for enhanced biogas production. Energy Procedia 2014, 52, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Panpong, K.; Srisuwan, G.; O-Thong, S.; Kongjan, P. Enhanced biogas production from canned seafood wastewater by co-digestion with glycerol waste and wolffia arrhiza. Energy Procedia 2014, 52, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Chavalparit, O.; Sasananan, S.; Kullavanijaya, P.; Charoenwuttichai, C. Anaerobic co-digestion of hydrolysate from alkali pre-treated oil palm empty fruit bunches with biodiesel waste glycerol. J. Mater. Cycles Waste Manag. 2018, 20, 336–344. [Google Scholar] [CrossRef]
- Kacprzak, A.; Krzystek, L.; Ledakowicz, S. Co-digestion of agricultural and industrial wastes. For results 36-th International Conference of the Slovak-Society-of-Chemical-Engineering. Chem. Pap. 2010, 64, 127–131. [Google Scholar] [CrossRef]
- Oliveira, J.V.; Alves, M.M.; Costa, J.C. Design of experiments to assess pre-treatment and co-digestion strategies that optimize biogasproduction from macroalgae Gracilaria vermiculophylla. Bioresour. Technol. 2014, 162, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, A.C.; Gomes, B.M.; Gomes, S.D.; Zenatti, D.C.; Torres, D.G.B. Anaerobic co-digestion of crude glycerin and starch industry effluent. Eng. Agric. 2013, 33, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Pokoj, T.; Gusiatin, Z.M.; Bulkowska, K.; Dubis, B. Production of biogas using maize silage supplemented with residual glycerine from biodiesel manufacturing. Arch. Environ. Prot. 2014, 40, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Förster, E.; Rönz, B. Methoden der Korrelations und Regressionsanalise; Verlag die Wirstschaft: Berlin, Germany, 1979; p. 302. [Google Scholar]
Glycerine Content in the Substrate, % | Maximum Biogas Yield, L/(h⋅kg DOM), at the Methane Fermentation Temperature | ||
---|---|---|---|
30 °C | 35 °C | 40 °C | |
0 | 0.217 | 0.311 | 0.402 |
0.6 | 0.445 | 0.604 | 0.761 |
1.2 | 0.662 | 0.792 | 0.879 |
2.3 | 0.752 | 0.949 | 1.494 |
3.4 | 0.931 | 1.200 | 1.352 |
No. | Glycerine Content in the Substrate, % | Polynomial Coefficients | R2 | ||||
---|---|---|---|---|---|---|---|
b4 | b3 | b2 | b1 | b0 | |||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Fermentation temperature 30 °C | |||||||
1 | 0 | - | - | 0.08 | 3.2 | −0.62 | 0.9982 |
2 | 0.6 | - | - | −0.57 | 11 | −5 | 0.9759 |
3 | 1.2 | - | - | −0.67 | 16.4 | −13 | 0.9693 |
4 | 2.3 | - | - | 0.36 | 10.3 | −5 | 0.9955 |
5 | 3.4 | - | - | 0.1 | 8.9 | −4 | 0.9857 |
Fermentation temperature 35 °C | |||||||
6 | 0 | - | - | - | 5.77 | −14.5 | 0.861 |
7 | 0.6 | - | - | −0.26 | 7.2 | 1.3 | 0.9625 |
8 | 1.2 | - | −0.128 | 2.32 | −1.26 | −0.12 | 0.9982 |
9 | 2.3 | - | −0.043 | 1.1 | 4.36 | 4.7 | 0.988 |
10 | 3.4 | - | −0.06 | 1.04 | 10.4 | 2 | 0.9978 |
11 | 6.6 | - | - | 0.09 | 9.4 | −0.6 | 0.974 |
Fermentation temperature 40 °C | |||||||
12 | 0 | - | −0.026 | 0.33 | 14.3 | −7.7 | 0.9991 |
13 | 0.6 | - | - | −0.26 | 14.5 | 0.9 | 0.9981 |
14 | 1.2 | - | - | −0.69 | 21.2 | −3.6 | 0.997 |
15 | 2.3 | - | 0.034 | −2.5 | 41 | −15 | 0.9721 |
16 | 3.4 | - | - | −1.2 | 35 | −20 | 0.9835 |
Fermentation Temperature, °C | Power Function Coefficients | R2 | ||
---|---|---|---|---|
b2 | b1 | b0 | ||
30 | 0.354 | 0.568 | 0.214 | 0.9826 |
35 | 0.412 | 0.553 | 0.308 | 0.9802 |
40 | 0.535 | 0.581 | 0.388 | 0.8821 |
45 | 0.377 | 0.59 | 0.859 | 0.8575 |
50 | 0.504 | 0.336 | 0.976 | 0.9316 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romaniuk, W.; Rogovskii, I.; Polishchuk, V.; Titova, L.; Borek, K.; Wardal, W.J.; Shvorov, S.; Dvornyk, Y.; Sivak, I.; Drahniev, S.; et al. Study of Methane Fermentation of Cattle Manure in the Mesophilic Regime with the Addition of Crude Glycerine. Energies 2022, 15, 3439. https://doi.org/10.3390/en15093439
Romaniuk W, Rogovskii I, Polishchuk V, Titova L, Borek K, Wardal WJ, Shvorov S, Dvornyk Y, Sivak I, Drahniev S, et al. Study of Methane Fermentation of Cattle Manure in the Mesophilic Regime with the Addition of Crude Glycerine. Energies. 2022; 15(9):3439. https://doi.org/10.3390/en15093439
Chicago/Turabian StyleRomaniuk, Wacław, Ivan Rogovskii, Victor Polishchuk, Liudmyla Titova, Kinga Borek, Witold Jan Wardal, Serhiy Shvorov, Yevgen Dvornyk, Ihor Sivak, Semen Drahniev, and et al. 2022. "Study of Methane Fermentation of Cattle Manure in the Mesophilic Regime with the Addition of Crude Glycerine" Energies 15, no. 9: 3439. https://doi.org/10.3390/en15093439
APA StyleRomaniuk, W., Rogovskii, I., Polishchuk, V., Titova, L., Borek, K., Wardal, W. J., Shvorov, S., Dvornyk, Y., Sivak, I., Drahniev, S., Derevjanko, D., & Roman, K. (2022). Study of Methane Fermentation of Cattle Manure in the Mesophilic Regime with the Addition of Crude Glycerine. Energies, 15(9), 3439. https://doi.org/10.3390/en15093439