Combined Biological Method for Simultaneous Removal of Hydrogen Sulphide and Volatile Methylsiloxanes from Biogas
Abstract
:1. Introduction
2. Physical and Chemical Methods of Biogas Desulphurization
2.1. Physical Methods
2.2. Absorptive Physicochemical Methods
2.3. Adsorptive Physicochemical Methods
3. Biological Methods of Removing Hydrogen Sulphide from Biogas
3.1. “In Situ” Method
3.2. “Ex Situ” Methods
3.2.1. Biofilters
3.2.2. Bioscrubbers
3.2.3. Biotrickling Filters
4. Physical and Chemical Methods of Removing Volatile Methyl Siloxanes from Biogas
5. Possibilities of Biological Purification of Biogas from Volatile Methylsiloxanes
6. Technological Concept of a Combined Biological Method for the Removal of Hydrogen Sulphide and Volatile Methylsiloxanes from Biogas
7. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA Publications. World Energy Outlook 2022; International Energy Agency: Paris, France, 2022; Available online: https://www.iea.org (accessed on 30 October 2022).
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valorization 2017, 8, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Gaj, K. Applicability of selected methods and sorbents to simultaneous removal of siloxanes and other impurities from biogas. Clean Technol. Environ. Policy 2017, 19, 2181–2189. [Google Scholar] [CrossRef]
- Zamorska-Wojdyła, D.; Gaj, K.; Hołtra, A.; Sitarska, M. Quality Evaluation of Biogas and Selected Methods of its Analysis. Ecol. Chem. Eng. S 2012, 19, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Gaj, K. Properties, toxicity and transformations of VMSs in the environment. In Volatile Methylsiloxanes in the Environment; Homem, V., Ratola, N., Eds.; Book Series: The Handbook of Environmental Chemistry; Springer Nature Switzerland AG: Basel, Switzerland, 2018. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Dewil, R. Siloxane removal from biosolids by peroxidation. Energy Convers. Manag. 2008, 49, 2859–2864. [Google Scholar] [CrossRef]
- Deublein, D.; Steinhauser, A. (Eds.) Biogas from Waste and Renewable Resources, Part II; Wiley-VCH: Weinheim, Germany, 2010; p. 52. [Google Scholar] [CrossRef]
- Rasi, S.; Läntelä, J.; Rintala, J. Trace compounds affecting biogas energy utilization—A review. Energy Convers. Manag. 2011, 52, 3369–3375. [Google Scholar] [CrossRef]
- Konkol, I.; Cebula, J.; Świerczek, L.; Piechaczek-Wereszczyńska, M.; Cenian, A. Biogas Pollution and Mineral Deposits Formed on the Elements of Landfill Gas Engines. Materials 2022, 15, 2408. [Google Scholar] [CrossRef]
- Ghimire, A.; Gyawali, R.; Lens, P.N.L.; Lohani, S.P. Technologies for removal of hydrogen sulfide (H2S) from biogas. In Emerging Technologies and Biological Systems for Biogas Upgrading; Aryal, N., Ottosen, L.D.M., Vedel, W., Kofoed, V.W., Pant, D., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 295–320. [Google Scholar]
- Cosoli, P.; Ferrone, M.; Pricl, S.; Fermeglia, M. Hydrogen sulphide removal from biogas by zeolite adsorption: Part I. GCMC molecular simulations. Chem. Eng. J. 2008, 145, 86–92. [Google Scholar] [CrossRef]
- Sigot, L.; Ducom, G.; Benadda, B.; Labouré, C. Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell. Environ. Technol. 2015, 37, 86–95. [Google Scholar] [CrossRef]
- Brunetti, A.; Lei, L.; Avruscio, E.; Karousos, D.S.; Lindbråthen, A.; Kouvelos, E.P.; He, X.; Favvas, E.P.; Barbieri, G. Long-term performance of highly selective carbon hollow fiber membranes for biogas upgrading in the presence of H2S and water vapor. Chem. Eng. J. 2022, 448, 137615. [Google Scholar] [CrossRef]
- Pudi, A.; Rezaei, M.; Signorini, V.; Andersson, M.P.; Baschetti, M.G.; Mansouri, S.S. Hydrogen sulfide capture and removal technologies: A comprehensive review of recent developments and emerging trends. Sep. Purif. Technol. 2022, 298, 121448. [Google Scholar] [CrossRef]
- Liu, F.; Chen, W.; Mi, J.; Zhang, J.; Kan, X.; Zhong, F.; Huang, K.; Zheng, A.; Jiang, L. Thermodynamic and molecular insights into the absorption of H2S, CO2, and CH4 in choline chloride plus urea mixtures. AIChE J. 2019, 65, e16574. [Google Scholar] [CrossRef]
- Gaga, Y.; Benmessaoud, S.; Kara, M.; Assouguem, A.; Al-Ghamdi, A.A.; Al-Hemaid, F.M.; Elshikh, M.S.; Ullah, R.; Banach, A.; Bahhou, J. New Margin-Based Biochar for Removing Hydrogen Sulfide Generated during the Anaerobic Wastewater Treatment. Water 2022, 14, 3319. [Google Scholar] [CrossRef]
- Zhu, H.L.; Papurello, D.; Gandiglio, M.; Lanzini, A.; Akpinar, I.; Shearing, P.R.; Manos, G.; Brett, D.J.L.; Zhang, Y.S. Study of H2S Removal Capability from Simulated Biogas by Using Waste-Derived Adsorbent Materials. Processes 2020, 8, 1030. [Google Scholar] [CrossRef]
- DMT Environmental Technology. Sulfurex CR. Available online: https://www.dmt-et.com/products/sulfurex/ (accessed on 30 October 2022).
- Muñoz, R.; Meier, L.; Diaz, I.; Jeison, D. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev. Environ. Sci. Bio/Technol. 2015, 14, 727–759. [Google Scholar] [CrossRef] [Green Version]
- Żarczyński, A.; Rosiak, K.; Anielak, P.; Ziemiński, K.; Wolf, W. Praktyczne metody usuwania siarkowodoru z biogazu. Cz. 2. Zastosowanie roztworów sorpcyjnych i metod biologicznych [Practical methods of removing hydrogen sulfide from biogas. Part II. Application of sorption solutions and biological methods]. Acta Innov. 2015, 15, 57–71. [Google Scholar]
- Shell, Sulferox Sour Gas Treatment. Available online: https://www.shell.com/business-customers/catalysts-technologies/licensed-technologies/emissions-standards/thiopaq/sulferox.html (accessed on 30 October 2022).
- Digital Refining. Available online: https://www.digitalrefining.com/article/1001047/lo-cat-a-flexible-hydrogen-sulphide-removal-process (accessed on 30 October 2022).
- Sigatech. Available online: https://www.sigatech.pl/en/offer/biogas-network-equipment/desulphurization-plants/bicarbox-3.html (accessed on 30 October 2022).
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Gaj, K.; Cybulska-Szulc, H. Time changeability model of the bog ore sorption ability. Ecol. Chem. Eng. S 2014, 21, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Ungureşan, M.L.; Pică, E.M.; Jäntschi, L. Desulphurisation of Waste Gases from the Industrial Processes. In International Con-ference on Materials Science and Engineering BRAMAT 2005; Technical University of Cluj-Napoca: Cluj-Napoca, Romania, 2005; Available online: https://citeseerx.ist.psu.edu/pdf/147f69e0710a788499845e1f38950a42b8d28e5e (accessed on 30 October 2022)ISBN 973-635-454-7.
- Ben Jaber, M.; Couvert, A.; Amrane, A.; Le Cloirec, P.; Dumont, E. Hydrogen sulfide removal from a biogas mimic by biofiltration under anoxic conditions. J. Environ. Chem. Eng. 2017, 5, 5617–5623. [Google Scholar] [CrossRef]
- Ramírez, M.; Gómez, J.M.; Cantero, D. Biogas: Sources, Purification and Uses (chapt 13). In Energy Sci. & Tech., Hydrogen and others Technologies; Sharma, U.C., Kumar, S., Prasad, R., Eds.; Studium Press LLCE: Delhi, India, 2015; Volume 11, pp. 296–323. [Google Scholar]
- Brito, J.; Valle, A.; Almenglo, F.; Ramírez, M.; Cantero, D. Progressive change from nitrate to nitrite as the electron acceptor for the oxidation of H2S under feedback control in an anoxic biotrickling filter. Biochem. Eng. J. 2018, 139, 154–161. [Google Scholar] [CrossRef]
- Cano, P.I.; Brito, J.; Almenglo, F.; Ramírez, M.; Gómez, J.M.; Cantero, D. Influence of trickling liquid velocity, low molar ratio of nitrogen/sulfur and gas-liquid flow pattern in anoxic biotrickling filters for biogas desulfurization. Biochem. Eng. J. 2019, 148, 205–213. [Google Scholar] [CrossRef]
- Khanongnuch, R.; Di Capua, F.; Lakaniemi, A.-M.; Rene, E.R.; Lens, P.N. H2S removal and microbial community composition in an anoxic biotrickling filter under autotrophic and mixotrophic conditions. J. Hazard. Mater. 2018, 367, 397–406. [Google Scholar] [CrossRef]
- Krayzelova, L.; Bartacek, J.; Díaz, I.; Jeison, D.; Volcke, E.I.P.; Jenicek, P. Microaeration for hydrogen sulfide removal during anaerobic treatment: A review. Rev. Environ. Sci. Bio/Technol. 2015, 14, 703–725. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Schoene, R.P.; Snyder, S.W. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal. Appl. Energy 2015, 158, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Paques, Thiopaq—Biogas Desulphurization. Available online: https://en.paques.nl/products/featured/thiopaq-biogas-desulfurization (accessed on 30 October 2022).
- DMT Clear Gas Solutions. Sulfurex BR. Available online: https://www.dmt-cgs.com/products/sulfurex-br/ (accessed on 30 October 2022).
- Veolia. Sulfotane. Available online: https://www.veoliawatertechnologies.com/en/technologies/sulfothane (accessed on 30 October 2022).
- Biogasclean. Available online: https://biogasclean.com/qsr/ (accessed on 30 October 2022).
- DMT Clear Gas Solutions. Sulfurex BF. Available online: https://www.dmt-cgs.com/products/sulfurex-bf/ (accessed on 30 October 2022).
- CES. Available online: https://www.ces.com.pl/sites/default/files/karty-katalogowe/odsiarczalnia1.pdf (accessed on 30 October 2022).
- Zhang, C.; Jin, M.; Zhang, S.; Li, Z.; Li, H. Removal of Cyclic and Linear Siloxanes in Effluents from a Cosmetic Wastewater Treatment Plant by Electrochemical Oxidation. Int. J. Electrochem. Sci. 2016, 11, 6914–6921. [Google Scholar] [CrossRef] [Green Version]
- Schweigkofler, M.; Niessner, R. Removal of siloxanes in biogases. J. Hazard. Mater. 2001, B83, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Gaj, K. Adsorptive Biogas Purification from Siloxanes—A Critical Review. Energies 2020, 13, 2605. [Google Scholar] [CrossRef]
- García, S.P.; Rodríguez, L.G.; Martínez, D.B.; Córdova, F.D.J.C.; Regalado, E.S.; Giraudet, S.; Guzmán, N.E.D. Siloxane removal for biogas purification by low cost mineral adsorbent. J. Clean. Prod. 2020, 286, 124940. [Google Scholar] [CrossRef]
- Meng, Z.; Hou, X.; Liu, Y.; Ma, Z.; Shen, H. Facile fabrication of iron-modified biochar as a renewable adsorbent for efficient siloxane (L2) removal. J. Environ. Chem. Eng. 2021, 9, 105799. [Google Scholar] [CrossRef]
- Läntelä, J.; Rasi, S.; Lehtinen, J.; Rintala, J. Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling. Appl. Energy 2012, 92, 307–314. [Google Scholar] [CrossRef]
- Environment Agency, Guidance on Gas Treatment Technologies for Landfill Gas Engines. SEPA Scottish Environment Protection Agency. Available online: https://www.sepa.org.uk/media/28989/ep165-part-1-guidance-on-gas-treatment-technologies-for-landfill-gas-engines.pdf (accessed on 30 October 2022).
- Ghorbel, L.; Tatin, R.; Couvert, A. Relevance of an organic solvent for absorption of siloxanes. Environ. Technol. 2013, 35, 372–382. [Google Scholar] [CrossRef]
- Dewil, R.; Appels, L.; Baeyens, J. Energy use of biogas hampered by the presence of siloxanes. Energy Convers. Manag. 2006, 47, 1711–1722. [Google Scholar] [CrossRef]
- Xu, L.; Shi, Y.; Cai, Y. Occurrence and fate of volatile siloxanes in a municipal Wastewater Treatment Plant of Beijing, China. Water Res. 2013, 47, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Accettola, F.; Guebitz, G.M.; Schoeftner, R. Siloxane removal from biogas by biofiltration: Biodegradation studies. Clean Technol. Environ. Policy 2008, 10, 211–218. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Xu, J. Siloxanes removal from biogas by a lab-scale biotrickling filter inoculated with Pseudomonas aeruginosa S240. J. Hazard. Mater. 2014, 275, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, W.; Xu, J.; Li, Y.; Xu, X. Octamethylcyclotetrasiloxane removal using an isolated bacterial strain in the biotrickling filter. Biochem. Eng. J. 2014, 91, 46–52. [Google Scholar] [CrossRef]
- Boada, E.; Santos-Clotas, E.; Bertran, S.; Cabrera-Codony, A.; Martín, M.J.; Bañeras, L.; Gich, F. Potential use of Methylibium sp. as a biodegradation tool in organosilicon and volatile compounds removal for biogas upgrading. Chemosphere 2019, 240, 124908. [Google Scholar] [CrossRef]
- Boada, E.; Santos-Clotas, E.; Cabrera-Codony, A.; Martín, M.J.; Bañeras, L.; Gich, F. The core microbiome is responsible for volatile silicon and organic compounds degradation during anoxic lab scale biotrickling filter performance. Sci. Total. Environ. 2021, 798, 149162. [Google Scholar] [CrossRef]
- Zhang, Y.; Oshita, K.; Kusakabe, T.; Takaoka, M.; Kawasaki, Y.; Minami, D.; Tanaka, T. Simultaneous removal of siloxanes and H2S from biogas using an aerobic biotrickling filter. J. Hazard. Mater. 2020, 391, 122187. [Google Scholar] [CrossRef]
- Zhang, Y.; Kawasaki, Y.; Oshita, K.; Takaoka, M.; Minami, D.; Inoue, G.; Tanaka, T. Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas. Renew. Energy 2021, 168, 119–130. [Google Scholar] [CrossRef]
- Accettola, F.; Haberbauer, M. Control of siloxanes. In Biofuels for fuel cells. In Renewable Energy from Biomass Fermentation; Lens, P., Westermann, P., Haberbauer, M., Moreno, A., Eds.; IWA Publishing: London, UK, 2005; pp. 445–454. [Google Scholar]
- Sabourin, C.L.; Carpenter, J.C.; Leib, T.K.; Spivack, J.L. Biodegradation of Dimethylsilanediol in Soils. Appl. Environ. Microbiol. 1996, 6, 4352–4360. [Google Scholar] [CrossRef] [Green Version]
- Soreanu, G.; Béland, M.; Falletta, P.; Edmonson, K.; Svoboda, L.; Al-Jamal, M.; Seto, P. Approaches concerning siloxane re-moval from biogas—A review. Can. Biosyst. Eng. 2011, 53, 8.1–8.18. [Google Scholar]
- Popat, S.C.; Deshusses, M.A. Biological Removal of Siloxanes from Landfill and Digester Gases: Opportunities and Challenges. Environ. Sci. Technol. 2008, 42, 8510–8515. [Google Scholar] [CrossRef] [PubMed]
- Pascual, C.; Cantera, S.; Muñoz, R.; Lebrero, R. Comparative assessment of two biotrickling filters for siloxanes removal: Effect of the addition of an organic phase. Chemosphere 2020, 251, 126359. [Google Scholar] [CrossRef]
- Pascual, C.; Cantera, S.; Muñoz, R.; Lebrero, R. Siloxanes removal in a two-phase partitioning biotrickling filter: Influence of the EBRT and the organic phase. Renew. Energy 2021, 177, 52–60. [Google Scholar] [CrossRef]
- Pascual, C.; Cantera, S.; Muñoz, R.; Lebrero, R. Innovative polishing stage in biogas upgrading: Siloxanes abatement in an anoxic two-phase partitioning biotrickling filter. J. Clean. Prod. 2022, 371, 133427. [Google Scholar] [CrossRef]
- Brandstadt, K.F. Inspired by nature: An exploration of biocatalyzed siloxane bond formation and cleavage. Curr. Opin. Biotechnol. 2005, 16, 393–397. [Google Scholar] [CrossRef]
- Santos-Clotas, E.; Cabrera-Codony, A.; Martín, M.J. Coupling adsorption with biotechnologies for siloxane abatement from biogas. Renew. Energy 2020, 153, 314–323. [Google Scholar] [CrossRef]
- Gaj, K.; Mech, J.; Robaszkiewicz, J. Investigation of selected oils as absorbents of the chlorinated hydrocarbons. Environ. Prot. Eng. 2001, 27, 71–79. [Google Scholar]
- EWItech, Polsil OM-10. Available online: https://ewitech.pl/product/polsil-om-100-5-kg/ (accessed on 30 October 2022).
- Chang, Y.-J.; Chang, Y.-T.; Chen, H.-J. A method for controlling hydrogen sulfide in water by adding solid phase oxygen. Bioresour. Technol. 2007, 98, 478–483. [Google Scholar] [CrossRef]
Compound | Abbreviation | Chemical Formula | Structure |
---|---|---|---|
Octamethylcyclotetrasiloxane | D4 | Si4-O4-(CH3)8 | cyclic |
Decamethylcyclopentasiloxane | D5 | Si5-O5-(CH3)10 | |
Dodecamethylcyclohexasiloxane | D6 | Si6-O6-(CH3)12 | |
Hexamethyldisiloxane | L2 | Si2-O-(CH3)6 | linear |
Octamethyltrisiloxane | L3 | Si3-O2-(CH3)8 | |
Dekamethyltetrasiloxane | L4 | Si4-O3-(CH3)10 |
Method/Device | Advantages | Disadvantages |
---|---|---|
“In situ” microaeration | 1. Low capital and operational costs (use of a fermenter space instead of building an end-of-pipe installation). 2. Simple construction and uncomplicated operation. 3. Possibility of low-cost support of subsequent stages of biogas purification at high concentrations of H2S. 4. Intensification of the hydrolysis process in the fermenter. 5. Enrichment of the digestate with precipitating sulphur, increasing its usefulness as a fertilizer. | 1. Reducing the calorific value of biogas by diluting it with N2, when air is used as an O2 carrier. 2. Necessity of precise air/oxygen dose control in order to avoid the explosion hazard. 3. Toxic effect of O2 on anaerobic microorganisms and potential decrease in the efficiency of the fermentation process. 4. Risk of clogging of the fermenter space with precipitating sulphur. |
Traditional biofilter with an organic bed (BF) | 1. Simple, modular design. 2. Low energy consumption due to the low gas flow velocity. 3. Simple operation (except for the cumbersome replacement of the bed). 4. Cheap and available materials for the bed. 5. Suitable for impurities with limited water solubility (long contact time). | 1. Large dimensions. 2. Limited possibilities of process automation. 3. Unstable operation (difficulty in ensuring uniform physicochemical conditions across the entire cross-section of the apparatus). 4. Risk of rot of the organic matter and generation of secondary pollutants. 5. Risk of deactivation of the bed due to acidification with process products. |
Traditional bioscrubber sprayed with activated sludge (BS) | 1. Moderate investment costs of the absorber (relatively small dimensions due to the high gas flow velocity, especially in the case of a column with a fluidized bed). 2. Easier automation compared with other biological methods, especially BFs. 3. Turbulence of media flow affecting the intensification of the mass exchange process. 4. No air/oxygen dosing to the biogas, no sulphur precipitation in the scrubber. 5. Absorption can be intensified by using an alkaline absorbent (see below—CBS). | 1. Capital and operating costs of the entire installation are the highest among the methods compared (separate sorption and biodegradation devices, additional devices for sludge management and high energy consumption by fans and pumps). 2. Risk of clogging of the absorber, demister, nozzles, sprinklers and grates by growing biomass. 3. Short retention time in the absorber—not suitable for impurities with poor solubility in water. |
Combined chemical scrubber with bioreactor (CBS) | 1. The use of an alkaline aqueous solution as an absorbent allows the minimization of the mass transfer resistance in the liquid phase, which contributes to the reduction in the absorber size. 2. The elimination of a suspension improves the availability of the absorption system. 3. It is possible to regenerate the absorbent. 4. The technology has been implemented under industrial conditions. | 1. Relatively high cost (reasons as above plus an extra cost of alkali—usually NaOH). 2. Two-step process, unlike BTF. 3. Possibility of carbonate precipitation in the absorber. |
Biotrickling filter (BTF) | 1. The sorption and biodegradation processes take place in one apparatus. 2. The higher retention time than that in BS allows the possibility of obtaining high mass transfer coefficients. 3. Compared with BF, the packed mineral bed is more durable, mechanically stronger (high towers can be built) and is easily cleaned of growing biomass. 4. Easy process automation. 5. The process is proven and commercially available. 6. BTFs are especially useful in biogas plants at WWTPs (free spray liquid, combined wastewater and biogas treatment can be considered). 7. The method is cheaper in terms of investment and operation than BS and CBS. | 1. The dilution of biogas with nitrogen when using air for H2S bio-oxidation. 2. The need for precise control of the O2 concentration in biogas due to the lower explosion limit of the CH4/O2 mixture. 3. The potential risk of BTF clogging by precipitating sulphur (sludge flushing system required). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaj, K.; Cichuta, K. Combined Biological Method for Simultaneous Removal of Hydrogen Sulphide and Volatile Methylsiloxanes from Biogas. Energies 2023, 16, 100. https://doi.org/10.3390/en16010100
Gaj K, Cichuta K. Combined Biological Method for Simultaneous Removal of Hydrogen Sulphide and Volatile Methylsiloxanes from Biogas. Energies. 2023; 16(1):100. https://doi.org/10.3390/en16010100
Chicago/Turabian StyleGaj, Kazimierz, and Klaudia Cichuta. 2023. "Combined Biological Method for Simultaneous Removal of Hydrogen Sulphide and Volatile Methylsiloxanes from Biogas" Energies 16, no. 1: 100. https://doi.org/10.3390/en16010100
APA StyleGaj, K., & Cichuta, K. (2023). Combined Biological Method for Simultaneous Removal of Hydrogen Sulphide and Volatile Methylsiloxanes from Biogas. Energies, 16(1), 100. https://doi.org/10.3390/en16010100