Deep-Learning-Based Flow Prediction for CO2 Storage in Shale–Sandstone Formations
Abstract
:1. Introduction
2. Methodology
2.1. Governing Equations
2.2. Dataset Preparation: Numerical Simulation
2.3. Dataset Preparation: Sampling Procedure
- Sandstone fields: We first generated the maps of the underlying sandstone fields in a shale–sandstone system using the Stanford Geostatistical Modeling Software (SGeMS) [43]. SGeMS generates random permeability maps according to user-selected parameters including the permeability mean and standard deviation, lateral and vertical correlation lengths, and appearance of the random media. Our dataset includes sandstone fields with a large variety of Gaussian, von Karman, and discontinuous random permeability maps, with vertical correlation lengths ranging from 2 to 12 m; lateral correlation lengths ranging from 208 m to more than 60 km; and mean permeability ranging from a few millidarcys to a few Darcys. The statistics of the sandstone field generation follow Wen et al. (2022) Table C.8 [30]. In addition to random heterogeneous sandstone fields, our dataset also includes some homogeneous sandstone fields with permeability ranging from 4 mD to 1216 mD.
- Shale layers: In the second step, we randomly generated interbedded shale layers and superimposed them onto the sandstone field. We first divided the pre-generated sandstone field into random horizontal zones (Figure 1B2). Each horizontal zones was further partitioned into random vertical subzones along the radial dimension (Figure 1B3). Next, a shale layer was placed at a random height in every other vertical subzone, with a variable thickness of 2 m to 4 m and a permeability from 0.001 mD to 0.1 mD (Figure 1B4). We modeled the apparent permeability of the shale, which includes the combined effects of macropores and microfractures [44,45]. The capillary entry pressure curves for representative samples of the modeled sandstone and shale permeability values are provided in Appendix C Figure A2. With this procedure, we obtained a permeability map with random shale layers interbedded in heterogeneous sandstone. For the purposes of demonstration, Figure 1B simplifies the actual sampling procedure; in the training dataset, the number of horizontal zones in each reservoir ranges from 5 to 12 and the number of vertical subzones in each horizontal zone ranges from 50 to 200, resulting in a wide range of shale layer lengths, as shown in Figure 1A. Refer to Table 1 for detailed sampling parameters for each variable.
- Permeability anisotropy: We introduced permeability anisotropy to the underlying sandstone field by sampling a random number of facies and assigning a randomly chosen material anisotropy ratio to each of the facies. The permeability maps generated above are taken as the radial permeability , and we used the anisotropy ratio to calculate the vertical permeability . The shale layers were considered isotropic as they already have very low permeability.
- Porosity: We assigned the porosity map using the average of the radial and vertical permeability, according to the analytical relationships between porosity and permeability established in Pape et al., 2000 [46]. We also added a Gaussian random perturbation (Table 1) to the porosity to incorporate the randomness involved in developing these analytical relationships.
2.4. RU-FNO Architecture
2.5. Training Procedure and Hyperparameters’ Tuning
2.6. Model Performance Metrics
3. Results
3.1. Gas Saturation
3.2. Pressure Buildup
3.3. Importance of Using R- and Z-Error in the Loss Function
4. Discussion
4.1. Prediction Speedup Analysis
4.2. Shale Characteristic Case Studies
4.2.1. Influence of Shale Layer Length
4.2.2. Shale Layer Permeability
4.2.3. Permeability of Sandstone
4.2.4. Width and Location of Aperture in Shale Layer
4.2.5. Sleipner-Inspired Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. RU-FNO Model Architecture
Appendix B. Hyperparameter Tuning
Training | Validation | Training | Validation | |||||||
Mean | Std | Mean | Std | Mean | Std | Mean | Std | |||
No | No | 0.9884 | 0.0078 | 0.9820 | 0.0154 | 0.9593 | 0.0497 | 0.9577 | 0.0504 | |
Yes | No | 0.9904 | 0.0076 | 0.9837 | 0.0153 | 0.9779 | 0.0326 | 0.9783 | 0.0286 | |
Yes | Yes | 0.9923 | 0.0058 | 0.9858 | 0.0088 | 0.9954 | 0.0077 | 0.9945 | 0.0079 |
Hyperparameter | Tested Values | Optimal Value | |
---|---|---|---|
FNO width | [24, 64] | 32 | 32 |
FNO mode 1 | [5, 12] | 12 | 12 |
FNO mode 2 | [5, 12] | 12 | 12 |
FNO mode 3 | [5, 12] | 12 | 12 |
Number of training epochs | [100, 250] | 200 | 250 |
Validation dataset size | [25, 1000] | 500 | 500 |
Relative loss | / | ||
Learning rate | , | ||
z-error included | Yes/No | Yes | Yes |
Permeability normalization | min-max/Z-score | Z-score | Z-score |
Number of ResNet layers | [0, 10] | 5 | 4 |
Appendix C. Capillary Pressure Curves
References
- Wei, Y.M.; Kang, J.N.; Liu, L.C.; Li, Q.; Wang, P.T.; Hou, J.J.; Liang, Q.M.; Liao, H.; Huang, S.F.; Yu, B. A proposed global layout of carbon capture and storage in line with a 2C climate target. Nat. Clim. Chang. 2021, 11, 112–118. [Google Scholar] [CrossRef]
- U.S. E.P.A. Office of Water. Geologic Sequestration of Carbon Dioxide Underground Injection Control (UIC) Program Class VI Well Area of Review Evaluation and Corrective Action Guidance. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/epa816r13001.pdf (accessed on 10 November 2022).
- Pruess, K. ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2. Available online: https://tough.lbl.gov/assets/docs/TOUGH2_ECO2N_Users_Guide.pdf (accessed on 10 November 2022).
- Cavanagh, A. Benchmark calibration and prediction of the Sleipner CO2 plume from 2006 to 2012. Energy Procedia 2013, 37, 3529–3545. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, A.J.; Haszeldine, R.S. The Sleipner storage site: Capillary flow modeling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation. Int. J. Greenh. Gas Control 2014, 21, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, P.S.; Tien, N.C.; Lin, C.K.; Lin, W.; Lu, H.Y. A multi-sequestration concept of CO2 geological storage: Shale-Sandstone-Basalt system in Northwestern Taiwan. Int. J. Greenh. Gas Control 2017, 64, 137–151. [Google Scholar] [CrossRef]
- Wen, G.; Benson, S.M. CO2 plume migration and dissolution in layered reservoirs. Int. J. Greenh. Gas Control 2019, 87, 66–79. [Google Scholar] [CrossRef]
- Hovorka, S.D.; Doughty, C.; Benson, S.M.; Pruess, K.; Knox, P.R. The impact of geological heterogeneity on CO2 storage in brine formations: A case study from the Texas Gulf Coast. Geol. Soc. Spec. Publ. 2004, 233, 147–163. [Google Scholar] [CrossRef]
- Flett, M.; Gurton, R.; Weir, G. Heterogeneous saline formations for carbon dioxide disposal: Impact of varying heterogeneity on containment and trapping. J. Pet. Sci. Eng. 2007, 57, 106–118. [Google Scholar] [CrossRef]
- van der Meer, L.G. The CO2 storage efficiency of aquifers. Energy Convers. Manag. 1995, 36, 513–518. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Mahdi, D.S.M.; Ali, M.; Iglauer, S.; Barifcani, A. Reservoir Scale Porosity-Permeability Evolution in Sandstone Due to CO2 Geological Storage. In Proceedings of the 15th Greenhouse Gas Control Technologies Conference, Abu Dhabi, United Arab Emirates, 15–18 March 2021. [Google Scholar]
- Balashov, V.N.; Guthrie, G.D.; Hakala, J.A.; Lopano, C.L.; Rimstidt, J.D.; Brantley, S.L. Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics. Appl. Geochem. 2013, 30, 41–56. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Amooie, M.A.; Cole, D.R.; Graham, D.E.; Hosseini, S.A.; Hovorka, S.; Pfiffner, S.M.; Phelps, T.J.; Moortgat, J. Simulating the Cranfield geological carbon sequestration project with high-resolution static models and an accurate equation of state. Int. J. Greenh. Gas Control 2016, 54, 282–296. [Google Scholar] [CrossRef]
- Harp, D.R.; Pawar, R.; Carey, J.W.; Gable, C.W. Reduced order models of transient CO2 and brine leakage along abandoned wellbores from geologic carbon sequestration reservoirs. Int. J. Greenh. Gas Control 2016, 45, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Lassen, R.N.; Plampin, M.; Sakaki, T.; Illangasekare, T.H.; Gudbjerg, J.; Sonnenborg, T.O.; Jensen, K.H. Effects of geologic heterogeneity on migration of gaseous CO2 using laboratory and modeling investigations. Int. J. Greenh. Gas Control 2015, 43, 213–224. [Google Scholar] [CrossRef]
- Bandilla, K.W.; Celia, M.A.; Birkholzer, J.T.; Cihan, A.; Leister, E.C. Multiphase Modeling of Geologic Carbon Sequestration in Saline Aquifers. Groundwater 2015, 53, 362–377. [Google Scholar] [CrossRef]
- Bandilla, K.W.; Guo, B.; Celia, M.A. Applicability of Vertically Integrated Models for Carbon Storage Modeling in Structured Heterogeneous Domains. Energy Procedia 2017, 114, 3312–3321. [Google Scholar] [CrossRef]
- Bhuiyan, M.H.; Agofack, N.; Gawel, K.M.; Cerasi, P.R. Micro- and Macroscale Consequences of Interactions between CO2 and Shale Rocks. Energies 2020, 13, 1167. [Google Scholar] [CrossRef] [Green Version]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Impact of reservoir wettability and heterogeneity on CO2-plume migration and trapping capacity. Int. J. Greenh. Gas Control 2017, 58, 142–158. [Google Scholar] [CrossRef]
- Bandilla, K.W.; Celia, M.A.; Leister, E. Impact of Model Complexity on CO2 plume modeling at Sleipner. Energy Procedia 2014, 63, 3405–3415. [Google Scholar] [CrossRef] [Green Version]
- Nordbotten, J.M.; Flemisch, B.; Gasda, S.E.; Nilsen, H.M.; Fan, Y.; Pickup, G.E.; Wiese, B.; Celia, M.A.; Dahle, H.K.; Eigestad, G.T.; et al. Uncertainties in practical simulation of CO2 storage. Int. J. Greenh. Gas Control 2012, 9, 234–242. [Google Scholar] [CrossRef]
- Räss, L.; Yarushina, V.M.; Simon, N.S.; Podladchikov, Y.Y. Chimneys, channels, pathway flow or water conducting features - an explanation from numerical modelling and implications for CO2 storage. Energy Procedia 2014, 63, 3761–3774. [Google Scholar] [CrossRef] [Green Version]
- Wen, G.; Hay, C.; Benson, S.M. CCSNet: A deep learning modeling suite for CO2 storage. Adv. Water Resour. 2021, 155, 104009. [Google Scholar] [CrossRef]
- Wen, G.; Tang, M.; Benson, S.M. Towards a predictor for CO2 plume migration using deep neural networks. Int. J. Greenh. Gas Control 2021, 105, 103223. [Google Scholar] [CrossRef]
- Tang, H.; Fu, P.; Sherman, C.S.; Zhang, J.; Ju, X.; Hamon, F.; Azzolina, N.A.; Burton-Kelly, M.; Morris, J.P. A deep learning-accelerated data assimilation and forecasting workflow for commercial-scale geologic carbon storage. Int. J. Greenh. Gas Control 2021, 112, 103488. [Google Scholar] [CrossRef]
- Omosebi, O.A.; Oldenburg, C.M.; Reagan, M. Development of lean, efficient, and fast physics-framed deep-learning-based proxy models for subsurface carbon storage. Int. J. Greenh. Gas Control 2022, 114, 103562. [Google Scholar] [CrossRef]
- Jin, L.; Lu, H.; Wen, G. Fast uncertainty quantification of reservoir simulation with variational U-Net. arXiv 2019, arXiv:1907.00718. [Google Scholar]
- Padmanabha, G.A.; Zabaras, N. A Bayesian multiscale deep learning framework for flows in random media. Found. Data Sci. 2021, 3, 251. [Google Scholar] [CrossRef]
- Mo, S.; Zabaras, N.; Shi, X.; Wu, J. Integration of Adversarial Autoencoders With Residual Dense Convolutional Networks for Estimation of Non-Gaussian Hydraulic Conductivities. Water Resour. Res. 2020, 56, e2019WR026082. [Google Scholar] [CrossRef] [Green Version]
- Wen, G.; Li, Z.; Azizzadenesheli, K.; Anandkumar, A.; Benson, S.M. U-FNO—An enhanced Fourier neural operator-based deep-learning model for multiphase flow. Adv. Water Resour. 2022, 163, 104180. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, Y.; Zhao, H.; Ma, X.; Gu, J.; Wang, J.; Yang, Y.; Yao, C.; Yao, J. Fourier Neural Operator for Solving Subsurface Oil/Water Two-Phase Flow Partial Differential Equation. SPE J. 2022, 1–15. [Google Scholar] [CrossRef]
- Yin, Z.; Siahkoohi, A.; Louboutin, M.; Herrmann, F.J. Learned coupled inversion for carbon sequestration monitoring and forecasting with Fourier neural operators. arXiv 2022, arXiv:2203.14396. [Google Scholar]
- Yan, B.; Harp, D.R.; Chen, B.; Pawar, R. A physics-constrained deep learning model for simulating multiphase flow in 3D heterogeneous porous media. Fuel 2022, 313, 122693. [Google Scholar] [CrossRef]
- Yan, B.; Chen, B.; Harp, D.R.; Jia, W.; Pawar, R.J. A robust deep learning workflow to predict multiphase flow behavior during geological CO2 sequestration injection and Post-Injection periods. J. Hydrol. 2022, 607, 127542. [Google Scholar] [CrossRef]
- Yan, B.; Harp, D.R.; Chen, B.; Hoteit, H.; Pawar, R.J. A gradient-based deep neural network model for simulating multiphase flow in porous media. J. Comput. Phys. 2022, 463, 111277. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 630–645. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Doersch, C. Tutorial on variational autoencoders. arXiv 2016, arXiv:1606.05908. [Google Scholar]
- Wen, G.; Li, Z.; Long, Q.; Azizzadenesheli, K.; Anandkumar, A.; Benson, S.M. Accelerating Carbon Capture and Storage Modeling using Fourier Neural Operators. arXiv 2022, arXiv:2210.17051. [Google Scholar]
- Pruess, K. TOUGH2—A General-Purpose Numerical Simulator for Multiphase Fluid and Heat Flow. Available online: https://www.osti.gov/servlets/purl/5212064 (accessed on 10 November 2022).
- Schlumberger. ECLIPSE Reference Manual. Available online: http://www.ipt.ntnu.no/~kleppe/TPG4150/EclipseReferenceManual.pdf (accessed on 10 November 2022).
- Remy, N.; Boucher, A.; Wu, J. Applied Geostatistics with SGeMS: A User’s Guide; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Xu, J.; Wu, K.; Li, Z.; Pan, Y.; Li, R.; Li, J.; Chen, Z. A Model for Gas Transport in Dual-Porosity Shale Rocks with Fractal Structures. Ind. Eng. Chem. Res. 2018, 57, 6530–6537. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Z.; Wu, K.; Li, R.; Liu, X.; Zhan, J. On the flow regime model for fast estimation of tight sandstone gas apparent permeability in high-pressure reservoirs. Energy Sources Part Recover. Util. Environ. Eff. 2019, 1, 1–12. [Google Scholar] [CrossRef]
- Pape, H.; Clauser, C.; Iffland, J. Variation of Permeability with Porosity in Sandstone Diagenesis Interpreted with a Fractal Pore Space Model. Pure Appl. Geophys. 2000, 157, 603–619. [Google Scholar] [CrossRef]
- Li, Z.; Kovachki, N.B.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.M.; Anandkumar, A. Fourier Neural Operator for Parametric Partial Differential Equations. arXiv 2020, arXiv:2010.08895. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 770–778. [Google Scholar] [CrossRef]
- Tang, M.; Liu, Y.; Durlofsky, L.J. A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems. J. Comput. Phys. 2019, 413, 109456. [Google Scholar] [CrossRef] [Green Version]
- Deflandre, J.P.; Estublier, A.; Baroni, A.; Fornel, A.; Clochard, V.; Delépine, N. Assessing field pressure and plume migration in CO2 storages: Application of case-specific workflows at in Salah and Sleipner. Energy Procedia 2013, 37, 3554–3564. [Google Scholar] [CrossRef] [Green Version]
- Estublier, A.; Fornel, A.; Parra, T.; Deflandre, J.P. Sensitivity study of the reactive transport model for CO2 injection into the utsira saline formation using 3D fluid flow model history matched with 4D seismic. Energy Procedia 2013, 37, 3574–3582. [Google Scholar] [CrossRef]
Variable Type | Sampling Parameter | Notation | Distribution | Unit |
---|---|---|---|---|
Field | Shale—number of horizontal zones | - | ||
Shale—number of vertical subzones | - | |||
Shale—layer thickness | m | |||
Shale—layer permeability | mD | |||
Sandstone heterogeneity | Details in [30] | - | ||
# of anisotropic materials | - | |||
Material anisotropy ratio | - | |||
Porosity random perturbation | - | |||
Reservoir cond. | Initial pressure | bar | ||
Reservoir temperature | T | °C | ||
Reservoir thickness | b | m | ||
Injection design | Injection rate | Q | MT/y | |
Perforation thickness | m | |||
Perforation location | - | Randomly placed | - | |
Rock property | Irreducible water saturation | - | ||
van Genuchten scaling factor | - |
Gas Saturation () | Pressure Buildup () | |||||||
---|---|---|---|---|---|---|---|---|
Training | Validation | Training | Validation | |||||
(-) | 0.997 | 0.003 | 0.989 | 0.011 | 0.998 | 0.005 | 0.997 | 0.005 |
/ (%) | 0.8 | 0.5 | 1.1 | 0.7 | 0.2 | 0.2 | 0.3 | 0.2 |
Number of Parameters | Testing (s) | Speedup (X) | |
---|---|---|---|
44,459,105 | 0.07 | ||
44,375,969 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, A.K.; Benson, S.M.; Wen, G. Deep-Learning-Based Flow Prediction for CO2 Storage in Shale–Sandstone Formations. Energies 2023, 16, 246. https://doi.org/10.3390/en16010246
Chu AK, Benson SM, Wen G. Deep-Learning-Based Flow Prediction for CO2 Storage in Shale–Sandstone Formations. Energies. 2023; 16(1):246. https://doi.org/10.3390/en16010246
Chicago/Turabian StyleChu, Andrew K., Sally M. Benson, and Gege Wen. 2023. "Deep-Learning-Based Flow Prediction for CO2 Storage in Shale–Sandstone Formations" Energies 16, no. 1: 246. https://doi.org/10.3390/en16010246
APA StyleChu, A. K., Benson, S. M., & Wen, G. (2023). Deep-Learning-Based Flow Prediction for CO2 Storage in Shale–Sandstone Formations. Energies, 16(1), 246. https://doi.org/10.3390/en16010246