Categorisation of Biogas Plant Operators in Germany with Regards to Their Intention to Use Straw Pellets as Innovative and Sustainable Substrate Alternative
Abstract
:1. Introduction
2. Factors Explaining Biogas Plant Operator’s Acceptance Behaviour
3. Materials and Methods
3.1. Study Design and Data Collection
3.2. Statistical Analysis
4. Results
4.1. Sample Description
4.2. Results of the Factor and Cluster Analyses
5. Discussion
6. Conclusions and Implications
- Improve biogas plant operators’ knowledge of straw pellet fermentation by providing information and (official) advisory services.
- Support plant operators in developing a higher intention to use straw pellets (cluster C and cluster D) to test them on their biogas plant. Pilot projects supervised by research institutes or practical trials on biogas plants could be successful to increase the knowledge about straw pellet use for biogas production among potential early adopters and early majority.
- Build regional working groups with biogas plant operators who intend to use straw pellets and other innovative and sustainable substrate alternatives. Official and private advisory service, as well as applied research institutions, could support as initiators [80].
- Provide financial incentives via the electricity tariff or special support programmes to reduce plant operators’ economic risks of using innovative and sustainable substrate alternatives such as straw pellets [127]. Policymakers should act here and be supported by biogas associations as advisors in development of public funding programs.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Mean Values (σ) | Strongly Disagree | Tend to Disagree | Neither Agree nor Disagree | Tend to Agree | Strongly Agree |
---|---|---|---|---|---|---|
Intention to use straw pellets | ||||||
Straw pellets are a real substrate alternative for me | 2.56 (0.992) | 48 (15.7%) | 98 (32.1%) | 103 (33.8%) | 52 (17.0%) | 4 (1.3%) |
I think about testing smaller quantities of straw pellets in my biogas plant. | 2.72 1.148 | 52 (17.0%) | 87 (28.5%) | 70 (23.3%) | 85 (27.9%) | 11 (3.6%) |
I intend to buy straw pellets as input substrate for my biogas plant in the near future. | 1.98 0.887 | 99 (32.5%) | 134 (43.9%) | 51 (16.7%) | 20 (6.6%) | 1 (0.3%) |
I expect to use straw pellets as an input substrate in my biogas plant very soon. | 2.2 0.914 | 68 (22.3%) | 141 (46.2%) | 67 (22%) | 26 (8.5%) | 3 (1.0%) |
The use of straw pellets in my biogas plant is not an option for the time being. | 3.19 1.199 | 27 (8.9%) | 68 (22.3%) | 76 (24.9%) | 88 (28.9%) | 46 (15.1%) |
Use behaviour | ||||||
I am currently applying for planning permission for my own stationary pelleting plant for my biogas plant. | 1.09 0.289 | 277 (90.8%) | 28 (9.2%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
I am growing less maize in the current marketing year, as I have firmly planned straw pellets as an input substrate from the summer onwards. | 1.19 0.469 | 255 (83.6%) | 44 (14.4%) | 4 (1.3%) | 2 (0.7%) | 0 (0.0%) |
I have grown more grain for the harvest 2021 so that the straw can be pelleted for the biogas plant. | 1.2 0.505 | 253 (83.0%) | 45 (14.8%) | 5 (1.6%) | 1 (0.3%) | 1 (0.3%) |
I have already bought or stored straw pellets for biogas production to feed them in the near future. | 1.18 0.559 | 265 (86.9%) | 32 (10.5%) | 4 (1.3%) | 1 (0.3%) | 3 (1.0%) |
Variables | Mean Values (σ) | Strongly Disagree | Tend to Disagree | Neither Agree nor Disagree | Tend to Agree | Strongly Agree |
---|---|---|---|---|---|---|
Willingness to pay and voluntariness of use | ||||||
Willingness to pay for straw pellets as biogas substrate (freely queried) (€/t) | 40.52 (36.6) | No Likert-scale used. | ||||
Willingness to pay for straw pellets as biogas substrate (with information) (€/t) | 52.29 (30.04) | |||||
I will only use residual materials, such as straw pellets, when I am obliged to do so. | 2.58 (1.189) | 55 (18.0%) | 116 (38.0%) | 59 (19.3%) | 51 (16.7%) | 24 (7.9%) |
Innovativeness | ||||||
I attach great importance to being innovative quickly, knowing that this can lead to disappointment. | 3.11 (0.969) | 11 (3.6%) | 75 (24.6%) | 109 (35.7%) | 90 (29.5%) | 20 (6.6%) |
I am interested in new production processes and technologies. | 4.09 (0.670) | 2 (0.7%) | 3 (1.0%) | 35 (11.5%) | 191 (62.6%) | 74 (24.3%) |
In my circle of biogas plant operators/colleagues, I am usually the first to try out new things on my farm. | 3.01 (0.942) | 10 (3.3%) | 88 (28.9%) | 110 (36.1%) | 82 (26.9%) | 15 (4.9%) |
When I hear about new substrate alternatives, I immediately think about how I could use them out on my biogas plant. | 3.22 (1.024) | 14 (4.6%) | 64 (21.0%) | 94 (30.8%) | 106 (34.8%) | 27 (8.9%) |
Perceived Risk | ||||||
The risk of using straw pellets is too high for me. | 2.46 (0.935) | 34 (11.1%) | 149 (48.9%) | 79 (25.9%) | 34 (11.1%) | 9 (3.0% |
Safety is important to me, so I avoid risks. | 3 (0.868) | 8 (2.6%) | 83 (27.2%) | 124 (40.7%) | 82 (26.9%) | 8 (2.6%) |
I avoid risky decisions, especially in the biogas operating branch. | 2.9 (0.964) | 11 (3.6%) | 114 (37.4%) | 83 (27.2%) | 87 (28.5%) | 10 (3.3%) |
Social environment | ||||||
My family environment would support trying alternative substrates, such as straw pellets, in my biogas plant. | 3.28 (1.005) | 15 (4.9%) | 53 (17.4%) | 94 (3.8%) | 118 (38.7%) | 25 (8.2%) |
Friendly biogas plant operators advocate the use of alternative substrates, such as straw pellets. | 2.92 (0.930) | 19 (6.2%) | 80 (26.2%) | 121 (39.7%) | 77 (25.2%) | 8 (2.6%) |
By using straw pellets, I can improve the image of biogas production in the region. | 3.04 (1.049) | 26 (8.5%) | 68 (22.3%) | 93 (30.5%) | 103 (33.8%) | 15 (4.9%) |
The agricultural advice in my region is very helpful in the introduction of new input substrates in biogas production. | 2.32 (1.043) | 75 (24.6%) | 108 (35.4%) | 75 (24.6%) | 42 13.8 | 5 (1.6%) |
Local advice will support me in the use of straw pellets. | 2.79 (1.013) | 30 (9.8%) | 93 (30.5%) | 103 (33.8%) | 68 (22.3%) | 11 (3.6%) |
Societal pressure | ||||||
As a biogas plant operator, I am increasingly exposed to public criticism. | 2.99 (1.133) | 30 (9.8%) | 86 (28.2%) | 68 (22.3%) | 100 (32.8%) | 21 (6.9%) |
Acceptance of biogas production by the society has declined sharply in the last ten years. | 3.38 (1.054) | 8 (2.6%) | 64 (21.0%) | 83 (27.2%) | 105 (34.4%) | 45 (14.8%) |
Conflicts with neighbours and village residents because of the biogas plant (transport volume, noise, maize cultivation) are part of my daily business. | 2.22 (0.993) | 71 (23.3%) | 142 (46.6%) | 55 (18.0%) | 29 (9.5%) | 8 (2.6%) |
Prior knowledge and involvement | ||||||
Self-evaluated knowledge on pellet usage in biogas plants 1 | 2.15 (0.910) | 80 (26.2%) | 122 (40.0%) | 81 (26.6%) | 20 (6.6%) | 2 (0.7%) |
I have the necessary knowledge to use straw pellets in my biogas plant. | 2.72 (1.240) | 55 (18.0%) | 96 (31.5%) | 60 (19.7%) | 67 (22.0%) | 27 (8.9%) |
Variables | Mean Values (σ) | Strongly Disagree | Tend to Disagree | Neither Agree Nor Disagree | Tend to Agree | Strongly Agree |
---|---|---|---|---|---|---|
(Economic) Performance | ||||||
I am convinced that the use of straw pellets in biogas plants is worthwhile. | 2.8 (0.817) | 16 (5.2%) | 90 (29.5%) | 138 (45.2%) | 61 (20.0%) | 0 (0.0%) |
I am convinced that the use of straw pellets in the biogas plant brings more benefits than (additional) costs. | 2.85 (0.872) | 21 (6.9%) | 77 (25.2%) | 136 (44.6%) | 69 (22.6%) | 2 (0.7%) |
The use of straw pellets offers my biogas plant economic advantages. | 2.69 (0.861) | 25 (8.2%) | 99 (32.5%) | 128 (42.0%) | 52 (17.0%) | 1 (0.3%) |
Straw pellets are far too expensive compared with other substrates. | 3.34 (0.766) | 0 (0.0%) | 36 (11.8%) | 148 (48.5%) | 102 (33.4%) | 19 (6.2%) |
With straw pellets, the electricity production costs per kwh are more favourable than with other substrates. | 2.6 (0.754) | 16 (5.2%) | 123 (40.3%) | 132 43.3 | 34 (11.1%) | 0 (0.0%) |
The financial cost of transporting and producing straw pellets is higher than the fermentation benefit. | 3.23 (0.896) | 6 (2.0%) | 57 (18.7%) | 123 40.3 | 99 (32.5%) | 20 (6.6%) |
The use of straw pellets increases the sustainability of biogas production. | 3.15 (0.982) | 15 (4.9%) | 67 (22.0%) | 95 31.1 | 113 (37.0%) | 15 (4.9%) |
Advantages in substrate and digestate management | ||||||
The biogas yield per ton of fresh mass is higher than from silage maize. | 3.01 1.219 | 26 (8.5%) | 102 (33.4%) | 63 (20.7%) | 70 (23.0%) | 44 (14.4%) |
Due to the low amount of digestate produced when using straw pellets, the cost of transporting digestate is reduced. | 3.18 (0.909) | 14 (4.6%) | 55 (18.0%) | 104 (34.1%) | 126 (41.3%) | 6 (2.0%) |
Expected Effort | ||||||
The biogas plant’s own power consumption will increase due to the use of straw pellets. | 3.36 (0.974) | 8 (2.6%) | 63 (20.7%) | 67 (22.0%) | 145 (47.5%) | 22 (7.2%) |
The amount of work required to rectify faults will increase considerably with the fermentation of straw pellets. | 2.71 (0.943) | 20 (6.6%) | 123 (40.3%) | 94 (30.8%) | 60 (19.7%) | 8 (2.6%) |
The agitator running times and intervals must be increased for straw pellet use. | 3.52 (0.967) | 8 (2.6%) | 42 (13.8%) | 77 (25.2%) | 140 (45.9%) | 38 (12.5%) |
To be able to use straw pellets in my biogas plant, I need additional equipment for the substrate processing. | 2.66 (1.14) | 37 (12.1%) | 136 (44.6%) | 48 (15.7%) | 63 (20.7%) | 21 (6.9%) |
The use of straw pellets increases the amount of work required for daily control work. | 2.82 (0.954) | 16 (5.2%) | 115 (37.7%) | 88 (28.9%) | 79 (25.9%) | 7 (2.3%) |
References
- European Biogas Association. EBA Statistical Report 2020; European Biogas Association: Brussels, Belgium, 2021. [Google Scholar]
- German Biogas Association. Branchenzahlen 2021 und Prognose der Branchenentwicklung 2022. Stand: October 2022. 2022. Available online: https://www.biogas.org/edcom/webfvb.nsf/id/DE_Branchenzahlen/$file/22-10-06_Biogas_Branchenzahlen-2021_Prognose-2022.pdf (accessed on 21 October 2022).
- Bernigau, S. Die Nachhaltigkeit von Biokraftstoffen. In Eine Marketing-Strategie für Nachhaltigere Biokraftstoffe in Deutschland: Ein Ansatz zur Verbesserung der Konsumentenakzeptanz? Bernigau, S., Ed.; Springer Gabler: Wiesbaden, Germany, 2017; pp. 63–98. [Google Scholar]
- Neu, C. Dorf und Ernährung. In Dorf: Ein Interdisziplinäres Handbuch; Nell, W., Weiland, M., Eds.; J. B. Metzler: Stuttgart, Germany, 2019; pp. 212–219. [Google Scholar]
- Bartoli, A.; Cavicchioli, D.; Kremmydas, D.; Rozakis, S.; Olper, A. The impact of different energy policy options on feedstock price and land demand for maize silage: The case of biogas in Lombardy. Energy Policy 2016, 96, 351–363. [Google Scholar] [CrossRef]
- Maranon, E.; Salter, A.M.; Castrillon, L.; Heaven, S.; Fernández-Nava, Y. Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste. Waste Manag. 2011, 31, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Winquist, E.; Rikkonen, P.; Pyysiäinen, J.; Varho, V. Is biogas an energy or a sustainability product?—Business opportunities in the Finnish biogas branch. J. Clean. Prod. 2019, 233, 1344–1354. [Google Scholar] [CrossRef]
- Britz, W.; Delzeit, R. The impact of German biogas production on European and global agricultural markets, land use and the environment. Energy Policy 2013, 62, 1268–1275. [Google Scholar] [CrossRef]
- Abdalla, N.; Bürck, S.; Fehrenbach, H.; Köppen, S.; Staigl, T.J. Biomethane in Europe. 2022. Available online: https://www.ifeu.de/fileadmin/uploads/ifeu_ECF_biomethane_EU_final_01.pdf (accessed on 3 October 2022).
- Vochozka, M.; Maroušková, A.; Šuleř, P. Economic, Environmental and Moral Acceptance of Renewable Energy: A Case Study—The Agricultural Biogas Plant at Pěčín. Sci. Eng. Ethics 2018, 24, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.; Horschig, T.; Pfeiffer, A.; Szarka, N.; Thrän, D. Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries. Energies 2019, 12, 3803. [Google Scholar] [CrossRef] [Green Version]
- Ignaciuk, W.; Sulewski, P. Conditions of development of the agricultural biogas industry in Poland in the context of historical experiences and challenges of the European Green Deal. Probl. Agric. Econ. 2021, 3, 55–77. [Google Scholar] [CrossRef]
- European Commission. Proposed CAP Strategic Plans and Commission Observations: Summary Overview for 27 Member States. Available online: https://agriculture.ec.europa.eu/document/download/a376aab6-3a1d-4996-bb35-33c90b90c3bd_en?Filename=csp-overview-28-plans-overview-june-2022_en.pdf (accessed on 30 November 2022).
- EEG. Erneuerbare-Energien-Gesetz vom 21. Juli 2014 (BGBl. I S. 1066), das Zuletzt Durch Artikel 11 des Gesetzes vom 16. Juli 2021 (BGBl. I S. 3026) geändert worden ist. 2021. Available online: https://www.clearingstelle-eeg-kwkg.de/sites/default/files/2021-11/EEG_2021_210716.pdf (accessed on 10 November 2022).
- Gocht, A.; Ciaian, P.; Bielza, M.; Terres, J.-M.; Röder, N.; Himics, M.; Salputra, G. EU-wide Economic and Environmental Impacts of CAP Greening with High Spatial and Farm-type Detail. J. Agric. Econ. 2017, 68, 651–681. [Google Scholar] [CrossRef]
- Gökgöz, F.; Liebetrau, J.; Nelles, M. Kombinierte Bereitstellung von Strom und Kraftstoff an Biogasanlagen—Wirtschaftlichkeit von Anschlussszenarien. Landtechnik 2020, 75, 141–160. [Google Scholar] [CrossRef]
- Rauh, S. Aktueller Stand EEG-Novelle und Chancen Durch RED-II für Die Stroh-Vergärung. In Stroh, Gras, Biogas 2020. Innovative Verfahren zur Nutzung von Ernterest in Biogasanlagen; Pro Fair Consult+Projekt GmbH; Top Agrar Online: Dingolfingen, Germany, 2020; pp. 7–16. [Google Scholar]
- Ißler, R.; Karpenstein-Machan, M.; Schnitzlbaumer, M.; Wilkens, I. Welche Konzepte machen Bioenergiedörfer zukunftsfähig?: Geschäftsfelder basierend auf Strom-, Wärme- und Kraftstoffvermarktung. Ber. Über Landwirtsch. 2022, 100, 1–30. [Google Scholar] [CrossRef]
- Brémond, U.; Bertrandias, A.; Steyer, J.-P.; Bernet, N.; Carrere, H. A vision of European biogas sector development towards 2030: Trends and challenges. J. Clean. Prod. 2021, 287, 125065. [Google Scholar] [CrossRef]
- Weiser, C. Einflüsse auf den Getreidestrohertrag als Voraussetzung der Bestimmung des nachhaltigen Strohpotenzials. Tech. Theor. Prax. 2014, 23, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Brosowski, A.; Bill, R.; Thrän, D. Temporal and spatial availability of cereal straw in Germany—Case study: Biomethane for the transport sector. Energy Sustain. Soc. 2020, 10, 42. [Google Scholar] [CrossRef]
- Kretschmer, B.; Allen, B.; Hart, K. Mobilising Cereal Straw in the EU to Feed Advanced Biofuel Production. Available online: http://minisites.ieep.eu/assets/938/IEEP_Agricultural_residues_for_advanced_biofuels_May_2012.pdf (accessed on 4 December 2022).
- Scarlat, N.; Fahl, F.; Lugato, E.; Monforti-Ferrario, F.; Dallemand, J.F. Integrated and spatially explicit assessment of sustainable crop residues potential in Europe. Biomass Bioenergy 2019, 122, 257–269. [Google Scholar] [CrossRef]
- Reinhold, G. Vergärung von Stroh in Landwirtschaftlichen Biogasanlagen; Thüringer Landesanstalt für Landwirtschaft: Jena, Germany, 2014. [Google Scholar]
- Vogel, T. Wirtschaftlichkeit Verschiedener Wertschöpfketten von Halmgutbasierten Heizwerken mit Nahwärmenetzen (WWHH); Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern: Gülzow-Prüzen, Germany, 2019. [Google Scholar]
- Daniel-Gromke, J.; Rensberg, N.; Denysenko, V.; Barchmann, T.; Oehmichen, K.; Beil, M.; Beyrich, W.; Krautkremer, B.; Trommler, M.; Reinholz, T.; et al. Optionen Für Biogas- Bestandsanlagen bis 2030 aus Ökonomischer und Energiewirtschaftlicher Sicht; Abschlussbericht; Umweltbundesamt: Dessau-Roßlau, Germany, 2020. [Google Scholar]
- Mohrmann, S.; Otter, V. Substratalternativen für die landwirtschaftliche Biogaserzeugung vor dem Hintergrund der Novellierung der Düngeverordnung und des Erneuerbare-Energien-Gesetzes 2021. In Biogas in der Landwirtschaft—Stand und Perspektiven: FNR/KTBL-Online-Kongress am 29. Und 30. September 2021; Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V.: Darmstadt, Germany, 2021; pp. 262–266. [Google Scholar]
- Møller, H.B.; Hansen, M.M. Briquettes of straw and dry grass double biogas production. FiB 2014, 47, 3–5. [Google Scholar] [CrossRef]
- Reinhold, G. Bewertung der Einsatzstoffe für die Biogaserzeugung; Thüringer Landesanstalt Für Landwirtschaft: Walterhausen, Germany, 2019. [Google Scholar]
- Höppner, F.; Hecht, A.-S.; Ahrens, T. Silierung und Biogasbildung von Mischsilagen mit Rübe und Stroh. In Proceedings of the Technik in der Pflanzenproduktion, Tagung der Gesellschaft für Pflanzenbauwissenschaften e. V. mit der Max-Eyth-Gesellschaft Agrartechnik VDI-MEG, Wien, Austria, 16–18 September 2014; Pekrun, C., Wachendorf, M., Francke-Weltmann, L., Eds.; Liddy Halm: Göttingen, Germany, 2014; pp. 110–111. [Google Scholar]
- Laser, H.; Boelhauve, M.; Garmeister, R. Biomasseaufwertung und Silierung Lignocellulosereicher Koppelprodukte zur Optimierung der Methanausbeute (BASiliKOM); Fachhochschule Südwestfalen: Soest, Germany, 2019. [Google Scholar]
- Mohrmann, S.; Deutsch, M.; Schaper, C. Der Markt für Bioenergie: Die landwirtschaftlichen Märkte an der Jahreswende 2020/21. Ger. J. Agric. Econ. 2021, 70, 103–127. [Google Scholar] [CrossRef]
- Schwarz, B. Schlussbericht Vorhaben EFFIGEST; FKZ 03KB081; Fraunhofer IKTS: Dresden, Germany, 2016. [Google Scholar]
- Schwarz, B.; Pfeufer, D.; Balling, N.; Papendieck, J.; Schneider, P.; Hülsmann, M.; Adam, R.; Sonnenberg, N. Verwertung Strohbasierter Energiepellets und Geflügelmist in Biogasanlagen mit Wärmeautaker Gärrestveredlung—STEP: Schlussbericht; Fraunhofer IKTS: Dresden, Germany, 2019. [Google Scholar] [CrossRef]
- Granoszewski, K.; Reise, C.; Spiller, A.; Mußhoff, O. Entscheidungsverhalten Landwirtschaftlicher Betriebsleiter bei Bioenergie Investitionen—Erste Ergebnisse Einer Empirischen Untersuchung; Diskussionspapier Nr. 0911; Department Für Agrarökonomie und Rurale Entwicklung, Universität Göttingen: Göttingen, Germany, 2009. [Google Scholar]
- Reise, C.; Mußhoff, O.; Granoszewski, K.; Spiller, A. Which factors influence the expansion of bioenergy? An empirical study of the investment behaviours of German farmers. Ecol. Econ. 2012, 73, 133–141. [Google Scholar] [CrossRef]
- Kröger, R.; Theusen, L.; Konerding, J.R. Güllefeststoffe als innovatives Gärsubstrat—Wird Die Kluft im Diffusionsprozess Übersprungen? In Perspektiven Für Die Agrar- und Ernährungswirtschaft nach der Liberalisierung, Band 51; Kühl, R., Aurbacher, J., Herrmann, R., Nuppenau, E.-A., Schmitz, M., Eds.; Landwirtschaftsverlag: Münster-Hiltrup, Germany, 2016; pp. 93–104. [Google Scholar]
- Voss, J.; Schaper, C.; Spiller, A.; Theuvsen, L. Innovationsverhalten in der deutschen Landwirtschaft—Empirische Ergebnisse am Beispiel der Biogaserzeugung. In Risiken in der Agrar- und Ernährungswirtschaft und ihre Bewältigung. Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.; Landwirtschaftsverlag: Münster-Hiltrup, Germany, 2009; pp. 379–391. [Google Scholar]
- Vecchio, Y.; Agnusdei, G.P.; Miglietta, P.P.; Capitanio, F. Adoption of Precision Farming Tools: The Case of Italian Farmers. Int. J. Environ. Res. Public Health 2020, 17, 869. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, A.C.; Ostwald, M.; Asplund, T.; Wibeck, V. Barriers to and Drivers of the Adoption of Energy Crops by Swedish Farmers: An Empirical Study. In Proceedings of the Linköping Electronic Conference on the World Renewable Energy Congress, Linköping, Sweden, 8–13 May 2011; pp. 2509–2516. [Google Scholar] [CrossRef]
- Schukat, S.; Heise, H. Smart Products in Livestock Farming—An Empirical Study on the Attitudes of German Farmers. Animals 2021, 11, 1055. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, E.; Ferrari, E.; Bollani, L.; Coccia, M. Strategic management implications for the adoption of technological innovations in agricultural tractor: The role of scale factors and environmental attitude. Technol. Anal. Strateg. Manag. 2014, 26, 765–779. [Google Scholar] [CrossRef]
- von Hardenberg, L.; Heise, H. German Pig Farmers‘ Attitudes towards Animal Welfare Programs and their Willingness to Participate in these Programs. Int. J. Food Syst. Dyn. 2018, 9, 289–301. [Google Scholar] [CrossRef]
- Rübcke von Veltheim, F.; Heise, H. German Farmers’ Attitudes on Adopting Autonomous Field Robots: An Empirical Survey. Agriculture 2021, 11, 216. [Google Scholar] [CrossRef]
- Hyland, J.J.; Heanue, K.; Mc Killop, J.; Micha, E. Factors underlying farmers’ intentions to adopt best practices: The case of paddock based grazing systems. Agric. Syst. 2018, 162, 97–106. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Kittl, C. Kundenakzeptanz und Geschäftsrelevanz: Erfolgsfaktoren für Geschäftsmodelle in der Digitalen Wirtschaft, 1. Auflage; Gabler: Wiesbaden, Germany, 2009. [Google Scholar]
- Ginner, M. Akzeptanz von Digitalen Zahlungsdienstleistungen: Eine Empirische Untersuchung am Beispiel von Mobile Payment Mittels Smartphone im Stationären Handel; Springer Gabler: Wiesbaden, Germany, 2018. [Google Scholar]
- Schierz, P.G. Akzeptanz von Mobilen Zahlungssystemen: Eine Empirische Analyse Basierend auf dem Technologieakzeptanzmodell: Schriftenreihe Innovative Betriebswirtschaftliche Forschung und Praxis, 1. Auflage; Verlag Dr. Kovač: Hamburg, Germany, 2008. [Google Scholar]
- Kornmeier, K. Determinanten der Endkundenakzeptanz Mobilkommunikationsbasierter Zahlungssysteme: Eine Theoretische und Empirische Analyse. Ph.D. Thesis, Universität Duisburg-Essen, Duisburg, Germany, 2009. [Google Scholar]
- Reichardt, T. Bedürfnisorientierte Marktstrukturanalyse für Technische Innovationen: Eine Empirische Untersuchung am Beispiel Mobile Commerce; Gabler: Wiesbaden, Germany, 2008. [Google Scholar]
- Kröger, R.; Konerding, J.R.; Theuvsen, L. Identifikation von Einflussfaktoren auf die Nutzung von Güllefeststoffen als Gärsubtrat in Biogasanlagen. Ger. J. Agric. Econ. 2016, 65, 112–131. [Google Scholar] [CrossRef]
- Beer, L.; Theuvsen, L. Factors influencing German farmer’s decision to grow alley cropping systems as ecological focus areas: A regression analysis. Int. Food Agribus. Manag. Rev. 2020, 23, 529–545. [Google Scholar] [CrossRef]
- Schaper, C.; Spiller, A.; Theuvsen, L. Risikoneigung und Risikoverhalten von Milcherzeugern: Eine Typologisierung. Yearb. Socioecon. Agric. 2010, 3, 157–193. [Google Scholar]
- Emmann, C.H.; Arens, L.; Theuvsen, L. Individual Acceptance of the Biogas Innovation: A Structural Equation Model. Energy Policy 2013, 62, 372–378. [Google Scholar] [CrossRef]
- Hardaker, J.B.; Huirne, R.B.M.; Anderson, J.R.; Lien, G. Coping with Risk in Agriculture, 2nd ed.; CABI Publishing: Wallingford, UK, 2004. [Google Scholar]
- Reynaud, A.; Couture, S. Stability of risk preference measures: Results from a field experiment on French farmers. Theory Decis. 2012, 73, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Maart-Noelck, S.C.; Mußhoff, O. Measuring the risk attitude of decision-makers: Are there differences between groups of methods and persons? Aust. J. Agric. Resour. Econ. 2014, 58, 336–352. [Google Scholar] [CrossRef]
- Steinhorst, M.P.; Empl, J.-B.; Bahrs, E. Interdependenzen zwischen Risikoeinstellungen und Entscheidungen in der Planung sowie im Betrieb von Biogasanlagen. In Neue Theorien und Methoden in den Wirtschafts- und Sozialwissenschaften des Landbaus. Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.; Landwirtschaftsverlag: Münster-Hiltrup, Germany, 2015; pp. 339–351. [Google Scholar]
- Viscusi, W.K.; Phillips, O.R.; Kroll, S. Risky investment decisions: How are individuals influenced by their groups? J. Risk Uncertain. 2011, 43, 81–106. [Google Scholar] [CrossRef] [Green Version]
- Kuczera, C. Der Einfluss des Sozialen Umfeldes auf Betriebliche Entscheidungen von Landwirten; Margraf: Weikersheim, Germany, 2006. [Google Scholar]
- Foster, A.D.; Rosenzweig, M.R. Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture. J. Political Econ. 1995, 103, 1176–1209. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M. Das Kaufverhalten von Landwirten im Bereich Landwirtschaftlicher Investitionsgüter und die Auswirkungen auf den Marketing-Mix Landtechnischer Unternehmen. Ph.D. Thesis, Cuvillier, Göttingen, Germany, 2003. [Google Scholar]
- Schaper, C.; Wocken, C.; Abeln, C.; Lassen, B.; Schierenbeck, S.; Spiller, A.; Theuvsen, L. Risikomanagement in Milchviehbetreiben. Eine Empirische Analyse vor dem Hintergrund der Sich Ändernden EU-Milchmarktpolitik. In Risikomanagement in der Landwirtschaft; Landwirtschaftliche Rentenbank: Frankfurt, Germany, 2008; pp. 134–184. [Google Scholar]
- Ambrosius, F.H.W.; Hofstede, J.G.; Bock, B.B.; Bokkers, E.A.M.; Beulens, A.J.M. Modelling farmer decision-making: The case of the Dutch pork sector. Br. Food J. 2015, 117, 2582–2597. [Google Scholar] [CrossRef]
- Schaak, H.; Mußhoff, O. Understanding the adoption of grazing practices in German dairy farming. Agric. Syst. 2018, 165, 230–239. [Google Scholar] [CrossRef]
- Weber, M.; El Benni, N.; Munz, M. Der Einfluss von Direktzahlungen auf Betriebswirtschaftliche Entscheidungen—Eine Befragung von Landwirtschaftlichen Beratern: Untersuchung Zuhanden des Bundesamtes für Landwirtschaft (BLW); Bericht zu Modul III des Forschungsprojektes “Der Nutzen von Risikomanagementinstrumenten unter Berücksichtigung der Wirkung von Direkt-zahlungen auf das Einkommensrisiko in der Schweizer Landwirtschaft; Swiss Federal Institute of Technology: Zurich, Switzerland, 2013. [Google Scholar]
- Kröger, R.; Theuvsen, L.; Konerding, J.R. Güllefeststoffe als Gärsubstrat für Biogasanlagen: Ergebnisse einer empirischen Erhebung unter Biogasanlagenbetreibern. Berichte über Landwirtschaft. 2014, 92, 1–19. [Google Scholar] [CrossRef]
- Deimel, M.; Theuvsen, L.; Ebbeskotte, C. Von der Wertschöpfungskette zum Netzwerk: Methodische Ansätze zur Analyse des Verbundsystems der Veredelungswirtschaft Nordwestdeutschlands; Diskussionsbeitrag No. 0810; EconStor: Göttingen, Germany, 2008. [Google Scholar]
- Fielding, K.S.; Terry, D.J.; Masser, B.M.; Hogg, M.A. Integrating social identity theory and the theory of planned behaviour to explain decisions to engage in sustainable agricultural practices. Br. Psychol. Soc. 2008, 47, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Wellner, M.; Theuvsen, L. Community Supported Agriculture—Determinanten der Teilnahmebereitschaft Deutscher Landwirte: Vortrag Anlässlich der 58. Jahrestagung der GEWISOLA “Visionen für eine Agrar- und Ernährungspolitik nach 2020”. Kiel. 2018. Available online: https://ageconsearch.umn.edu/record/276223/files/Vortrag_125.pdf?ln=en&withWatermark=1 (accessed on 20 September 2022).
- Lamm, H.; Burger, C.; Füchsle, T.; Trommsdorf, G. Geschlecht und Alter als Einflussfaktoren der Risikobereitschaft bei Entscheidungen für die eigene und eine andere Person. Z. Exp. Angew. Psychol. 1979, 26, 496–508. [Google Scholar]
- Fernandez-Cornejo, J.; McBride, W.D. Adoption of Bioengineered Crops: Agricultural Economic Report No. 810. Washington DC; 2002. Available online: https://www.ers.usda.gov/webdocs/publications/41422/13554_aer810_1_.pdf?v=6958.8 (accessed on 1 September 2022).
- Fernandez-Cornejo, J.; Beach, E.D.; Huang, W.-Y. The adoption of IPM techniques by vegetable growers in Florida, Michigan, and Texas. J. Agric. Appl. Econ. 1994, 26, 158–172. [Google Scholar] [CrossRef] [Green Version]
- Willock, J.; Deary, I.J.; Mcgregor, M.M.; Sutherland, A.; Ewards-Jones, G.; Morgan, O.; Dent, B.; Grieve, R.; Gibson, G.; Austin, E. Farmers’ Attitudes, Objectives, Behaviors, and Personality Traits: The Edinburgh Study of Decision Making on Farms. J. Vocat. Behav. 1999, 54, 5–36. [Google Scholar] [CrossRef]
- Hertell, F.V. Strategische Betriebsentwicklung—Erfahrungen und Visionen. In Das Neue Große Europa: Perspektiven Für Die Agrarwirtschaft; Deutsche Landwirtschafts-Gesellschaft, Ed.; DLG-Verlag: Frankfurt am Main, Germany, 2004; pp. 129–138. [Google Scholar]
- Von Jeinsen, T.; Heppe, H.; Theuvsen, L. Determinanten der Akzeptanz technischer Innovationen in der Landwirtschaft. In 38. GIL-Jahrestagung, Digitale Marktplätze und Plattformen; Ruckelshausen, A., Meyer-Aurich, A., Borchad, K., Hofacker, C., Loy, J.P., Schwerdtfeger, R., Sundermeier, H.-H., Theuvsen, B., Eds.; Köllen: Bonn, Germany, 2018; pp. 127–130. [Google Scholar]
- Mozzato, D.; Gatto, P.; Defrancesco, E.; Bortolini, L.; Pirotti, F.; Pisani, E.; Sartori, L. The Role of Factors Affecting the Adoption of Environmentally Friendly Farming Practices: Can Geographical Context and Time Explain the Differences Emerging from Literature? Sustainability 2018, 10, 3101. [Google Scholar] [CrossRef] [Green Version]
- Alizadehnia, M.; Ommani, A.R.; Noorivandi, A.N.; Maghsoodi, T. Determinants of Eco-Innovations in Agricultural Production Cooperatives in Iran. J. Agric. Sci. Technol. 2022, 24, 1–12. [Google Scholar]
- Hasler, K.; Olfs, H.-W.; Omta, O.; Bröring, S. Drivers for the Adoption of Different Eco-Innovation Types in the Fertilizer Sector: A Review. Sustainability 2017, 9, 2216. [Google Scholar] [CrossRef]
- Pascher, P.; Hemmerling, U.; Stork, S. Situationsbericht 2021/22. Trends und Fakten zur Landwirtschaft; Deutscher Bauernverband e.V.: Berlin, Germany, 2021. [Google Scholar]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculutre: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Ilbery, B.W. Agricultural decision-making: A behavioural perspective. Prog. Hum. Geogr. 1978, 2, 448–466. [Google Scholar] [CrossRef]
- Frederking, M. Zusammenhänge zwischen Merkmalen der Agrarstruktur und dem Innovationsverhalten von Landwirten. In Agrarstrukturentwicklungen und Agrarpolitik; Kirschke, D., Odening, M., Schade, G., Eds.; Landwirtschaftsverlag: Münster-Hiltrup, Germany, 1996; pp. 349–359. [Google Scholar]
- Breen, J.; Clancy, D.; Moran, B.; Thorne, F. Modelling the Potential Supply of Energy Crops in Ireland: Results from a Probit Model Examining the Factors Affecting Willingness to Adopt; Working Papers 0905; Teagasc: Dublin, Ireland, 2009. [Google Scholar]
- Gedikoglu, H. Socio-economic factors and adoption of energy crops. Int. J. Food Agric. Econ. 2015, 3, 1–17. [Google Scholar] [CrossRef]
- Heise, H. Tierwohl in der Nutztierhaltung: Eine Stakeholder-Analyse. Ph.D. Thesis, University of Goettingen, Goettingen, Germany, 2017. [Google Scholar]
- Müller, J. Entscheidungsverhalten bei Komplexen Problemen: Die Sortenwahl bei Winterweizen. Ph.D. Thesis, University of Gießen, Gießen, Germany, 2017. [Google Scholar]
- Hannus, V.; Sauer, J. Understanding Farmers’ Intention to Use a Sustainability Standard: The Role of Economic Rewards, Knowledge, and Ease of Use. Sustainability 2021, 13, 10788. [Google Scholar] [CrossRef]
- Rodriguez, J.M.; Molnar, J.J.; Fazio, R.A.; Sydnor, E.; Lowe, M.J. Barriers to adoption of sustainable agriculture practices: Change agent perspectives. Renew. Agric. Food Syst. 2008, 24, 60–71. [Google Scholar] [CrossRef]
- Mishra, D.; Gyawali, B.R.; Paudel, K.P.; Poudyal, N.C.; Simon, M.F.; Dasgupta, S.; Antonious, G. Adoption of Sustainable Agriculture Practices among Farmers in Kentucky, USA. Environ. Manag. 2018, 62, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Schulze Schwering, D.; Lemken, D. Totally Digital? Adoption of Digital Farm Management Information Systems. In 40. GIL-Jahrestagung, Digitalisierung für Mensch, Umwelt und Tier; Gandorfer, M., Meyer-Aurich, A., Bernhardt, H., Maidl, F.X., Fröhlich, G., Floto, H., Eds.; Gesellschaft für Informatik e.V.: Bonn, Germany, 2020; pp. 295–300. [Google Scholar]
- Lantz, M.; Svensson, M.; Björnsson, L.; Börjesson, P. The prospects for an expansion of biogas systems in Sweden—Incentives, barriers and potentials. Energy Policy 2007, 35, 1830–1843. [Google Scholar] [CrossRef]
- Feder, G.; Umali, D.L. The adoption of agricultural innovations: A review. Technol. Forecast. Soc. Chang. 1993, 43, 215–239. [Google Scholar] [CrossRef]
- Paulrud, S.; Laitila, T. Farmers’ attitude about growing energy crops. A choice experiment approach. Biomass Bioenergy 2010, 34, 1770–1779. [Google Scholar] [CrossRef]
- Giannoccaro, G.; Berbel, J. The Determinants of Farmer’s Intended Behaviour Towards the Adoption of Energy Crops in Southern Spain: An Application of the Classification Tree-Method. Bio-Based Appl. Econ. 2012, 1, 199–211. [Google Scholar] [CrossRef]
- Gardebroek, C.; Oude Lansink, A.G.J.M. Farm-specific adjustment costs in Dutch pig farming. J. Agric. Econ. 2004, 55, 3–24. [Google Scholar] [CrossRef]
- Skodawessely, C.; Pretzsch, J. Akzeptanz des Energieholzanbaus bei Landwirten. In Anbau und Nutzung von Bäumen auf Landwirtschaftlichen Flächen; Reeg, T., Bemmann, A., Konold, W., Murach, D., Spiecker, H., Eds.; Wiley-VVH: Weinheim, Germany, 2009; pp. 217–226. [Google Scholar]
- Venkatesh, V.; James, Y.L.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Borrero, J.D.; Yousafzai, S.Y.; Javed, U.; Page, K.L. Expressive participation in Internet social movements: Testing the moderating effect of technology readiness and sex on student SNS use. Comput. Hum. Behav. 2014, 30, 39–49. [Google Scholar] [CrossRef]
- Peris, M.; Nüttgens, M. Anwendung der Unified Theory of Acceptance and Use of Technology zur Akzeptanz-bestimmung von Web 2.0-Anwendungen in KMU-Netzwerken. In Proceedings of the 6th Conference on Professional Knowledge Management, from Knowledge to Action, Innsbruck, Austria, 21–23 February 2011; Maier, R., Ed.; Gesellschaft für Informatik e.V.: Bonn, Germany, 2011; pp. 88–97. [Google Scholar]
- Simon, B. Wissensmedien im Bildungssektor. Eine Akzeptanzuntersuchung an Hochschulen. Ph.D. Thesis, WU Vienna University of Economics and Business, Wien, Austria, 2001. [Google Scholar]
- Shaw, N.; Sergueeva, K. The non-monetary benefits of mobile commerce: Extending UTAUT2 with perceived value. Int. J. Inf. Manag. 2019, 45, 44–55. [Google Scholar] [CrossRef]
- Wellner, K.; Theuvsen, L.; Heise, H. Die Teilnahmebereitschaft Deutscher Sauenhalter an der Initiative Tierwohl—Wodurch Wird sie Beeinflusst? Vortrag Anlässlich der 59. Jahrestagung der GEWISOLA “Landwirtschaft und Ländliche Räume im Gesellschaftlichen Wandel”. Braunschweig. 2019. Available online: https://ageconsearch.umn.edu/record/292274/files/A1-104-Wellner-Die%20Teilnahmebereitschaft%20deutscher%20Landwirte%20an%20der%20Initiative%20Tierwohl_c.pdf?ln=en&withWatermark=1 (accessed on 20 September 2022).
- Raab-Steiner, E.; Benesch, M. Der Fragebogen—Von der Forschungsidee zur SPSS/PASW-Auswertung, 2. Auflage; UTB: Stuttgart, Germany, 2010. [Google Scholar]
- Backhaus, K.; Erichson, B.; Plinke, W.; Weiber, R. Multivariate Analysemethoden: Eine Anwendungsorientierte Einführung, 15. Auflage; Springer Gabler: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Diaz-Bone, R.; Weischer, C. Methoden-Lexikon für die Sozialwissenschaften; Springer VS: Wiesbaden, Germany, 2015. [Google Scholar]
- Brosius, F. SPSS 21, 1. Auflage; mitp Professional: Heidelberg, München, Landsberg, Frechen, Hamburg, Germany, 2013. [Google Scholar]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark IV. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Nunnally, J.C.; Bernstein, I.C. Psychometric Theory, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Bortz, J. Statistik: Für Human- und Sozialwissenschaftler, 6. Auflage; Springer Medizin: Heidelberg, Germany, 2005. [Google Scholar]
- Hair, J.F.; Babin, B.J.; Anderson, R.E.; Black, W.C. Multivariate Data Analysis, 7th ed.; Cengage Learning EMEA: London, UK, 2018. [Google Scholar]
- Bundeszentrale für Politische Bildung. Bildungsstand der Bevölkerung. 2022. Available online: https://www.bpb.de/kurz-knapp/zahlen-und-fakten/soziale-situation-in-deutschland/61656/bildungsstand-der-bevoelkerung/ (accessed on 20 September 2022).
- Barchmann, T.; Pohl, M.; Denysenko, V.; Fischer, E.; Hofmann, J.; Lenhart, M.; Postel, J.; Liebetrau, J. Biogas-Messprogramm III, Erstausgabe; Fachagentur Nachwachsende Rohstoffe e.V. (FNR): Gülzow-Prüzen, Germany, 2021. [Google Scholar]
- Nesselhauf, L.; Deker, J.S.; Fleuchaus, R. Information and involvement: The influence on the acceptance of innovative wine packaging. Int. J. Wine Bus. Res. 2017, 29, 285–298. [Google Scholar] [CrossRef]
- Padel, S. Conversion to Organic Farming: A Typical Example of the Diffusion of an Innovation. Sociol. Rural. 2002, 41, 40–61. [Google Scholar] [CrossRef]
- Faiers, A.; Neame, C. Consumer attitudes towards domestic solar power systems. Energy Policy 2006, 34, 1797–1806. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, B.; Singh, P.J. Innovation generation process: Applying the adopter categorization model a concept of “chasm” to better understand social and behavioral issues. Eur. J. Innov. Manag. 2008, 11, 366–388. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. An economic analysis of biogas-biomethane chain from animal residues in Italy. J. Clean. Prod. 2019, 230, 888–897. [Google Scholar] [CrossRef]
- Reinhold, G. Welche Faktoren bestimmen die Wirtschaftlichkeit von Biogasanlagen? In Biogas in der Landwirtschaft—Stand und Perspektiven: Tagungsband zum KTBL/FNR Biogas-Kongress vom 15. bis 16. Sep. 2009 in Weimar, Heft 32; Fachagentur Nachwachsende Rohstoffe: Gülzow, Germany, 2009; pp. 76–86. [Google Scholar]
- Fachverband Nachwachsende Rohstoffe. Leitfaden Biogas. Von der Gewinnung zur Nutzung; Fachverband Nachwachsende Rohstoffe: Gülzow-Prüzen, Germany, 2016. [Google Scholar]
- Gers-Grapperhaus, C.; Hartmann, S.; Keymer, U.; Messner, J.; Reinhold, G.; Schünemann-Plag, P.; Wernsmann, P. Anpassungsstrategien für Biogasanlagen, KTBL-Heft 118; Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V.: Darmstadt, Germany, 2017. [Google Scholar]
- Daniel-Gromke, J.; Rensberg, N.; Denysenko, V.; Trommler, M.; Reonholz, T.; Völler, M.; Beil, M.; Beyrich, W. Anlagenbestand Biogas und Biomethan—Biogaserzeugung und -nutzung in Deutschland, DBFZ Report Nr. 30; Deutsches Biomasseforschungszentrum: Leipzig, Germany, 2017. [Google Scholar]
- Souza, N.D.G.; Farias, J.S. Adoption of new technologies: A study with non-users of the CPF issuance request system on the internet, with emphasis on sociodemographic aspects. Context. Contemp. J. Econ. Manag. 2021, 19, 88–107. [Google Scholar] [CrossRef]
- Meijer, S.S.; Catacutan, D.; Ajayi, O.C.; Sileshi, G.W.; Nieuwenhuis, M. The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. Int. J. Agric. Sustain. 2015, 13, 40–54. [Google Scholar] [CrossRef]
- Mola-Yudego, B.; Dimitriou, I.; Gonzalez-Garcia, S.; Gritten, D.; Aronsson, P. A conceptual framework for the introduction of energy crops. Renew. Energy 2014, 72, 29–38. [Google Scholar] [CrossRef]
- Warren, C.R.; Burton, R.; Buchanan, O.; Birnie, R.V. Limited adoption of short rotation coppice: The role of farmers’ socio-cultural identity in influencing practice. J. Rural Stud. 2016, 45, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.M.S.; Jerez, D.P. Agro-food projects: Analysis of procedures within digital revolution. Int. J. Manag. Proj. Bus. 2020, 13, 648–664. [Google Scholar] [CrossRef]
- Granoszewski, K.; Reise, C.; Spiller, A.; Mußhoff, O. Die Diffusion regenerativer Energien in der deutschen Landwirtschaft—Investitionsverhalten in einem politisch induzierten Markt. In Proceedings of 10th International Conference Marketing Trends 2011; Andreani, J.-C., Collesei, U., Eds.; Paris-Venice Marketing Trends Association: Paris, France, 2011. [Google Scholar]
- Wagner-Schelewsky, P.; Hering, L. Online-Befragung. In Handbuch Methoden der Empirischen Sozialforschung, 2. Auflage; Baur, N., Blasius, J., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2019; pp. 787–800. [Google Scholar]
Installed Power Capacity | Rated Power Capacity | ||
---|---|---|---|
Size-Class | Sample (2021) 1 | Biogas Plants (2015) 2 | Sample (2021) 1 |
≤70 kW | 0.6% | 0.4% | 1.3% |
71–150 kWel | 3.6% | 2.4% | 4.9% |
151–300 kWel | 9.7% | 40.8% | 15.5% |
301–500 kWel | 12.9% | 25.2% | |
501–750 kWel | 17.5% | 41.3% | 24.3% |
751–1000 kWel | 13.3% | 12.9% | |
>1000 kWel | 42.4% | 15.1% | 15.9% |
Variables | Cluster A (n = 78) | Cluster B (n = 117) | Cluster C (n = 73) | Cluster D (n = 37) |
---|---|---|---|---|
Factor 1: Intention to use straw pellets *** (CA = 0.862) | −1.22 bcd (0.384) | −0.06 acd (0.338) | 1.26 abd (0.553) | 0.320 abc (0.786) |
Straw pellets are a real substrate alternative for me. *** FL = 0.822 | 1.51 bcd (0.597) | 2.52 acd (0.761) | 3.55 acd (0.578) | 2.95 abc (0.705) |
I think about testing smaller quantities of straw pellets in my biogas plant. *** FL = 0.821 | 1.47 bcd (0.618) | 2.70 acd (0.864) | 3.85 abd (0.681) | 3.22 abc (0.886) |
I intend to buy straw pellets as an input substrate for my biogas plant in the near future. *** FL = 0.818 | 1.14 bcd (0.386) | 1.81 acd (0.472) | 2.88 ab (0.832) | 2.54 ab (0.803) |
I expect to use straw pellets as an input substrate in my biogas plant very soon. *** FL = 0.791 | 1.29 bcd (0.486) | 2.06 acd (0.577) | 3.07 ab (0.694) | 2.81 ab (0.877) |
The use of straw pellets in my biogas plant is not an option for the time being. *** FL = 0.744 | 4.32 bcd (0.987) | 3.27 acd (0.916) | 2.15 ab (0.758) | 2.59 ab (0.927) |
Factor 2: Use behaviour *** (CA = 0.807) | −0.22 bcd (0.217) | −0.39 ad (0.238) | −0.42 ad (0.451) | 2.00 abc (0.485) |
I am currently applying for planning permission for an own stationary pelleting plant for my biogas plant. *** FL = 0.864 | 1.00 d (0.000) | 1.01 acd (0.092) | 1.00 d (0.000) | 1.73 abc (0.450) |
I am growing less maize in the current harvest year as I have firmly planned straw pellets as an input substrate from the summer onwards. *** FL = 0.848 | 1.04 d (0.194) | 1.03 d (0.182) | 1.15 d (0.360) | 2.08 abc (0.682) |
I have grown more grain for the 2021 harvest so that the straw can be pelleted for the biogas plant. *** FL = 0.757 | 1.03 cd (0.159) | 1.07 d (0.285) | 1.18 ad (0.420) | 2.05 abc (0.780) |
I have already bought or stored straw pellets for biogas production to feed them in the near future. *** FL = 0.732 | 1.03 d (0.226) | 1.02 d (0.130) | 1.10 d (0.531) | 1.18 abc (0.559) |
Variables | Cluster A (n = 78) | Cluster B (n = 117) | Cluster C (n = 73) | Cluster D (n = 37) |
---|---|---|---|---|
Willingness to pay and voluntariness of use | ||||
Willingness to pay for straw pellets as biogas substrate (freely queried) (€/t) ** | 28.43 bcd | 43.51 a | 43.70 a | 49.94 a |
Willingness to pay for straw pellets as biogas substrate (with upfront information) (€/t) *** | 40.43 bcd | 56.19 a | 56.68 a | 56.67 a |
I will only use residual materials, such as straw pellets, when I am obliged to do so. *** | 3.10 bcd (1.420) | 2.54 a (1.055) | 2.15 a (1.050) | 2.49 a (0.932) |
Innovativeness | ||||
I attach great importance to being innovative quickly, knowing that this can lead to disappointment. * | 2.86 cd (1.003) | 3.03 (0.982) | 3.33 a (0.898) | 3.43 a (0.835) |
I am interested in new production processes and technologies. ** | 4.13 (0.727) | 4.04 (0.700) | 4.19 (0.518) | 3.95 (0.705) |
In my circle of biogas plant operators/colleagues, I am usually the first to try out new things on my farm. | 2.91 (0.983) | 2.93 (0.980) | 3.19 (0.844) | 3.14 (0.887) |
When I hear about new substrate alternatives, I immediately think about how I could use them in my biogas plant. *** | 2.86 cd (1.192) | 3.21 (0.933) | 3.52 a (0.884) | 3.46 a (0.960) |
Perceived Risk | ||||
The risk of using straw pellets is too high for me. *** | 2.96 bcd (1.133) | 2.43 ac (0.780) | 1.97 abd (0.707) | 2.46 ac (0.803) |
Safety is important to me, so I avoid risks. | 3.09 (0.956) | 3.02 (0.799) | 2.78 (0.870) | 3.16 (0.834) |
I avoid risky decisions, especially in the biogas operating branch. * | 3.05 c (1.005) | 2.98 c (0.919) | 2.59 ab (0.955) | 2.97 (0.928) |
Social environment | ||||
My family environment would support trying alternative substrates, such as straw pellets, in my biogas plant. ** | 2.97 c (1.069) | 3.31 (0.987) | 3.58 a (0.942) | 3.24 (0.895) |
Friendly biogas plant operators advocate the use of alternative substrates, such as straw pellets. ** | 2.62 ab (1.047) | 3.05 a (0.808) | 3.08 a (0.954) | 2.81 (0.845) |
By using straw pellets, I can improve the image of biogas production in the region. *** | 2.69 a (1.097) | 3.09 (1.030) | 3.38 c (0.981) | 2.97 (0.928) |
The agricultural advice in my region is very helpful in the introduction of new input substrates in biogas production. * | 2.08 d (1.054) | 2.42 (0.976) | 2.27 (1.071) | 2.65 a (1.086) |
Local advice will support me in the use of straw pellets. * | 2.50 b (1.148) | 2.97 a (0.960) | 2.82 (0.918) | 2.78 (0.947) |
Societal pressure | ||||
As a biogas plant operator, I am increasingly exposed to public criticism. | 2.86 (1.170) | 3.04 (1.125) | 3.04 (1.148) | 2.97 (1.067) |
Acceptance of biogas production by society has declined sharply in the last ten years. | 3.41 (1.062) | 3.32 (1.088) | 3.44 (1.041) | 3.37 (0.982) |
Conflicts with neighbours and village residents because of the biogas plant (transport volume, noise, maize cultivation) are part of my daily business. | 2.04 d (0.889) | 2.19 (0.999) | 2.22 (1.003) | 2.68 a (1.056) |
Prior knowledge and involvement | ||||
Prior involvement with straw pellet usage for biogas plants (yes/no in %) 1,* | 15.38/84.62 | 12.82/87.18 c | 30.14/69.86 b | 27.03/72.97 |
Self-evaluated knowledge of straw pellet usage in biogas plants 2 | 2.13 (0.945) | 2.09 (0.788) | 2.14 (1.058) | 2.43 (0.867) |
I have the necessary knowledge to use straw pellets in my biogas plant. | 2.64 (1.289) | 2.62 (1.181) | 2.92 (1.341) | 2.84 (1.093) |
Variables | Cluster A (n = 78) | Cluster B (n = 117) | Cluster C (n = 73) | Cluster D (n = 37) |
---|---|---|---|---|
(Economic) Performance | ||||
I am convinced that the use of straw pellets in biogas plants is worthwhile. *** | 2.24 bcd (0.840) | 2.82 ac (0.715) | 3.22 abd (0.672) | 3.08 ac (0.682) |
I am convinced that the use of straw pellets in the biogas plant brings more benefits than (additional) costs. ** | 2.32 bcd (0.947) | 2.81 ac (0.730) | 3.33 abd (0.765) | 3.14 ac (0.673) |
The use of straw pellets offers my biogas plant economic advantages. | 2.12 bcd (0.806) | 2.72 ac (0.753) | 3.16 abd (0.782) | 2.86 ac (0.787) |
Straw pellets are far too expensive compared with other substrates. * | 3.53 c (0.817) | 3.37 (0.714) | 3.14 a (0.787) | 3.27 (0.693) |
With straw pellets, the electricity production costs per kwh are more favourable than with other substrates. * | 2.36 c (0.772) | 2.58 (0.722) | 2.84 a (0.727) | 2.73 (0.732) |
The financial cost of transporting and producing straw pellets is higher than the fermentation benefit. * | 3.51 c (1.041) | 3.26 (0.835) | 2.96 a (0.815) | 3.08 (0.722) |
The use of straw pellets increases the sustainability of biogas production. *** | 2.79c (1.121) | 3.16c (0.909) | 3.53ab (0.867) | 3.11 (0.843) |
Advantages in substrate and digestate management | ||||
The biogas yield per ton of fresh mass is higher than from silage maize. * | 2.77 c (1.309) | 3.00 (1.189) | 3.36 a (1.171) | 2.89 (1.100) |
Due to the low amount of digestate produced when using straw pellets, the cost of transporting digestate is reduced. *** | 2.72 bcd (1.005) | 3.30 a (0.843) | 3.18 a (1.005) | 3.22 a (0.821) |
Expected Effort | ||||
The biogas plant’s own power consumption will increase due to the use of straw pellets. * | 3.62 d (0.983) | 3.31 (0.942) | 3.30 (1.032) | 3.11 a (0.875) |
The amount of work required to rectify faults will increase considerably with the fermentation of straw pellets. | 2.82 (1.029) | 2.74 (0.930) | 2.60 (0.924) | 2.62 (0.828) |
The agitator running times and intervals must be increased for straw pellet use. | 3.76 (1.022) | 3.50 (0.943) | 3.30 (0.982) | 3.51 (0.804) |
To be able to use straw pellets in my biogas plant, I need additional equipment for substrate processing (e.g., mechanical crushing). | 2.92 (1.277) | 2.58 (1.116) | 2.51 (1.056) | 2.62 (1.010) |
The use of straw pellets increases the amount of work required for daily control work. | 2.88 (1.044) | 2.79 (0.952) | 2.78 (0.946) | 2.86 (0.787) |
Trait/Statement | Cluster A (n = 78) | Cluster B (n = 117) | Cluster C (n = 73) | Cluster D (n = 37) |
---|---|---|---|---|
Sociodemographic characteristics | ||||
Age in years 1 | 46.12 | 45.29 | 47.49 | 48.35 |
Work experience in biogas production (Ø in years) | 12.62 | 12.87 | 12.88 | 12.76 |
Farm characteristics | ||||
Arable farming (yes/no) 1 | 57/21 | 92/25 | 54/19 | 29/8 |
Agricultural contracting (yes/no) 1 | 11/67 | 26/91 | 13/60 | 11/26 |
Other renewable energies (yes/no) 1 | 46/32 | 75/42 | 46/27 | 26/11 |
Dairy cattle (yes/no) *,1 | 26/52 c | 25/92 | 10/63 a | 9/28 |
Beef cattle (yes/no) 1 | 10/68 | 20/97 | 7/66 | 8/29 |
Sows (yes/no) 1 | 3/75 | 10/107 | 6/67 | 3/34 |
Fattening pigs (yes/no) 1 | 20/58 | 34/83 | 19/54 | 10/27 |
Chicken (yes/no) 1 | 4/74 | 11/106 | 7/66 | 4/33 |
Other livestock (yes/no) 1 | 5/73 | 10/107 | 5/68 | 6/31 |
Rated electricity production capacity in kW (%) *,1 | ||||
<150 KW | 12.82 bd | 2.56 a | 8.22 | 0.00 a |
151–500 kW | 41.03 | 45.30 | 38.36 | 32.43 |
501–1000 | 28.21 | 40.17 | 39.73 | 40.54 |
>1000 kW | 17.95 | 11.97 | 13.70 | 27.03 |
Ø Rated electricity production capacity in kW | 603.63 | 823.22 | 838.15 | 821.91 |
Proportion of manure and slurry (%) * | 47.00 c | 37.78 | 35.25 a | 38.60 |
Ø Share of maize silage in % ** | 35.65 bc | 45.94 a | 47.55 a | 41.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohrmann, S.; Otter, V. Categorisation of Biogas Plant Operators in Germany with Regards to Their Intention to Use Straw Pellets as Innovative and Sustainable Substrate Alternative. Energies 2023, 16, 5. https://doi.org/10.3390/en16010005
Mohrmann S, Otter V. Categorisation of Biogas Plant Operators in Germany with Regards to Their Intention to Use Straw Pellets as Innovative and Sustainable Substrate Alternative. Energies. 2023; 16(1):5. https://doi.org/10.3390/en16010005
Chicago/Turabian StyleMohrmann, Sören, and Verena Otter. 2023. "Categorisation of Biogas Plant Operators in Germany with Regards to Their Intention to Use Straw Pellets as Innovative and Sustainable Substrate Alternative" Energies 16, no. 1: 5. https://doi.org/10.3390/en16010005
APA StyleMohrmann, S., & Otter, V. (2023). Categorisation of Biogas Plant Operators in Germany with Regards to Their Intention to Use Straw Pellets as Innovative and Sustainable Substrate Alternative. Energies, 16(1), 5. https://doi.org/10.3390/en16010005