Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators
Abstract
:1. Introduction
2. Experimental Setup and Methods
3. Results
3.1. Background-Oriented Schlieren Method Validation
3.2. Electrical and Mechanical Characterizations of Plasma Actuators
3.3. Flow-Induced Temperature Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, Q.S.; Kim, M.-H. Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting. Energy 2021, 230, 120829. [Google Scholar] [CrossRef]
- Fortin, G.; Perron, J.; Ilinca, A. Behaviour and modeling of cup anemometers under icing conditions. In Proceedings of the International Workshop on Atmospheric Icing of Structures, Montreal, QC, Canada, 12–16 June 2005. [Google Scholar]
- Manatbayev, R.; Baizhuma, Z.; Bolegenova, S.; Georgiev, A. Numerical simulations on static Vertical Axis Wind Turbine blade icing. Renew. Energy 2021, 170, 997–1007. [Google Scholar] [CrossRef]
- Parent, O.; Ilinca, A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg. Sci. Technol. 2011, 65, 88–96. [Google Scholar] [CrossRef]
- Tao, T.; Liu, Y.; Qiao, Y.; Gao, L.; Lu, J.; Zhang, C.; Wang, Y. Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm. Renew. Energy 2021, 180, 1004–1013. [Google Scholar] [CrossRef]
- Stoyanov, D.; Nixon, J.; Sarlak, H. Analysis of derating and anti-icing strategies for wind turbines in cold climates. Appl. Energy 2021, 288, 116610. [Google Scholar] [CrossRef]
- Wang, Q.; Yi, X.; Liu, Y.; Ren, J.; Li, W.; Wang, Q.; Lai, Q. Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model. Renew. Energy 2020, 162, 1854–1873. [Google Scholar] [CrossRef]
- Cheng, X.; Shi, F.; Liu, Y.; Liu, X.; Huang, L. Wind turbine blade icing detection: A federated learning approach. Energy 2022, 254, 12441. [Google Scholar] [CrossRef]
- Wei, K.; Yang, Y.; Zuo, H.; Zhong, D. A review on ice detection technology and ice elimination technology for wind turbine. Wind Energy 2020, 23, 433–457. [Google Scholar] [CrossRef]
- Yirtici, O.; Tuncer, I.H. Aerodynamic shape optimization of wind turbine blades for minimizing power production losses due to icing. Cold Reg. Sci. Technol. 2021, 185, 103250. [Google Scholar] [CrossRef]
- Liu, Y.; Kolbakir, C.; Hu, H.; Hu, H. A comparison study on the thermal effects in DBD plasma actuation and electrical heating for aircraft icing mitigation. Int. J. Heat Mass Transf. 2018, 124, 319–330. [Google Scholar] [CrossRef]
- Abdollahzadeh, M.; Rodrigues, F.; Pascoa, J. Simultaneous ice detection and removal based on dielectric barrier discharge actuators. Sens. Actuators A Phys. 2020, 315, 112361. [Google Scholar] [CrossRef]
- Rodrigues, F.F.; Abdollahzadeh, M.; Pascoa, J.; Pires, L. Influence of Exposed Electrode Thickness on Plasma Actuators Performance for Coupled Deicing and Flow Control Applications. In Proceedings of the Fluids Engineering Division Summer Meeting, Virtual, 10–12 August 2021; American Society of Mechanical Engineers, Fluids Engineering Division: New York, NY, USA, 2021; Volume 3. [Google Scholar] [CrossRef]
- Benmoussa, A.; Páscoa, J.C. Enhancement of a cycloidal self-pitch vertical axis wind turbine performance through DBD plasma actuators at low tip speed ratio. Int. J. Thermofluids 2023, 17, 100258. [Google Scholar] [CrossRef]
- Benmoussa, A.; Páscoa, J.C. Performance improvement and start-up characteristics of a cyclorotor using multiple plasma actuators. Meccanica 2021, 56, 2707–2730. [Google Scholar] [CrossRef]
- Pendar, M.-R.; Páscoa, J.C. Numerical Investigation of Plasma Actuator Effects on Flow Control Over a Three-Dimensional Airfoil With a Sinusoidal Leading Edge. J. Fluids Eng. 2022, 144, 081208. [Google Scholar] [CrossRef]
- Pendar, M.R.; Pascoa, J. Study of the Plasma Actuator Effect on the Flow Characteristics of an Airfoil: An LES Investigation. SAE Int. J. Adv. Curr. Pract. Mobil. 2021, 3, 1206–1215. [Google Scholar] [CrossRef]
- Rodrigues, F.F.; Pascoa, J.C.; Trancossi, M. Experimental Analysis of Dielectric Barrier Discharge Plasma Actuators Thermal Characteristics under External Flow Influence. J. Heat Transf. 2018, 140, 102801. [Google Scholar] [CrossRef]
- Rodrigues, F.F.; Pascoa, J.C.; Trancossi, M. Experimental Thermal Characterization of DBD Plasma Actuators. In ASME 2017 International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2017; Volume 1. [Google Scholar] [CrossRef]
- Kolbakir, C.; Hu, H.; Liu, Y.; Hu, H. An experimental study on different plasma actuator layouts for aircraft icing mitigation. Aerosp. Sci. Technol. 2020, 107, 106325. [Google Scholar] [CrossRef]
- Abdollahzadehsangroudi, M.; Pascoa, J.; Rodrigues, F. System for ice detection/prevention and flow control based on the impression of sliding plasma actuators with dielectric discharge barrier. WO2018060830A1, 25 September 2017. [Google Scholar]
- Rodrigues, F.; Páscoa, J.; Dias, F.; Abdollahzadehsangroudi, M. Plasma Actuators for Boundary Layer Control of Next Generation Nozzles. In ASME 2015 International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2015; pp. 1–2015. [Google Scholar] [CrossRef]
- Rodrigues, F.F.; Mushyam, A.; Pascoa, J.C.; Trancossi, M. A new plasma actuator configuration for improved efficiency: The stair-shaped dielectric barrier discharge actuator. J. Phys. D Appl. Phys. 2019, 52, 385201. [Google Scholar] [CrossRef]
- Rodrigues, F.; Pascoa, J.; Trancossi, M. Heat generation mechanisms of DBD plasma actuators. Exp. Therm. Fluid Sci. 2018, 90, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, F.; Abdollahzadeh, M.; Pascoa, J.C.; Oliveira, P.J. An experimental study on segmented-encapsulated electrode dielectric-barrier-discharge plasma actuator for mapping ice formation on a surface: A conceptual analysis. J. Heat Transf. 2020, 143, 011701. [Google Scholar] [CrossRef]
- Rodrigues, F.F.; Nunes-Pereira, J.; Abdollahzadeh, M.; Pascoa, J.; Lanceros-Mendez, S. Comparative Evaluation of Dielectric Materials for Plasma Actuators Active Flow Control and Heat Transfer Applications. In Proceedings of the Fluids Engineering Division Summer Meeting, Virtual, 10–12 August 2021; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 3. [Google Scholar] [CrossRef]
- Abdollahzadeh, M.; Rodrigues, F.; Nunes-Pereira, J.; Pascoa, J.; Pires, L. Parametric optimization of surface dielectric barrier discharge actuators for ice sensing application. Sens. Actuators A Phys. 2022, 335, 113391. [Google Scholar] [CrossRef]
- Tirumala, R.; Benard, N.; Moreau, E.; Fenot, M.; Lalizel, G.; Dorignac, E. Temperature characterization of dielectric barrier discharge actuators: Influence of electrical and geometric parameters. J. Phys. D Appl. Phys. 2014, 47, 255203. [Google Scholar] [CrossRef]
- Raffel, M. Background-oriented schlieren (BOS) techniques. Exp. Fluids 2015, 56, 60. [Google Scholar] [CrossRef] [Green Version]
- Dalziel, S.B.; Hughes, G.O.; Sutherland, B.R. Whole-field density measurements by ‘synthetic schlieren’. Exp. Fluids 2000, 28, 322–335. [Google Scholar] [CrossRef]
- Raffel, M.; Richard, H.; Meier, G.E.A. On the applicability of background oriented optical tomography for large scale aerodynamic investigations. Exp. Fluids 2000, 28, 477–481. [Google Scholar] [CrossRef]
- Richard, H.; Raffel, M.; Rein, M.; Kompenhans, J.; Meier, G.E.A. Demonstration of the applicability of a Background Oriented Schlieren (BOS) method. In Laser Techniques for Fluid Mechanics; Springer: Berlin/Heidelberg, Germany, 2002; pp. 145–156. [Google Scholar] [CrossRef]
- Richard, H.; Raffel, M. Principle and applications of the background oriented schlieren (BOS) method. Meas. Sci. Technol. 2001, 12, 1576–1585. [Google Scholar] [CrossRef]
- Meier, G. Computerized background-oriented schlieren. Exp. Fluids 2002, 33, 181–187. [Google Scholar] [CrossRef]
- Venkatakrishnan, L. Density Measurements in an Axisymmetric Underexpanded Jet by Background-Oriented Schlieren Technique. AIAA J. 2005, 43, 1574–1579. [Google Scholar] [CrossRef]
- Venkatakrishnan, L.; Meier, G.E.A. Density measurements using the Background Oriented Schlieren technique. Exp. Fluids 2004, 37, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Goldhahn, E.; Seume, J. The background oriented schlieren technique: Sensitivity, accuracy, resolution and application to a three-dimensional density field. Exp. Fluids 2007, 43, 241–249. [Google Scholar] [CrossRef]
- Atcheson, B.; Heidrich, W.; Ihrke, I. An evaluation of optical flow algorithms for background oriented schlieren imaging. Exp. Fluids 2009, 46, 467–476. [Google Scholar] [CrossRef]
- Hargather, M.J.; Settles, G.S. A comparison of three quantitative schlieren techniques. Opt. Lasers Eng. 2012, 50, 8–17. [Google Scholar] [CrossRef]
- Hargather, M.J. Background-oriented schlieren diagnostics for large-scale explosive testing. Shock Waves 2013, 23, 529–536. [Google Scholar] [CrossRef]
- Hayasaka, K.; Tagawa, Y.; Liu, T.; Kameda, M. Optical-flow-based background-oriented schlieren technique for measuring a laser-induced underwater shock wave. Exp. Fluids 2016, 57, 179. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Tagawa, Y.; Kameda, M. Application of background-oriented schlieren (BOS) technique to a laser-induced underwater shock wave. Exp. Fluids 2015, 56, 93. [Google Scholar] [CrossRef]
- Vinnichenko, N.A.; Uvarov, A.V.; Plaksina, Y.Y. Combined study of heat exchange near the liquid–gas interface by means of Background Oriented Schlieren and Infrared Thermal Imaging. Exp. Therm. Fluid Sci. 2014, 59, 238–245. [Google Scholar] [CrossRef]
- Michalski, Q.; Parejo, C.J.B.; Claverie, A.; Sotton, J.; Bellenoue, M. An application of speckle-based background oriented schlieren for optical calorimetry. Exp. Therm. Fluid Sci. 2018, 91, 470–478. [Google Scholar] [CrossRef]
- Rajshekhar, G.; Ambrosini, D. Multi-scale approach for analyzing convective heat transfer flow in background-oriented Schlieren technique. Opt. Lasers Eng. 2018, 110, 415–419. [Google Scholar] [CrossRef] [Green Version]
- Boudreaux, P.; Venkatakrishnan, S.; Iffa, E.; Hun, D. Application of reference-free natural background–oriented schlieren photography for visualizing leakage sites in building walls. Build. Environ. 2022, 223, 109529. [Google Scholar] [CrossRef]
- Su, C.; Bai, J. Measurement of the neutral plane of an internal fire whirl using the background-oriented Schlieren technique for a vertical shaft model of a high-rise building. Measurement 2016, 78, 151–167. [Google Scholar] [CrossRef]
- Grauer, S.J.; Unterberger, A.; Rittler, A.; Daun, K.J.; Kempf, A.M.; Mohri, K. Instantaneous 3D flame imaging by background-oriented schlieren tomography. Combust. Flame 2018, 196, 284–299. [Google Scholar] [CrossRef]
- Vinnichenko, N.A.; Pushtaev, A.V.; Plaksina, Y.Y.; Uvarov, A.V. Measurements of liquid surface relief with moon-glade background oriented Schlieren technique. Exp. Therm. Fluid Sci. 2020, 114, 110051. [Google Scholar] [CrossRef]
- Becher, L.; Voelker, C.; Rodehorst, V.; Kuhne, M. Background-oriented schlieren technique for two-dimensional visualization of convective indoor air flows. Opt. Lasers Eng. 2020, 134, 106282. [Google Scholar] [CrossRef]
- Porta, D.; Echeverría, C.; Stern, C.; Rendón, P.L. Visualization of a shock wave travelling inside a rectangular duct using the background-oriented schlieren method. Wave Motion 2022, 114, 102999. [Google Scholar] [CrossRef]
- Vinnichenko, N.A.; Pushtaev, A.V.; Plaksina, Y.Y.; Uvarov, A.V. Natural convection flows due to evaporation of heavier-than-air fluids: Flow direction and validity of using similarity of temperature and vapor density fields. Exp. Therm. Fluid Sci. 2019, 106, 1–10. [Google Scholar] [CrossRef]
- Hayasaka, K.; Tagawa, Y. Mobile visualization of density fields using smartphone background-oriented schlieren. Exp. Fluids 2019, 60, 171. [Google Scholar] [CrossRef] [Green Version]
- Shimazaki, T.; Ichihara, S.; Tagawa, Y. Background oriented schlieren technique with fast Fourier demodulation for measuring large density-gradient fields of fluids. Exp. Therm. Fluid Sci. 2022, 134, 110598. [Google Scholar] [CrossRef]
- Biganzoli, I.; Capone, C.; Barni, R.; Riccardi, C. Note: Background Oriented Schlieren as a diagnostics for airflow control by plasma actuators. Rev. Sci. Instrum. 2015, 86, 026103. [Google Scholar] [CrossRef]
- Komuro, A.; Ogura, N.; Ito, M.; Nonomura, T.; Asai, K.; Ando, A. Visualization of density variations produced by alternating-current dielectric-barrier-discharge plasma actuators using the background-oriented schlieren method. Plasma Sources Sci. Technol. 2019, 28, 055002. [Google Scholar] [CrossRef]
- Kaneko, Y.; Nishida, H.; Tagawa, Y. Background-oriented schlieren measurement of near-surface density field in surface dielectric-barrier-discharge. Meas. Sci. Technol. 2021, 32, 125402. [Google Scholar] [CrossRef]
- Kaneko, Y.; Emori, K.; Nakano, A.; Oshio, Y.; Shimazaki, T.; Tagawa, Y.; Nishida, H. Study for application of background oriented schlieren method to flow induced by DBD plasma actuator. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; American Institute of Aeronautics and Astronautics: Reston, VA, USA. [Google Scholar] [CrossRef]
- Emori, K.; Kaneko, Y.; Nishida, H. Classification of flow-field patterns in burst-mode actuation of a dielectric-barrier-discharge plasma actuator. Phys. Fluids 2022, 34, 023601. [Google Scholar] [CrossRef]
- Guo, G.-M.; Liu, H. Density and temperature reconstruction of a flame-induced distorted flow field based on background-oriented schlieren (BOS) technique. Chin. Phys. B 2017, 26, 064701. [Google Scholar] [CrossRef]
- Rodrigues, F.F.; Pascoa, J.C.; Trancossi, M. Analysis of Innovative Plasma Actuator Geometries for Boundary Layer Control. In ASME 2016 International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Ashpis, D.; Laun, M.; Griebeler, E. Progress toward accurate measurements of power consumption of DBD plasma actuators. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012. [Google Scholar] [CrossRef]
- Pons, J.; Moreau, E.; Touchard, G. Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: Electrical properties and induced airflow characteristics. J. Phys. D Appl. Phys. 2005, 38, 3635–3642. [Google Scholar] [CrossRef]
- Rodrigues, F.F.; Pascoa, J.C. Implementation of stair-shaped dielectric layers in micro- and macroplasma actuators for increased efficiency and lifetime. J. Fluids Eng. 2020, 142, 104502. [Google Scholar] [CrossRef]
- Nunes-Pereira, J.; Rodrigues, F.F.; Abdollahzadehsangroudi, M.; Páscoa, J.C.; Lanceros-Mendez, S. Improved performance of polyimide Cirlex-based dielectric barrier discharge plasma actuators for flow control. Polym. Adv. Technol. 2021, 33, 1278–1290. [Google Scholar] [CrossRef]
- Rodrigues, F.F.; Pascoa, J.C.; Trancossi, M. Experimental Analysis of Alternative Dielectric Materials for DBD Plasma Actuators. In ASME 2018 International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2018; Volume 1. [Google Scholar] [CrossRef]
Measuring Point (y/L0) | ||||||
---|---|---|---|---|---|---|
Point 1 (0.2) | Point 2 (0.4) | Point 3 (0.6) | Point 4 (0.8) | Point 5 (1) | ||
Candle | Thermocouple measurement (K) | 446.14 | 434.01 | 422.23 | 411.19 | 405.17 |
BOS reconstructed results (K) | 446.96 | 434.17 | 422.13 | 411.58 | 405.36 | |
Torch | Thermocouple measurement (K) | 1234.31 | 1074.85 | 957.87 | 864.27 | 722.46 |
BOS reconstructed results (K) | 1323.45 | 1078.03 | 953.65 | 840.35 | 714.02 |
Thickness and Material | Applied Voltage (kVpp) | Electrical Power (W) | Maximum Velocity (m/s) | Mechanical Power (mW) | Mechanical Efficiency (%) |
---|---|---|---|---|---|
0.3 mm Kapton | 6 | 6.74 | 1.31 | 0.0964 | 0.0014 |
7 | 14.39 | 2.08 | 0.5740 | 0.0040 | |
0.6 mm Kapton | 7 | 5.81 | 1.54 | 0.2306 | 0.0040 |
8 | 8.72 | 3.06 | 1.5939 | 0.0183 | |
9 | 14.55 | 3.18 | 2.4246 | 0.0167 | |
1.02 mm Kapton | 7 | 4.06 | 0.91 | 0.0375 | 0.0009 |
8 | 6.19 | 2.14 | 0.6167 | 0.0100 | |
9 | 9.91 | 2.84 | 2.0523 | 0.0207 | |
10 | 14.27 | 3.40 | 3.3605 | 0.0236 | |
11 | 19.22 | 3.88 | 5.0552 | 0.0263 | |
1 mm PIB | 7 | 3.64 | 0.59 | 0.0146 | 0.0004 |
8 | 5.21 | 2.48 | 1.0212 | 0.0196 | |
9 | 8.34 | 3.44 | 3.0143 | 0.0361 | |
10 | 11.83 | 3.99 | 4.9626 | 0.0419 | |
11 | 13.70 | 4.18 | 6.8024 | 0.0497 | |
1 mm Teflon | 7 | 2.92 | 1.06 | 0.0521 | 0.0018 |
8 | 4.32 | 2.28 | 0.7371 | 0.0171 | |
9 | 6.62 | 3.39 | 3.3425 | 0.0505 | |
10 | 8.25 | 3.83 | 5.7059 | 0.0692 | |
11 | 10.28 | 4.36 | 8.0538 | 0.0783 | |
1 mm PMMA | 7 | 5.33 | 0.88 | 0.0551 | 0.0010 |
8 | 8.55 | 2.27 | 0.9556 | 0.0112 | |
9 | 13.17 | 3.18 | 2.9431 | 0.0223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, M.; Rodrigues, F.; Cândido, S.; Santos, G.; Páscoa, J. Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators. Energies 2023, 16, 540. https://doi.org/10.3390/en16010540
Moreira M, Rodrigues F, Cândido S, Santos G, Páscoa J. Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators. Energies. 2023; 16(1):540. https://doi.org/10.3390/en16010540
Chicago/Turabian StyleMoreira, Miguel, Frederico Rodrigues, Sílvio Cândido, Guilherme Santos, and José Páscoa. 2023. "Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators" Energies 16, no. 1: 540. https://doi.org/10.3390/en16010540
APA StyleMoreira, M., Rodrigues, F., Cândido, S., Santos, G., & Páscoa, J. (2023). Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators. Energies, 16(1), 540. https://doi.org/10.3390/en16010540