A Review on Defect Detection of Electroluminescence-Based Photovoltaic Cell Surface Images Using Computer Vision
Abstract
:1. Introduction
1.1. Brief Introduction to Key CNN Components
1.2. Filters
1.3. Activation Function Sigmoid
1.4. Activation Function Tanh and ReLu
1.5. Activation Function Sigmoid
2. Micro-Cracks
2.1. How Are Micro-Cracks Formed
2.2. Detectecion of Micro-Cracks
3. Electroluminescence (EL) Measurement Approach
Infrared vs. Electroluminescence Imaging
4. Conventional Image Processing
4.1. Spatial Processing
4.2. Homogenous vs. Heterogeneous Compositions
5. Convolutional Network for Photovoltaics
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.-H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- GOV.UK. PM Statement at COP27: 7 November 2022. Available online: https://www.gov.uk/government/speeches/pm-statement-at-cop27-7-november-2022 (accessed on 1 January 2023).
- National Grid ESO. How Do We Generate Electricity Using Solar? Available online: https://www.nationalgrideso.com/electricity-explained/how-do-we-generate-electricity/solar (accessed on 5 January 2023).
- Mohammad Bagher, A. Types of Solar Cells and Application. Am. J. Opt. Photonics 2015, 3, 94. [Google Scholar] [CrossRef]
- Inganäs, O.; Sundström, V. Solar energy for electricity and fuels. Ambio 2015, 45, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Meisen, P. Review and Comparison of Different Solar Energy Technologies; Report of Global 1153 Energy Network Institute (GENI); GENI: San Diego, CA, USA, 2011. [Google Scholar]
- Choubey, P.C.; Oudhia, A.; Dewangan, R. A Review: Solar Cell Current Scenario and Future Trends. Recent Res. Sci. Technol. 2012, 4, 99–101. [Google Scholar]
- McEvoy, A.; Castaner, L.; Markvart, T. Solar Cells: Materials, Manufacture and Operation, 2nd ed.; Elsevier Ltd.: Oxford, UK, 2012; pp. 3–25. [Google Scholar]
- Fahrenbruch, A.L.; Bube, R.H. Fundamentals of Solar Cells; Academic Press Inc.: New York, NY, USA, 1983. [Google Scholar]
- Shaikh, M.R.S. A Review paper on Electricity generation from solar energy. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 1884–1889. [Google Scholar] [CrossRef]
- Sharma, S.; Jain, K.K.; Sharma, A. Solar Cells: In Research and Applications—A Review. Mater. Sci. Appl. 2015, 6, 1145–1155. [Google Scholar] [CrossRef]
- Dhimsih, M.; Mather, P. Development of novel solar cell micro crack detection technique. IEEE Trans. Semicond. Manuf. 2019, 32, 277–285. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, T.; Hill, R. Moving toward Smart Manufacturing with an Autonomous Pallet Racking Inspection System Based on MobileNetV2. J. Manuf. Mater. Process. 2022, 6, 75. [Google Scholar] [CrossRef]
- Hussain, M.; Al-Aqrabi, H.; Munawar, M.; Hill, R.; Alsboui, T. Domain Feature Mapping with YOLOv7 for Automated Edge-Based Pallet Racking Inspections. Sensors 2022, 22, 6927. [Google Scholar] [CrossRef]
- Talu, M.F.; Hanbay, K.; Varjovi, M.H. CNN-based fabric defect detection system on loom fabric inspection. Tekst. Konfeksiyon 2022, 32, 208–219. [Google Scholar] [CrossRef]
- Hussain, M.; Al-Aqrabi, H.; Munawar, M.; Hill, R.; Parkinson, S. Exudate Regeneration for Automated Exudate Detection in Retinal Fundus Images. IEEE Access 2022, 1. [Google Scholar] [CrossRef]
- Ansari, M.A.; Crampton, A.; Parkinson, S. A Layer-Wise Surface Deformation Defect Detection by Convolutional Neural Networks in Laser Powder-Bed Fusion Images. Materials 2022, 15, 7166. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.L.; Kumar, A. Livai: A Novel Resource-Efficient Real-Time Facial Emotion Recognition System Based on a Custom Deep Cnn Model. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Hussain, M.; Al-Aqrabi, H.; Hill, R. Statistical Analysis and Development of an Ensemble-Based Machine Learning Model for Photovoltaic Fault Detection. Energies 2022, 15, 5492. [Google Scholar] [CrossRef]
- Wei, B.; He, H.; Hao, K.; Gao, L.; Tang, X. Visual interaction networks: A novel bio-inspired computational model for image classification. Neural Netw. 2020, 130, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Perez, H.; Tah, J.H.M.; Mosavi, A. Deep Learning for Detecting Building Defects Using Convolutional Neural Networks. Sensors 2019, 19, 3556. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Melinte, D.O.; Vladareanu, L. Facial Expressions Recognition for Human–Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer. Sensors 2020, 20, 2393. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, J.; Zhang, K. R-CNN-Based Satellite Components Detection in Optical Images. Int. J. Aerosp. Eng. 2020, 2020, 8816187. [Google Scholar] [CrossRef]
- Ali, M.H.E.; Taha, I.B.M. Channel state information estimation for 5G wireless communication systems: Recurrent neural networks approach. PeerJ Comput. Sci. 2021, 7, e682. [Google Scholar] [CrossRef]
- Köntges; Kunze, I.; Kajari-Schröder, S.; Breitenmoser, X.; Bjørneklett, B. The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks. Sol. Energy Mater. Sol. Cells 2011, 95, 1131–1137. [Google Scholar] [CrossRef]
- Dhimish, M.; Kettle, J. Impact of Solar Cell Cracks Caused During Potential-Induced Degradation (PID) Tests. IEEE Trans. Electron. Devices 2022, 69, 604–612. [Google Scholar] [CrossRef]
- Rendler, L.C.; Walter, J.; Goldenberg, S.; Beinert, A.J.; Wiese, S.; Eitner, U. Mechanical and electrical properties of wave-shaped wires for low-stress interconnection of solar cells. Sol. Energy Mater. Sol. Cells 2018, 176, 204–211. [Google Scholar] [CrossRef]
- Sastry, O.; Saurabh, S.; Shil, S.; Pant, P.; Kumar, R.; Kumar, A.; Bandopadhyay, B. Performance analysis of field exposed single crystalline silicon modules. Sol. Energy Mater. Sol. Cells 2010, 94, 1463–1468. [Google Scholar] [CrossRef]
- Xie, L.; Deng, X.; Li, C.; Cui, Y.; Cao, Z.; Wang, A.; Wang, S.; Chen, Y.; Wang, Z.; Liu, Y.; et al. Tetrazole modulated perovskite films for efficient solar cells with improved moisture stability. Chem. Eng. J. 2021, 420, 127579. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, I.; Alameh, K. Potential measurement techniques for photovoltaic module failure diagnosis: A review. Renew. Sustain. Energy Rev. 2021, 151, 111532. [Google Scholar] [CrossRef]
- Köntges, M.; Siebert, M.; Morlier, A.; Illing, R.; Bessing, N.; Wegert, F. Impact of transportation on silicon wafer-based photovoltaic modules. Prog. Photovolt. Res. Appl. 2016, 24, 1085–1095. [Google Scholar] [CrossRef]
- Spertino, F.; Ciocia, A.; Di Leo, P.; Tommasini, R.; Berardone, I.; Corrado, M.; Infuso, A.; Paggi, M. A power and energy procedure in operating photovoltaic systems to quantify the losses according to the causes. Sol. Energy 2015, 118, 313–326. [Google Scholar] [CrossRef]
- Potthoff, T.; Bothe, K.; Eitner, U.; Hinken, D.; Köntges, M. Detection of the voltage distribution in photovoltaic modules by electroluminescence imaging. Prog. Photovolt. Res. Appl. 2010, 18, 100–106. [Google Scholar] [CrossRef]
- Video Ccd Camera. Available online: https://www.indiamart.com/proddetail/video-ccd-camera-20258224112.html (accessed on 9 November 2022).
- Fuyuki, T.; Kondo, H.; Yamazaki, T.; Takahashi, Y.; Uraoka, Y. Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Appl. Phys. Lett. 2005, 86, 262108. [Google Scholar] [CrossRef]
- Hoyer, U.; Wagner, M.; Swonke, T.; Bachmann, J.; Auer, R.; Osvet, A.; Brabec, C.J. Electroluminescence imaging of organic photovoltaic modules. Appl. Phys. Lett. 2010, 97, 233303. [Google Scholar] [CrossRef]
- Fuyuki, T.; Kitiyanan, A. Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence. Appl. Phys. A 2008, 96, 189–196. [Google Scholar] [CrossRef]
- Tsanakas, J.A.; Botsaris, P.N. An infrared thermographic approach as a hot-spot detection tool for photovoltaic modules using image histogram and line profile analysis. Int. J. Cond. Monit. 2012, 2, 22–30. [Google Scholar] [CrossRef]
- Tsanakas, J.A.; Botsaris, P.N. Passive and Active Thermographic Assessment as a Tool for Condition-Based Performance Monitoring of Photovoltaic Modules. J. Sol. Energy Eng. 2011, 133, 021012. [Google Scholar] [CrossRef]
- Nie, J.; Luo, T.; Li, H. Automatic hotspots detection based on UAV infrared images for large-scale PV plant. Electron. Lett. 2020, 56, 993–995. [Google Scholar] [CrossRef]
- Ebner, R.; Kubicek, B.; Újvári, G.; Novalin, S.; Rennhofer, M.; Halwachs, M. Optical Characterization of Different Thin Film Module Technologies. Int. J. Photoenergy 2015, 2015, 159458. [Google Scholar] [CrossRef]
- Vageswar, A.; Balasubramaniam, K.; Krishnamurthy, C.V. Wall thinning defect estimation using pulsed IR thermography in transmission mode. Nondestruct. Test. Eval. 2010, 25, 333–340. [Google Scholar] [CrossRef]
- Breitenstein, O.; Bauer, J.; Hinken, D.; Bothe, K. The reliability of thermography- and luminescence-based series resistance and saturation current density imaging. Sol. Energy Mater. Sol. Cells 2015, 137, 50–60. [Google Scholar] [CrossRef]
- Tsai, D.-M.; Wu, S.-C.; Li, W.-C. Defect detection of solar cells in electroluminescence images using Fourier image reconstruction. Sol. Energy Mater. Sol. Cells 2012, 99, 250–262. [Google Scholar] [CrossRef]
- Xie, X. A Review of Recent Advances in Surface Defect Detection using Texture analysis Techniques. ELCVIA Electron. Lett. Comput. Vis. Image Anal. 2008, 7, 1. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef]
- Iivarinen, J.; Heikkinen, K.; Rauhamaa, J.; Vuorimaa, P.; Visa, A. A Defect Detection Scheme for Web Surface Inspection. Int. J. Pattern Recognit. Artif. Intell. 2000, 14, 735–755. [Google Scholar] [CrossRef]
- Ramana, K.V.; Ramamoorthy, B. Statistical methods to compare the texture features of machined surfaces. Pattern Recognit. 1996, 29, 1447–1459. [Google Scholar] [CrossRef]
- Luo, G.; Li, W.; Peng, Y. Overview of Intelligent Online Banking System Based on HERCULES Architecture. IEEE Access 2020, 8, 107685–107699. [Google Scholar] [CrossRef]
- Pan, R.; Gao, W.; Liu, J.; Wang, H. Automatic recognition of woven fabric pattern based on image processing and BP neural network. J. Text. Inst. 2011, 102, 19–30. [Google Scholar] [CrossRef]
- Liu, S.; Jernigan, M.E. Texture analysis and discrimination in additive noise. Comput. Vis. Graph. Image Process. 1990, 49, 52–67. [Google Scholar] [CrossRef]
- Cavan, D.L. Patterned wafer inspection using laser holography and spatial frequency filtering. J. Vac. Sci. Technol. B Microelectron. Nanometer. Struct. 1988, 6, 1934. [Google Scholar] [CrossRef]
- Chan, C.-H.; Pang, G.K.H. Fabric defect detection by Fourier analysis. IEEE Trans. Ind. Appl. 2000, 36, 1267–1276. [Google Scholar] [CrossRef]
- Kumar, A. Computer-Vision-Based Fabric Defect Detection: A Survey. IEEE Trans. Ind. Electron. 2008, 55, 348–363. [Google Scholar] [CrossRef]
- Paschos, G. Fast color texture recognition using chromaticity moments. Pattern Recognit. Lett. 2000, 21, 837–841. [Google Scholar] [CrossRef]
- Kumar, A.; Pang, G.K.H. Defect detection in textured materials using Gabor filters. IEEE Trans. Ind. Appl. 2002, 38, 425–440. [Google Scholar] [CrossRef]
- Bodnarova, A.; Bennamoun, M.; Latham, S. Optimal Gabor filters for textile flaw detection. Pattern Recognit. 2002, 35, 2973–2991. [Google Scholar] [CrossRef]
- Wiltschi, K.; Pinz, A.; Lindeberg, T. An automatic assessment scheme for steel quality inspection. Mach. Vis. Appl. 2000, 12, 113–128. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Chang, T.; Kuo, C.-C.J. Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process. 1993, 2, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Scharcanski, J. Stochastic texture analysis for monitoring stochastic processes in industry. Pattern Recognit. Lett. 2005, 26, 1701–1709. [Google Scholar] [CrossRef]
- Yang, X.; Pang, G.; Yung, N. Robust fabric defect detection and classification using multiple adaptive wavelets. IEE Proc. Vis. Image Signal Process. 2005, 152, 715. [Google Scholar] [CrossRef]
- Joo, Y.-B.; Han, C.-H.; Park, K.-H. Robust Defect Size Measurement Using 3D Modeling for LCD Defect Detection in Automatic Vision Inspection System. IEICE Trans. Electron. 2010, E93-C, 922–928. [Google Scholar] [CrossRef]
- Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Ahmad, A. Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning. Sol. Energy 2020, 198, 175–186. [Google Scholar] [CrossRef]
- Mehta, S.; Azad, A.P.; Chemmengath, S.A.; Raykar, V.C.; Kalyanaraman, S. DeepSolarEye: Power Loss Prediction and Weakly Supervised Soiling Localization via Fully Convolutional Networks for Solar Panels. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018. [Google Scholar] [CrossRef]
- Karimi, A.M.; Fada, J.S.; Hossain, M.A.; Yang, S.; Peshek, T.J.; Braid, J.L.; French, R.H. Automated Pipeline for Photovoltaic Module Electroluminescence Image Processing and Degradation Feature Classification. IEEE J. Photovolt. 2019, 9, 1324–1335. [Google Scholar] [CrossRef]
- Deitsch, S.; Christlein, V.; Berger, S.; Buerhop-Lutz, C.; Maier, A.; Gallwitz, F.; Riess, C. Automatic classification of defective photovoltaic module cells in electroluminescence images. Sol. Energy 2019, 185, 455–468. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhan, K.; Wang, Z.; Shen, W. Deep learning-based automatic detection of multitype defects in photovoltaic modules and application in real production line. Prog. Photovolt. Res. Appl. 2021, 29, 471–484. [Google Scholar] [CrossRef]
- Ahmad, A.; Jin, Y.; Zhu, C.; Javed, I.; Maqsood, A.; Akram, M.W. Photovoltaic cell defect classification using convolutional neural network and support vector machine. IET Renew. Power Gener. 2020, 14, 2693–2702. [Google Scholar] [CrossRef]
- Tang, W.; Yang, Q.; Xiong, K.; Yan, W. Deep learning based automatic defect identification of photovoltaic module using electroluminescence images. Sol. Energy 2020, 201, 453–460. [Google Scholar] [CrossRef]
- Dunderdale, C.; Brettenny, W.; Clohessy, C.; Dyk, E.E. Photovoltaic defect classification through thermal infrared imaging using a machine learning approach. Prog. Photovolt. Res. Appl. 2019, 28, 177–188. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, Y. Advanced Chinese Character Detection for Natural Scene Based on EAST. J. Phys. Conf. Ser. 2020, 1550, 032050. [Google Scholar] [CrossRef]
- Yap, X.Y.; Chia, K.S.; Tee, K.S. A Portable Gas Pressure Control and Data Acquisition System using Regression Models. Int. J. Electr. Eng. Inform. 2021, 13, 242–251. [Google Scholar] [CrossRef]
- Khan, Z.Y.; Niu, Z. CNN with depthwise separable convolutions and combined kernels for rating prediction. Expert Syst. Appl. 2021, 170, 114528. [Google Scholar] [CrossRef]
- Pierdicca, R.; Malinverni, E.S.; Piccinini, F.; Paolanti, M.; Felicetti, A.; Zingaretti, P. Deep convolutional neural network for automatic detection of damaged photovoltaic cells. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 893–900. [Google Scholar] [CrossRef]
- Zhijie, Y.; Lei, W.; Li, L.; Shiming, L.; Shasha, G.; Shuquan, W. Bactran: A Hardware Batch Normalization Implementation for CNN Training Engine. IEEE Embed. Syst. Lett. 2021, 13, 29–32. [Google Scholar] [CrossRef]
- Chen, H.; Hu, Q.; Zhai, B.; Chen, H.; Liu, K. A robust weakly supervised learning of deep Conv-Nets for surface defect inspection. Neural Comput. Appl. 2020, 32, 11229–11244. [Google Scholar] [CrossRef]
- Du, B.; He, Y.; He, Y.; Duan, J.; Zhang, Y. Intelligent Classification of Silicon Photovoltaic Cell Defects Based on Eddy Current Thermography and Convolution Neural Network. IEEE Trans. Ind. Inform. 2020, 10, 6242–6251. [Google Scholar] [CrossRef]
- Demirci, M.Y.; Beşli, N.; Gümüşçü, A. Efficient deep feature extraction and classification for identifying defective photovoltaic module cells in Electroluminescence images. Expert Syst. Appl. 2021, 175, 114810. [Google Scholar] [CrossRef]
- Zhang, N.; Shan, S.; Wei, H.; Zhang, K. Micro-cracks Detection of Polycrystalline Solar Cells with Transfer Learning. J. Phys. Conf. Ser. 2020, 1651, 012118. [Google Scholar] [CrossRef]
- Hussain, M.; Al-Aqrabi, H.; Hill, R. PV-CrackNet Architecture for Filter Induced Augmentation and Micro-Cracks Detection within a Photovoltaic Manufacturing Facility. Energies 2022, 15, 8667. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, T.; Titrenko, S.; Su, P.; Mahmud, M. A Gradient Guided Architecture Coupled with Filter Fused Representations for Micro-Crack Detection in Photovoltaic Cell Surfaces. IEEE Access 2022, 10, 58950–58964. [Google Scholar] [CrossRef]
Reference | Year | Dataset Size | Contribution | Accuracy | Architecture |
---|---|---|---|---|---|
[66] | 2020 | ~800 images | Artificial fault generation and transfer learning for better generalization | 99.23% | Custom CNN |
[67] | 2018 | 45,000 | Input specific feature maps learned via input reinforcement at the different levels of network applying a bidirectional input-aware fusion (BiDIAF) block | ~95% | Custom CNN |
[68] | 2019 | 5400 | Automated data-analysis mechanism developed for pre-processing electroluminescence module images and categorizing images to be utilized for machine learning. | 99% | Custom CNN |
[69] | 2021 | 2624 | Multiple defect detection in EL-based solar cell images. | 88.42% (CNN) | Custom CNN VGG-19 |
[70] | 2020 | 5983 | Detection of flaws in EL-based solar cell pictures. | 90% | Mask-RCNN with a RESNET-101 |
[71] | 2020 | 2624 | EL-based solar cell images with a CNN architecture for fault detection | 91.58% | Custom CNN |
[72] | 2020 | 2250 | Use of GAN network to detect the flaws in EL-based cell pictures compared with VGG16, ResNet50, Inception V3, and MobileNet. | 83% | Custom CNN |
[73] | 2019 | 798 | Detecting and classifying defective photovoltaic modules using thermal infrared images. | 85.8% (VGG 16) 89.5% (MobileNet) | VGG 16 MobileNet |
[77] | 2018 | 3336 | To show the degradation problem and evaluate the proposed method. | 75% | VGG 16 |
[79] | 2020 | Around 24,000 | Combination of random forest with CNN, claiming that they are more useful than complex background filtering. | 93.23% | Custom CNN |
[80] | 2020 | Not mentioned | Intelligent classification method for efficient defect detection. | 100% (GoogleNet) 97.67% (VGG-16) | GoogleNet LeNet VGG-16 |
[81] | 2021 | 2624 | Lightweight CNN proposed to detect defects. | 98% (DarkNet-19) | DarkNet-19 ResNet-50 VGG-16 VGG-19 |
[82] | 2020 | 2000 | Method to identify faults in poly-crystalline solar cells | 77% | ResNet-50 |
[83] | 2022 | 777 | Custom lightweight architecture for automated micro-crack detection in production based on EL images of PV cell surfaces. | 99% | Custom CNN |
[73] | 2019 | 798 | Detecting and classifying defective photovoltaic modules using thermal infrared images. | 85.8% (VGG 16) 89.5% (MobileNet) | VGG 16 MobileNet |
[77] | 2018 | 3336 | To show the degradation problem and evaluate the proposed method. | 75% | VGG 16 |
[79] | 2020 | Around 24,000 | Combination of random forest with CNN, claiming that they are more useful than complex background filtering. | 93.23% | Custom CNN |
[80] | 2020 | Not mentioned | Intelligent classification method for efficient defect detection. | 100% (GoogleNet) 97.67% (VGG-16) | GoogleNet LeNet VGG-16 |
[81] | 2021 | 2624 | Lightweight CNN proposed to detect defects. | 98% (DarkNet-19) | DarkNet-19 ResNet-50 VGG-16 VGG-19 |
[82] | 2020 | 2000 | Method to identify faults in poly-crystalline solar cells | 77% | ResNet-50 |
[83] | 2022 | 777 | Custom lightweight architecture for automated micro-crack detection in production based on EL images of PV cell surfaces. | 99% | Custom CNN |
Ahmad Maroof Karimi et al. | [68] | RF, SVM, Custom CNN |
Sergiu Deitsch et al. | [69] | SVM, VGG-19 |
Christopher Dunderdale et al. | [73] | VGG-16, MobileNet |
Bolun Du et al. | [80] | LeNet, GoogleNet, VGG-16 |
Mustafa Yusuf et al. | [81] | DarkNet-19, ResNet-50, VGG-16, VGG-19 |
Muhammad Hussain et al. | [83] | Custom CNN, ResNet-18, AlexNet, GoogleNet, MobileNetV2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, T.; Hussain, M.; Al-Aqrabi, H.; Alsboui, T.; Hill, R. A Review on Defect Detection of Electroluminescence-Based Photovoltaic Cell Surface Images Using Computer Vision. Energies 2023, 16, 4012. https://doi.org/10.3390/en16104012
Hussain T, Hussain M, Al-Aqrabi H, Alsboui T, Hill R. A Review on Defect Detection of Electroluminescence-Based Photovoltaic Cell Surface Images Using Computer Vision. Energies. 2023; 16(10):4012. https://doi.org/10.3390/en16104012
Chicago/Turabian StyleHussain, Tahir, Muhammad Hussain, Hussain Al-Aqrabi, Tariq Alsboui, and Richard Hill. 2023. "A Review on Defect Detection of Electroluminescence-Based Photovoltaic Cell Surface Images Using Computer Vision" Energies 16, no. 10: 4012. https://doi.org/10.3390/en16104012
APA StyleHussain, T., Hussain, M., Al-Aqrabi, H., Alsboui, T., & Hill, R. (2023). A Review on Defect Detection of Electroluminescence-Based Photovoltaic Cell Surface Images Using Computer Vision. Energies, 16(10), 4012. https://doi.org/10.3390/en16104012