Review of Recent Advances in Transcritical CO2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field
Abstract
:1. Introduction
2. Thermodynamic Characteristics and Cycle Introduction
3. Transcritical CO2 Cycle Improvements
4. Operation Characteristics Analysis and Control Methods
4.1. Optimal-Pressure-Seeking Methods
4.2. Refrigerant Charge Characteristics
4.3. Operation Control in Modified Cycles
5. Application of CO2 Cycle in the Vehicle Field
6. Conclusions and Suggestions for Future Work
- Previous studies about combination modifications in CO2 systems have mainly focused on simulating for commercial refrigeration; more validation experiments and applications in other scenes are needed.
- Different combinations yield improvements in several aspects of system performance; the selection of combinations depends on the comprehensive assessment of operating conditions, major improvement objectives, cost, climate, and control complexity.
- Online methods of optimal pressure seeking require a long time with good performance, while offline methods acquire inaccurate results with a fast speed. A hybrid method combining the online and offline methods may be a feasible solution that provides both good performance and fast speed.
- Although the effect of charge amount on transcritical CO2 system performance has been investigated extensively, more research on refrigerant migration and distribution characteristics is needed. Additionally, refrigerant leakage detection methods for transcritical CO2 systems are imperative due to the exceptionally high pressure.
- The transcritical CO2 cycle can provide enough heat with a high COP in low-temperature environments. However, the cooling performance in high-temperature environments is doubtful, especially with the increasing demand for cooling in electric vehicles. More evaluation and employment of vehicle operating conditions are necessary to find beneficial modification combinations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
HFCs | Hydrofluorocarbons | FGI | Flash gas intercooler |
FGB | Flash gas bypass | ||
HCFCs | Hydrochlorofluorocarbons | IC | Intercooler |
GWP | Global warming potential | RH | Relative humidity |
ODP | Ozone depletion potential | EJE | Ejector |
CFCs | Chlorofluorocarbon | EXP | Expander |
COP | Coefficient of performance | TS | Two stage compression |
IHX | Internal heat exchanger | TS(M/F)I | Two stage compression with (multi/external) intercooler |
GMDH | Group Method of Data Handle | PC | Parallel compression |
PSO-BP | Particle swarm optimization-back propagation | BS | Booster system |
ANN | Artificial neural network | CC | Cascade cycle |
ESC | Extremum seeking control | TES | Thermoelectric subcooling |
MPC | Model predictive control | DMS | Dedicated mechanical subcooling |
NSGA-II | Non-dominated sorting genetic algorithms-II | EC | Evaporative cooling |
TXV | Thermostatic expansion valve | PCR | Parallel compression with recooler |
EXV | Electric expansion valve | SAPCC | Solar absorption partial cascade cycle |
MAC | Mobile air conditioning | VT | Vortex tube |
References
- The Kigali Amendment. The Amendment to the Montreal Protocol Agreed by the Twenty-Eighth Meeting of the Parties (Kigali, 10–15 October 2016) | Ozone Secretariat. 2016. Available online: https://ozone.unep.org/treaties/montreal-protocol/amendments/kigali-amendment-2016-amendment-montreal-protocol-agreed (accessed on 3 September 2021).
- Fang, X.; Ravishankara, A.R.; Velders, G.J.M.; Molina, M.J.; Su, S.; Zhang, J.; Hu, J.; Prinn, R.G. Changes in Emissions of Ozone-Depleting Substances from China Due to Implementation of the Montreal Protocol. Environ. Sci. Technol. 2018, 52, 11359–11366. [Google Scholar] [CrossRef] [PubMed]
- Brodribb, P.; McCann, M. Cold Hard Facts 3. Prepared by Expert Group & Thinkwell Australia Pty Ltd. Canberra for the Australian Government, Department of the Environment and Energy, (DoEE) Energy Innovation and Ozone Protection Branch, International Climate Change and Energy Innovation Division. 2018. Available online: http://www.environment.gov.au/protection/ozone/publications/cold-hard-facts-3 (accessed on 27 April 2023).
- Nekså, P.; Rekstad, H.; Zakeri, G.; Schiefloe, P.A. CO2-heat pump water heater: Characteristics, system design and experimental results. Int. J. Refrig. 1998, 21, 172–179. [Google Scholar]
- Pettersen, J.; Lorentzen, G. A New, Efficient and Environmentally Benign System for Automobile Air Conditioning; SAE Technical Paper 931129; SAE International: Warrendale, PA, USA, 1993. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Z.; Tian, H. A review of transcritical carbon dioxide heat pump and refrigeration cycles. Energy 2013, 55, 156–172. [Google Scholar] [CrossRef]
- Ehsan, M.M.; Guan, Z.; Klimenko, A.Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications. Renew. Sustain. Energy Rev. 2018, 92, 658–675. [Google Scholar] [CrossRef]
- Yu, B.; Yang, J.; Wang, D.; Shi, J.; Chen, J. An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle. Energy 2019, 189, 116147. [Google Scholar] [CrossRef]
- Dilshad, S.; Kalair, A.R.; Khan, N. Review of carbon dioxide (CO2) based heating and cooling technologies: Past, present, and future outlook. Int. J. Energy Res. 2019, 44, 1408–1463. [Google Scholar] [CrossRef]
- Barta, R.B.; Groll, E.A.; Ziviani, D. Review of stationary and transport CO2 refrigeration and air conditioning technologies. Appl. Therm. Eng. 2021, 185, 116422. [Google Scholar] [CrossRef]
- Söylemez, E.; Widell, K.N.; Gabrielii, C.H.; Ladam, Y.; Lund, T.; Hafner, A. Overview of the development and status of carbon dioxide (R-744) refrigeration systems onboard fishing vessels. Int. J. Refrig. 2022, 140, 198–212. [Google Scholar] [CrossRef]
- Gullo, P.; Hafner, A.; Banasiak, K. Transcritical R744 refrigeration systems for supermarket applications: Current status and future perspectives. Int. J. Refrig. 2018, 93, 269–310. [Google Scholar] [CrossRef]
- Bruno, F.; Belusko, M.; Halawa, E. CO2 Refrigeration and Heat Pump Systems—A Comprehensive Review. Energies 2019, 12, 2959. [Google Scholar] [CrossRef]
- Kasaeian, A.; Hosseini, S.M.; Sheikhpour, M.; Mahian, O.; Yan, W.-M.; Wongwises, S. Applications of eco-friendly refrigerants and nanorefrigerants: A review. Renew. Sustain. Energy Rev. 2018, 96, 91–99. [Google Scholar] [CrossRef]
- Qi, Z. Advances on air conditioning and heat pump system in electric vehicles—A review. Renew. Sustain. Energy Rev. 2014, 38, 754–764. [Google Scholar] [CrossRef]
- Groll, E.A.; Kim, J.-H. Review article: Review of recent advances toward transcritical CO2 cycle technology. HVAC&R Res. 2007, 13, 499–520. [Google Scholar]
- Cecchinato, L.; Corradi, M.; Fornasieri, E.; Zamboni, L. Carbon dioxide as refrigerant for tap water heat pumps: A comparison with the traditional solution. Int. J. Refrig. 2005, 28, 1250–1258. [Google Scholar] [CrossRef]
- Oritz, T.M.; Li, D.; Groll, E.A. Evaluation of the Performance Potential of CO2 as a Refrigerant in Air-to-Air Air Conditioners and Heat Pumps: System Modeling and Analysis; Final Report; United States Department of Commerce: Washington, DC, USA, 2003.
- Oh, H.-K.; Son, C.-H. New correlation to predict the heat transfer coefficient in-tube cooling of supercritical CO2 in horizontal macro-tubes. Exp. Therm. Fluid Sci. 2010, 34, 1230–1241. [Google Scholar] [CrossRef]
- Kim, M.H.; Pettersen, J.; Bullard, C.W. Fundamental process and system design issues in CO2 vapor compression systems. Prog. Energy Combust. Sci. 2004, 30, 119–174. [Google Scholar] [CrossRef]
- Sarkar, J.; Agrawal, N. Performance optimization of transcritical CO2 cycle with parallel compression economization. Int. J. Therm. Sci. 2010, 49, 838–843. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, J. The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers. Int. J. Refrig. 2005, 28, 1238–1249. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, X.; Wang, F.; Shen, H. Theoretical and experimental studies on optimum heat rejection pressure for a CO2 heat pump system. Appl. Therm. Eng. 2010, 30, 2537–2544. [Google Scholar] [CrossRef]
- Aprea, C.; Maiorino, A. Heat rejection pressure optimization for a carbon dioxide split system: An experimental study. Appl. Energy 2009, 86, 2373–2380. [Google Scholar] [CrossRef]
- Laipradit, P.; Tiansuwan, J.; Kiatsiriroat, T.; Aye, L. Theoretical performance analysis of heat pump water heaters using carbon dioxide as refrigerant. Int. J. Energy Res. 2008, 32, 356–366. [Google Scholar] [CrossRef]
- Sawalha, S. Carbon Dioxide in Supermarket Refrigeration. Doctoral Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2008. [Google Scholar]
- Liang, X.-Y.; He, Y.-J.; Cheng, J.-H.; Shao, L.-L.; Zhang, C.-L. Difference analysis on optimal high pressure of transcritical CO2 cycle in different applications. Int. J. Refrig. 2019, 106, 384–391. [Google Scholar] [CrossRef]
- Boewe, D.E.; Bullard, C.W.; Yin, J.M.; Hrnjak, P.S. Contribution of Internal Heat Exchanger to Transcritical R-744 Cycle Performance. HVAC&R Res. 2001, 7, 155–168. [Google Scholar]
- Qin, X.; Wang, D.; Jin, Z.; Wang, J.; Zhang, G.; Li, H. A comprehensive investigation on the effect of internal heat exchanger based on a novel evaluation method in the transcritical CO2 heat pump system. Renew. Energy 2021, 178, 574–586. [Google Scholar] [CrossRef]
- Yao, L.; Li, M.; Hu, Y.; Wang, Q.; Liu, X. Comparative study of upgraded CO2 transcritical air source heat pump systems with different heat sinks. Appl. Therm. Eng. 2021, 184, 116289. [Google Scholar] [CrossRef]
- Casi, A.; Aranguren, P.; Araiz, M.; Sanchez, D.; Cabello, R.; Astrain, D. Experimental evaluation of a transcritical CO2 refrigeration facility working with an internal heat exchanger and a thermoelectric subcooler: Performance assessment and comparative. Int. J. Refrig. 2022, 141, 66–75. [Google Scholar] [CrossRef]
- Nebot-Andrés, L.; Del Duca, M.G.; Aprea, C.; Žerovnik, A.; Tušek, J.; Llopis, R.; Maiorino, A. Improving efficiency of transcritical CO2 cycles through a magnetic refrigeration subcooling system. Energy Convers. Manag. 2022, 265, 115766. [Google Scholar] [CrossRef]
- Haida, M.; Banasiak, K.; Smolka, J.; Hafner, A.; Eikevik, T.M. Experimental analysis of the R744 vapour compression rack equipped with the multi-ejector expansion work recovery module. Int. J. Refrig. 2016, 64, 93–107. [Google Scholar] [CrossRef]
- Singh, S.; Dasgupta, M.S. Evaluation of research on CO2 trans-critical work recovery expander using multi attribute decision making methods. Renew. Sustain. Energy Rev. 2016, 59, 119–129. [Google Scholar] [CrossRef]
- Elbel, S.; Hrnjak, P. Flash gas bypass for improving the performance of transcritical R744 systems that use microchannel evaporators. Int. J. Refrig. 2004, 27, 724–735. [Google Scholar] [CrossRef]
- Gullo, P.; Elmegaard, B.; Cortella, G. Advanced exergy analysis of a R744 booster refrigeration system with parallel compression. Energy 2016, 107, 562–571. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Celik, A.; Radermacher, R. Performance of CO2 Cycles with a Two-Stage Compressor. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 12–15 July 2004. [Google Scholar]
- Bellos, E.; Tzivanidis, C. A comparative study of CO2 refrigeration systems. Energy Convers. Manag. X 2019, 1, 100002. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Z.; Zhao, H.; Abdulwahid, A.A. R744 ejector simulation based on homogeneous equilibrium model and its application in trans-critical refrigeration system. Appl. Therm. Eng. 2022, 201, 117791. [Google Scholar] [CrossRef]
- Nebot-Andrés, L.; Calleja-Anta, D.; Sánchez, D.; Cabello, R.; Llopis, R. Experimental assessment of dedicated and integrated mechanical subcooling systems vs parallel compression in transcritical CO2 refrigeration plants. Energy Convers. Manag. 2022, 252, 115051. [Google Scholar] [CrossRef]
- Banasiak, K.; Hafner, A.; Kriezi, E.E.; Madsen, K.B.; Birkelund, M.; Fredslund, K.; Olsson, R. Development and performance mapping of a multi-ejector expansion work recovery pack for R744 vapour compression units. Int. J. Refrig. 2015, 57, 265–276. [Google Scholar] [CrossRef]
- Nakagawa, M.; Marasigan, A.R.; Matsukawa, T. Experimental analysis on the effect of internal heat exchanger in transcritical CO2 refrigeration cycle with two-phase ejector. Int. J. Refrig. 2011, 34, 1577–1586. [Google Scholar] [CrossRef]
- Shariatzadeh, O.J.; Abolhassani, S.S.; Rahmani, M.; Nejad, M.Z. Comparison of transcritical CO2 refrigeration cycle with expander and throttling valve including/excluding internal heat exchanger: Exergy and energy points of view. Appl. Therm. Eng. 2016, 93, 779–787. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, L.; Chen, Y.; Tong, L. Effect of an Internal Heat Exchanger on Performance of the Transcritical Carbon Dioxide Refrigeration Cycle with an Expander. Entropy 2014, 16, 5919–5934. [Google Scholar] [CrossRef]
- Pan, S.; Nie, S.; Li, J.; He, S. Thermodynamic performance study on a novel trans-critical CO2 heat pump cycle integrated with expander and internal heat exchanger. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2022, 236, 2639–2650. [Google Scholar] [CrossRef]
- Patil, O.S.; Shet, S.A.; Jadhao, M.; Agrawal, N. Energetic and exergetic studies of modified CO2 transcritical refrigeration cycles. Int. J. Low-Carbon Technol. 2021, 16, 171–180. [Google Scholar] [CrossRef]
- Singh, S.; Purohit, N.; Dasgupta, M.S. Comparative study of cycle modification strategies for trans-critical CO2 refrigeration cycle for warm climatic conditions. Case Stud. Therm. Eng. 2016, 7, 78–91. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Yu, J. Performance analysis of a modified dual-ejector and dual-evaporator transcritical CO2 refrigeration cycle for supermarket application. Int. J. Refrig. 2021, 131, 109–118. [Google Scholar] [CrossRef]
- Liu, X.; Fu, R.; Wang, Z.; Lin, L.; Sun, Z.; Li, X. Thermodynamic analysis of transcritical CO2 refrigeration cycle integrated with thermoelectric subcooler and ejector. Energy Convers. Manag. 2019, 188, 354–365. [Google Scholar] [CrossRef]
- Manjili, F.E.; Yavari, M.A. Performance of a new two-stage multi-intercooling transcritical CO2 ejector refrigeration cycle. Appl. Therm. Eng. 2012, 40, 202–209. [Google Scholar] [CrossRef]
- De Carvalho, B.Y.K.; Melo, C.; Pereira, R.H. An experimental study on the use of variable capacity two-stage compressors in transcritical carbon dioxide light commercial refrigerating systems. Int. J. Refrig. 2019, 106, 604–615. [Google Scholar] [CrossRef]
- Purohit, N.; Gullo, P.; Dasgupta, M.S. Comparative Assessment of Low-GWP Based Refrigerating Plants Operating in Hot Climates. Energy Procedia 2017, 109, 138–145. [Google Scholar] [CrossRef]
- Gullo, P.; Elmegaard, B.; Cortella, G. Energy and environmental performance assessment of R744 booster supermarket refrigeration systems operating in warm climates. Int. J. Refrig. 2016, 64, 61–79. [Google Scholar] [CrossRef]
- Goodarzi, M.; Gheibi, A.; Motamedian, M. Comparative analysis of an improved two-stage multi-inter-cooling ejector-expansion trans-critical CO2 refrigeration cycle. Appl. Therm. Eng. 2015, 81, 58–65. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, C.; Liang, Y.; Sun, H.; Liu, S.; Dai, B. Theoretical study on a novel CO2 Two-stage compression refrigeration system with parallel compression and solar absorption partial cascade refrigeration system. Energy Convers. Manag. 2020, 204, 112278. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Tian, L.; Huang, C. Thermodynamic analysis of double-compression flash intercooling transcritical CO2 refrigeration cycle. J. Supercrit. Fluids 2016, 109, 100–108. [Google Scholar] [CrossRef]
- Zeng, M.Q.; Zhang, X.L.; Mo, F.Y.; Zhang, X.R. Thermodynamic analysis of the effect of internal heat exchanger on the dual-ejector transcritical CO2 cycle for low-temperature refrigeration. Int. J. Energy Res. 2022, 46, 12702–12721. [Google Scholar] [CrossRef]
- Gullo, P. Impact and quantification of various individual thermodynamic improvements for transcritical R744 supermarket refrigeration systems based on advanced exergy analysis. Energy Convers. Manag. 2021, 229, 113684. [Google Scholar] [CrossRef]
- Singh, S.; Hafner, A.; Maiya, M.; Banasiak, K.; Neksa, P. Multiejector CO2 cooling system with evaporative gascooler for a supermarket application in tropical regions. Appl. Therm. Eng. 2021, 190, 116766. [Google Scholar] [CrossRef]
- Kwan, T.H.; Shen, Y.; Wu, Z.; Yao, Q. Performance analysis of the thermoelectric device as the internal heat exchanger of the trans-critical carbon dioxide cycle. Energy Convers. Manag. 2020, 208, 112585. [Google Scholar] [CrossRef]
- Tsamos, K.M.; Amaris, C.; Mylona, Z.; Tassou, S. Analysis of Typical Booster Configuration, Parallel-Compressor Booster Configuration and R717/R744 Cascade Refrigeration System for Food Retail Applications. Part 2: Energy Performance in Various Climate Conditions. Energy Procedia 2019, 161, 268–274. [Google Scholar] [CrossRef]
- Fu, R.; Wang, J.; Zheng, M.; Yu, K.; Liu, X.; Li, X. Thermodynamic Analysis of Transcritical CO2 Ejector Expansion Refrigeration Cycle with Dedicated Mechanical Subcooling. Entropy 2019, 21, 874. [Google Scholar] [CrossRef]
- Manjili, F.E.; Cheraghi, M. Performance of a new two-stage transcritical CO2 refrigeration cycle with two ejectors. Appl. Therm. Eng. 2019, 156, 402–409. [Google Scholar] [CrossRef]
- Xing, M.; Yu, J.; Liu, X. Thermodynamic analysis on a two-stage transcritical CO2 heat pump cycle with double ejectors. Energy Convers. Manag. 2014, 88, 677–683. [Google Scholar] [CrossRef]
- Inokuty, H. Approximate graphical method of finding compression pressure of CO2 refrigerating machine for maximum coefficient of performance. Trans. Jpn. Soc. Mech. Eng. 1923, 26, 1–12. [Google Scholar]
- Kauf, F. Determination of the optimum high pressure for transcritical CO2-refrigeration cycles. Int. J. Therm. Sci. 1999, 38, 325–330. [Google Scholar] [CrossRef]
- Liao, S.; Zhao, T.; Jakobsen, A. A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles. Appl. Therm. Eng. 2000, 20, 831–841. [Google Scholar] [CrossRef]
- Sawalha, S. Theoretical evaluation of trans-critical CO2 systems in supermarket refrigeration. Part I: Modeling, simulation and optimization of two system solutions. Int. J. Refrig. 2008, 31, 516–524. [Google Scholar] [CrossRef]
- Sarkar, J.; Bhattacharyya, S.; Gopal, M.R. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. Int. J. Refrig. 2004, 27, 830–838. [Google Scholar] [CrossRef]
- Qi, P.-C.; He, Y.-L.; Wang, X.-L.; Meng, X.-Z. Experimental investigation of the optimal heat rejection pressure for a transcritical CO2 heat pump water heater. Appl. Therm. Eng. 2013, 56, 120–125. [Google Scholar] [CrossRef]
- Cabello, R.; Sánchez, D.; Llopis, R.; Torrella, E. Experimental evaluation of the energy efficiency of a CO2 refrigerating plant working in transcritical conditions. Appl. Therm. Eng. 2008, 28, 1596–1604. [Google Scholar] [CrossRef]
- Yin, X.; Cao, F.; Wang, J.; Li, M.; Wang, X. Investigations on optimal discharge pressure in CO2 heat pumps using the GMDH and PSO-BP type neural network—Part A: Theoretical modeling. Int. J. Refrig. 2019, 106, 549–557. [Google Scholar] [CrossRef]
- Song, Y.; Yang, D.; Li, M.; Cao, F. Investigations on optimal discharge pressure in CO2 heat pumps using the GMDH and PSO-BP type neural network—Part B: Experimental study. Int. J. Refrig. 2019, 106, 248–257. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Z.; Zhou, Q.; Qiao, Y.; Cao, F. Model predictive control for the operation of a transcritical CO2 air source heat pump water heater. Appl. Energy 2021, 300, 117339. [Google Scholar] [CrossRef]
- Cecchinato, L.; Corradi, M.; Minetto, S. A critical approach to the determination of optimal heat rejection pressure in transcritical systems. Appl. Therm. Eng. 2010, 30, 1812–1823. [Google Scholar] [CrossRef]
- Shao, L.-L.; Zhang, Z.-Y.; Zhang, C.-L. Constrained optimal high pressure equation of CO2 transcritical cycle. Appl. Therm. Eng. 2018, 128, 173–178. [Google Scholar] [CrossRef]
- Yang, L.; Li, H.; Cai, S.-W.; Shao, L.-L.; Zhang, C.-L. Minimizing COP loss from optimal high pressure correlation for transcritical CO2 cycle. Appl. Therm. Eng. 2015, 89, 656–662. [Google Scholar] [CrossRef]
- Zhang, W.-J.; Zhang, C.-L. A correlation-free on-line optimal control method of heat rejection pressures in CO2 transcritical systems. Int. J. Refrig. 2011, 34, 844–850. [Google Scholar] [CrossRef]
- Penarrocha, I.; Llopis, R.; Tarrega, L.; Sanchez, D.; Cabello, R. A new approach to optimize the energy efficiency of CO2 transcritical refrigeration plants. Appl. Therm. Eng. 2014, 67, 137–146. [Google Scholar] [CrossRef]
- Cecchinato, L.; Corradi, M.; Cosi, G.; Minetto, S.; Rampazzo, M. A real-time algorithm for the determination of R744 systems optimal high pressure. Int. J. Refrig. 2012, 35, 817–826. [Google Scholar] [CrossRef]
- Hu, B.; Li, Y.; Cao, F.; Xing, Z. Extremum seeking control of COP optimization for air-source transcritical CO2 heat pump water heater system. Appl. Energy 2015, 147, 361–372. [Google Scholar] [CrossRef]
- Cui, C.; Zong, S.; Song, Y.; Yin, X.; Cao, F. Experimental investigation of the extreme seeking control on a transcritical CO2 heat pump water heater. Int. J. Refrig. 2022, 133, 111–122. [Google Scholar] [CrossRef]
- Rampazzo, M.; Cervato, A.; Corazzol, C.; Mattiello, L.; Beghi, A.; Cecchinato, L.; Virzi, A. Energy-efficient operation of transcritical and subcritical CO2 inverse cycles via Extremum Seeking Control. J. Process. Control. 2019, 81, 87–97. [Google Scholar] [CrossRef]
- Hu, B.; Li, Y.; Wang, R.; Cao, F.; Xing, Z. Real-time minimization of power consumption for air-source transcritical CO2 heat pump water heater system. Int. J. Refrig. 2018, 85, 395–408. [Google Scholar] [CrossRef]
- Kim, M.S.; Kang, D.H.; Kim, M.S.; Kim, M. Investigation on the optimal control of gas cooler pressure for a CO2 refrigeration system with an internal heat exchanger. Int. J. Refrig. 2017, 77, 48–59. [Google Scholar] [CrossRef]
- Okasha, A.; Müller, N.; Deb, K. Bi-objective optimization of transcritical CO2 heat pump systems. Energy 2022, 247, 123469. [Google Scholar] [CrossRef]
- Ji, H.; Pei, J.; Niu, J.; Ding, C.; Guo, F.; Wang, Y. Hybrid offline and online strategy for optimal high pressure seeking of the transcritical CO2 heat pump system in an electric vehicle. Appl. Therm. Eng. 2023, 228, 120514. [Google Scholar] [CrossRef]
- Jin, Z.; Eikevik, T.M.; Neksa, P.; Hafner, A. A steady and quasi-steady state analysis on the CO2 hybrid ground-coupled heat pumping system. Int. J. Refrig. 2017, 76, 29–41. [Google Scholar] [CrossRef]
- Ge, Y.; Tassou, S. Control optimisation of CO2 cycles for medium temperature retail food refrigeration systems. Int. J. Refrig. 2009, 32, 1376–1388. [Google Scholar] [CrossRef]
- Shao, L.-L.; Zhang, C.-L. Thermodynamic transition from subcritical to transcritical CO2 cycle. Int. J. Refrig. 2016, 64, 123–129. [Google Scholar] [CrossRef]
- Ekren, O.; Sahin, S.; Isler, Y. Comparison of different controllers for variable speed compressor and electronic expansion valve. Int. J. Refrig. 2010, 33, 1161–1168. [Google Scholar] [CrossRef]
- Lawrence, N.; Elbel, S. Experimental investigation on control methods and strategies for off-design operation of the transcritical R744 two-phase ejector cycle. Int. J. Refrig. 2019, 106, 570–582. [Google Scholar] [CrossRef]
- Zhu, J.; Elbel, S. Experimental investigation into the influence of vortex control on transcritical R744 ejector and cycle performance. Appl. Therm. Eng. 2020, 164, 114418. [Google Scholar] [CrossRef]
- Choi, H.; Cho, H.; Choi, J.M. Refrigerant amount detection algorithm for a ground source heat pump unit. Renew. Energy 2012, 42, 111–117. [Google Scholar] [CrossRef]
- Kim, W.; Braun, J.E. Evaluation of the impacts of refrigerant charge on air conditioner and heat pump performance. Int. J. Refrig. 2012, 35, 1805–1814. [Google Scholar] [CrossRef]
- Cho, H.; Ryu, C.; Kim, Y.; Kim, H.Y. Effects of refrigerant charge amount on the performance of a transcritical CO2 heat pump. Int. J. Refrig. 2005, 28, 1266–1273. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A. An experimental study on charge optimization of a trans-critical CO2 cycle. Int. J. Environ. Sci. Technol. 2015, 12, 1097–1106. [Google Scholar]
- Wang, Y.; Ye, Z.; Song, Y.; Yin, X.; Cao, F. Energy, exergy, economic and environmental analysis of refrigerant charge in air source transcritical carbon dioxide heat pump water heater. Energy Convers. Manag. 2020, 223, 113209. [Google Scholar] [CrossRef]
- Hazarika, M.M.; Ramgopal, M.; Bhattacharyya, S. Studies on a transcritical R744 based summer air-conditioning unit: Impact of refrigerant charge on system performance. Int. J. Refrig. 2018, 89, 22–39. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Ren, Z.; Lai, T.; Hou, Y. Influence of Refrigerant Charge Amount and EEV Opening on the Performance of a Transcritical CO2 Heat Pump Water Heater. Energies 2017, 10, 1521. [Google Scholar] [CrossRef]
- Wang, D.; Lu, Y.; Tao, L. Optimal combination of capillary tube geometry and refrigerant charge on a small CO2 water-source heat pump water heater. Int. J. Refrig. 2018, 88, 626–636. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Song, Y.; Yin, X.; Cao, F.; Gullo, P. Experimental Thermodynamic Investigation on the Refrigerant Charge in a Transcritical CO2 Electric Bus Air Conditioning System. Appl. Sci. 2021, 11, 5614. [Google Scholar] [CrossRef]
- Yin, X.; Wang, A.; Fang, J.; Cao, F.; Wang, X. Coupled effect of operation conditions and refrigerant charge on the performance of a transcritical CO2 automotive air conditioning system. Int. J. Refrig. 2021, 123, 72–80. [Google Scholar] [CrossRef]
- He, Y.-J.; Liang, X.-Y.; Cheng, J.-H.; Shao, L.-L.; Zhang, C.-L. Approaching optimum COP by refrigerant charge management in transcritical CO2 heat pump water heater. Int. J. Refrig. 2020, 118, 161–172. [Google Scholar] [CrossRef]
- Li, B.; Peuker, S.; Hrnjak, P.; Alleyne, A.G. Refrigerant mass migration modeling and simulation for air conditioning systems. Appl. Therm. Eng. 2011, 31, 1770–1779. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Z.; Yu, B.; Wang, X.; Shi, J.; Chen, J. Experimental research on charge determination and accumulator behavior in trans-critical CO2 mobile air-conditioning system. Energy 2019, 183, 106–115. [Google Scholar]
- Wang, A.; Yin, X.; Fang, J.; Cao, F. Refrigerant distributions and dynamic migration characteristics of the transcritical CO2 air conditioning system. Int. J. Refrig. 2021, 130, 233–241. [Google Scholar] [CrossRef]
- Tassou, S.A.; Grace, I.N. Fault diagnosis and refrigerant leak detection in vapor compression refrigeration systems. Int. J. Refrig. 2005, 28, 680–688. [Google Scholar] [CrossRef]
- Uren, K.R.; Schoor, G.; Eldik, M.; Bruin, J.J.A. An Energy Graph-Based Approach to Fault Diagnosis of a Transcritical CO2 Heat Pump. Energies 2020, 13, 1783. [Google Scholar] [CrossRef]
- Liu, F.; Li, Y.; Groll, E.A. Performance enhancement of CO2 air conditioner with a controllable ejector. Int. J. Refrig. 2012, 35, 1604–1616. [Google Scholar]
- Liu, F.; Groll, E.A.; Li, D. Investigation on performance of variable geometry ejectors for CO2 refrigeration cycles. Energy 2012, 45, 829–839. [Google Scholar] [CrossRef]
- Boccardi, G.; Botticella, F.; Lillo, G.; Mastrullo, R.; Mauro, A.; Trinchieri, R. Experimental investigation on the performance of a transcritical CO2 heat pump with multi-ejector expansion system. Int. J. Refrig. 2017, 82, 389–400. [Google Scholar] [CrossRef]
- Cecchinato, L.; Chiarello, M.; Corradi, M.; Fornasieri, E.; Minetto, S.; Stringari, P.; Zilio, C. Thermodynamic analysis of different two-stage transcritical carbon dioxide cycles. Int. J. Refrig. 2009, 32, 1058–1067. [Google Scholar] [CrossRef]
- Nebot-Andrés, L.; Calleja-Anta, D.; Sánchez, D.; Cabello, R.; Llopis, R. Thermodynamic Analysis of a CO2 Refrigeration Cycle with Integrated Mechanical Subcooling. Energies 2020, 13, 4. [Google Scholar] [CrossRef]
- Song, Y.; Cui, C.; Li, M.; Cao, F. Investigation on the effects of the optimal medium-temperature on the system performance in a transcritical CO2 system with a dedicated transcritical CO2 subcooler. Appl. Therm. Eng. 2020, 168, 114846. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.; Cao, F. Investigation of the Impact Factors on the Optimal Intermediate Temperature in a Dual Transcritical CO2 System with a Dedicated Transcritical CO2 Subcooler. Energies 2020, 13, 309. [Google Scholar] [CrossRef]
- Kim, S.C.; Won, J.P.; Kim, M.S. Effects of operating parameters on the performance of a CO2 air conditioning system for vehicles. Appl. Therm. Eng. 2009, 29, 2408–2416. [Google Scholar] [CrossRef]
- Alkan, A.; Hosoz, M. Comparative performance of an automotive air conditioning system using fixed and variable capacity compressors. Int. J. Refrig. 2010, 33, 487–495. [Google Scholar] [CrossRef]
- Lee, H.-S.; Lee, M.-Y. Cooling Performance Characteristics on Mobile Air-Conditioning System for Hybrid Electric Vehicles. Adv. Mech. Eng. 2013, 5, 282313. [Google Scholar] [CrossRef]
- Mathur, G.D. Carbon dioxide as an alternative refrigerant for automotive air conditioning systems. In Proceedings of the 35th Intersociety Energy Conversion Engineering Conference & Exhibit (IECEC), Las Vegas, NV, USA, 24–28 July 2000; Volume 1, pp. 371–379. [Google Scholar]
- Liu, H.; Chen, J.; Chen, Z. Experimental investigation of a CO2 automotive air conditioner. Int. J. Refrig. 2005, 28, 1293–1301. [Google Scholar] [CrossRef]
- Niu, Y.; Chen, J.; Chen, Z.; Chen, H. Construction and testing of a wet-compression absorption carbon dioxide refrigeration system for vehicle air conditioner. Appl. Therm. Eng. 2007, 27, 31–36. [Google Scholar]
- Kondo, T.; Katayama, A.; Suetake, H.; Morishita, M. Development of automotive air-conditioning systems byheat pump technology. Mitsubishi Heavy Ind. Tech. Rev. 2011, 48, 27–32. [Google Scholar]
- Hosoz, M.; Direk, M. Performance evaluation of an integrated automotive air conditioning and heat pump system. Energy Convers. Manag. 2006, 47, 545–559. [Google Scholar] [CrossRef]
- Tamura, T.; Yakumaru, Y.; Nishiwaki, F. Experimental study on automotive cooling and heating air conditioning system using CO2 as a refrigerant. Int. J. Refrig. 2005, 28, 1302–1307. [Google Scholar] [CrossRef]
- Dong, J.; Wang, Y.; Jia, S.; Zhang, X.; Huang, L. Experimental study of R744 heat pump system for electric vehicle application. Appl. Therm. Eng. 2021, 183, 116191. [Google Scholar]
- Wang, Y.; Dong, J.; Jia, S.; Huang, L. Experimental comparison of R744 and R134a heat pump systems for electric vehicle application. Int. J. Refrig. 2020, 121, 10–22. [Google Scholar] [CrossRef]
- Ko, J.; Thu, K.; Miyazaki, T. Transient analysis of an electric vehicle air-conditioning system using CO2 for start-up and cabin pull-down operations. Appl. Therm. Eng. 2021, 190, 116825. [Google Scholar] [CrossRef]
- Wang, D.; Yu, B.; Li, W.; Shi, J.; Chen, J. Heating performance evaluation of a CO2 heat pump system for an electrical vehicle at cold ambient temperatures. Appl. Therm. Eng. 2018, 142, 656–664. [Google Scholar] [CrossRef]
- Zheng, S.; Wei, M.; Hu, C.; Song, P.; Tian, R. Flow characteristics of tangential leakage in a scroll compressor for automobile heat pump with CO2. Sci. China Technol. Sci. 2021, 64, 971–983. [Google Scholar] [CrossRef]
- Zheng, S.; Wei, M.; Song, P.; Hu, C.; Tian, R. Thermodynamics and flow unsteadiness analysis of trans-critical CO2 in a scroll compressor for mobile heat pump air-conditioning system. Appl. Therm. Eng. 2020, 175, 115368. [Google Scholar] [CrossRef]
- Li, J.; Jia, J.; Huang, L.; Wang, S. Experimental and numerical study of an integrated fin and micro-channel gas cooler for a CO2 automotive air-conditioning. Appl. Therm. Eng. 2017, 116, 636–647. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Yu, B.; Shi, J.; Chen, J. Numerical study on heat transfer performance of micro-channel gas coolers for automobile CO2 heat pump systems. Int. J. Refrig. 2019, 106, 639–649. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Yu, B.; Shi, J.; Chen, J. Experimental and numerical investigation of a CO2 heat pump system for electrical vehicle with series gas cooler configuration. Int. J. Refrig. 2019, 100, 156–166. [Google Scholar] [CrossRef]
- Mahvi, A.J.; Boyina, K.; Musser, A.; Elbel, S.; Miljkovic, N. Superhydrophobic heat exchangers delay frost formation and enhance efficency of electric vehicle heat pumps. Int. J. Heat Mass Transf. 2021, 172, 121162. [Google Scholar] [CrossRef]
- Wang, A.; Yin, X.; Fang, J.; Jia, F.; Song, Y.; Cao, F. A novel frost-free control strategy and its energy evaluation of the CO2 heat pump system. Appl. Therm. Eng. 2022, 201, 117745A. [Google Scholar] [CrossRef]
- Steiner, A.; Rieberer, R. Parametric analysis of the defrosting process of a reversible heat pump system for electric vehicles. Appl. Therm. Eng. 2013, 61, 393–400. [Google Scholar] [CrossRef]
- Steiner, A.; Rieberer, R. Simulation based identification of the ideal defrost start time for a heat pump system for electric vehicles. Int. J. Refrig. 2015, 57, 87–93. [Google Scholar] [CrossRef]
- Fang, J.; Yin, X.; Wang, A.; Sun, X.; Liu, Y.; Cao, F. Cooling performance enhancement for the automobile transcritical CO2 air conditioning system with various internal heat exchanger effectiveness. Appl. Therm. Eng. 2021, 196, 117274. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Song, X.; Chen, J. Experimental Study of a Trans-Critical CO2 Mobile Air Conditioning System with an Ejector. J. Shanghai Jiaotong Univ. 2021, 55, 179–187. [Google Scholar]
- Zou, H.; Yang, T.; Tang, M.; Tian, C.; Butrymowicz, D. Ejector optimization and performance analysis of electric vehicle CO2 heat pump with dual ejectors. Energy 2022, 239, 122452. [Google Scholar] [CrossRef]
- Chen, Y.; Zou, H.; Dong, J.; Wu, J.; Xu, H.; Tian, C. Experimental investigation on the heating performance of a CO2 heat pump system with intermediate cooling for electric vehicles. Appl. Therm. Eng. 2021, 182, 116039. [Google Scholar] [CrossRef]
- Chen, Y.; Zou, H.; Dong, J.; Xu, H.; Tian, C.; Butrymowicz, D. Experimental investigation on refrigeration performance of a CO2 system with intermediate cooling for automobiles. Appl. Therm. Eng. 2020, 174, 115267. [Google Scholar] [CrossRef]
- Peng, X.; Wang, D.; Wang, G.; Yang, Y.; Xiang, S. Numerical investigation on the heating performance of a transcritical CO2 vapor-injection heat pump system. Appl. Therm. Eng. 2020, 166, 114656. [Google Scholar] [CrossRef]
- Yu, B.; Wang, D.; Liu, C.; Jiang, F.; Shi, J.; Chen, J. Performance improvements evaluation of an automobile air conditioning system using CO2-propane mixture as a refrigerant. Int. J. Refrig. 2018, 88, 172–181. [Google Scholar] [CrossRef]
- Yu, B.; Yang, J.; Wang, D.; Shi, J.; Guo, Z.; Chen, J. Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems. Appl. Energy 2019, 239, 1142–1153. [Google Scholar] [CrossRef]
- Yu, B.; Yang, J.; Wang, D.; Shi, J.; Chen, J. Modeling and theoretical analysis of a CO2-propane autocascade heat pump for electrical vehicle heating. Int. J. Refrig. 2018, 95, 146–155. [Google Scholar] [CrossRef]
- Lee, H.-S.; Won, J.-P.; Cho, C.-W.; Kim, Y.-C.; Lee, M.-Y. Heating performance characteristics of stack coolant source heat pump using R744 for fuel cell electric vehicles. J. Mech. Sci. Technol. 2012, 26, 2065–2071. [Google Scholar] [CrossRef]
- Kim, S.C.; Park, J.C.; Kim, M.S. Performance characteristics of a supplementary stack-cooling system for fuel-cell vehicles using a carbon dioxide air-conditioning unit. Int. J. Automot. Technol. 2010, 11, 893–900. [Google Scholar] [CrossRef]
- Kim, S.C.; Won, J.P.; Park, Y.S.; Lim, T.W.; Kim, M.S. Performance evaluation of a stack cooling system using CO2 air conditioner in fuel cell vehicles. Int. J. Refrig. 2009, 32, 70–77. [Google Scholar] [CrossRef]
- Kim, S.C.; Kim, M.S.; Hwang, I.C.; Lim, T.W. Performance evaluation of a CO2 heat pump system for fuel cell vehicles considering the heat exchanger arrangements. Int. J. Refrig. 2007, 30, 1195–1206. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.; Ma, Y.; Yin, X.; Cao, F. Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems. Appl. Energy 2022, 305, 117830. [Google Scholar] [CrossRef]
- Shi, L.; Tian, H.; Shu, G. Multi-mode analysis of a CO2-based combined refrigeration and power cycle for engine waste heat recovery. Appl. Energy 2020, 264, 114670. [Google Scholar] [CrossRef]
- Fabris, F.; Artuso, P.; Marinetti, S.; Minetto, S.; Rossetti, A. Dynamic modelling of a CO2 transport refrigeration unit with multiple configurations. Appl. Therm. Eng. 2021, 189, 116749. [Google Scholar] [CrossRef]
Combination Modifications | References | Major Findings | Type of Study
and Applications |
---|---|---|---|
TS + FGB | [21] |
| Simulation Refrigeration |
IHX + EJE | [42] |
| Experimental Refrigeration |
EXP + IHX | [43,44,45,46] |
| Simulation Refrigeration/Heat pump [45] |
TS + FGB EXP + IHX | [47] |
| Simulation Refrigeration |
Dual EJE + IHX | [48] |
| Simulation Refrigeration |
EJE + TES | [49] |
| Simulation Refrigeration |
TSMI + EJE | [50] |
| Simulation Refrigeration |
TSI + IHX + FGB | [51] |
| Experimental Refrigeration |
BS + PC + DMS | [52,53] |
| Simulation Refrigeration |
TSMI + EJE + IHX | [54] |
| Simulation Refrigeration |
TS + PC + SAPCC | [55] |
| Simulation Refrigeration |
TSFI + EXP | [56] |
| Simulation Refrigeration |
Dual EXP + IHX + TS | [57] |
| Simulation Refrigeration |
PC +EJE + BS | [58] |
| Simulation Refrigeration |
PC + BS + multi EJE + IHX + EC | [59] |
| Experimental Refrigeration |
TES + IHX | [60] |
| Simulation Refrigeration |
FGB + CC + BS | [61] |
| Simulation Refrigeration |
EJE + DMS | [62] |
| simulation |
TS + two EJE | [63] |
| Simulation Refrigeration |
TS + IHX + two EJE | [64] |
| Simulation Refrigeration |
Offline Methods | Online Methods | Hybrid Methods | |
---|---|---|---|
Methods | Graphical method Correlations ANN | Steepest descend method Perturb and observe PSO ESC MPC | Offline target value and online optimize |
Speed | Fast | Slow | Fast |
Accuracy | Low | High | High |
Development |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; Pei, J.; Cai, J.; Ding, C.; Guo, F.; Wang, Y. Review of Recent Advances in Transcritical CO2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field. Energies 2023, 16, 4011. https://doi.org/10.3390/en16104011
Ji H, Pei J, Cai J, Ding C, Guo F, Wang Y. Review of Recent Advances in Transcritical CO2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field. Energies. 2023; 16(10):4011. https://doi.org/10.3390/en16104011
Chicago/Turabian StyleJi, Hongzeng, Jinchen Pei, Jingyang Cai, Chen Ding, Fen Guo, and Yichun Wang. 2023. "Review of Recent Advances in Transcritical CO2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field" Energies 16, no. 10: 4011. https://doi.org/10.3390/en16104011
APA StyleJi, H., Pei, J., Cai, J., Ding, C., Guo, F., & Wang, Y. (2023). Review of Recent Advances in Transcritical CO2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field. Energies, 16(10), 4011. https://doi.org/10.3390/en16104011