CCUS Strategies as Most Viable Option for Global Warming Mitigation
Conflicts of Interest
References
- McLaughlin, H.; Littlefield, A.A.; Manefee, M.; Kinzer, A.; Hull, T.; Sovacool, B.K.; Bazilian, D.K.; Kim, J.; Griffiths, S. Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world. Renew. Sust. Energy Rev. 2023, 177, 113215. [Google Scholar] [CrossRef]
- IEA. Nordic Energy Technology Perspectives. 2013. Available online: https://www.iea.org/reports/nordic-energy-technology-perspectives (accessed on 28 April 2023).
- Sovacool, B.K. Contestation, contingency, and justice in the Nordic low-carbon energy transition. Energy Pol. 2017, 102, 569–582. [Google Scholar] [CrossRef]
- Hunt, A.J.; Sin, H.H.K.; Marriott, R.; Clark, J.H. Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem 2010, 3, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Regufe, M.J.; Pereira, A.; Ferreira, A.F.P.; Ribeiro, A.M.; Rodrigues, A.E. Current developments of carbon capture storage and/or utilization-looking for net-zero emissions defined in the Paris agreement. Energies 2021, 14, 2406. [Google Scholar] [CrossRef]
- Paltsev, S.; Morris, J.; Kheshgi, H.; Herzog, H. Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation. Appl. Energy 2021, 300, 117322. [Google Scholar] [CrossRef]
- Chao, C.; Deng, Y.; Dewil, R.; Baeyens, J.; Fan, X. Post-combustion carbon capture. Renew. Sustain. Energy Rev. 2021, 138, 110490. [Google Scholar] [CrossRef]
- Podder, J.; Patra, B.R.; Pattnaik, F.; Nanda, S.; Dalai, A.K. A review of carbon capture and valorization technologies. Energies 2023, 16, 2589. [Google Scholar] [CrossRef]
- Ter Mors, E.; van Leeuwen, E.; Boomsma, C.; Meier, R. Media coverage of carbon capture and storage: An analysis of established and emerging themes in Dutch national newspapers. Energies 2023, 16, 2056. [Google Scholar] [CrossRef]
- Bortuzzo, V.; Bertagna, S.; Bucci, V. Mitigation of CO2 emissions from commercial ships: Evaluation of the technology readiness level of carbon capture systems. Energies 2023, 16, 3646. [Google Scholar] [CrossRef]
- Atkinson, A.; Hughes, R.; Macchi, A. Application of the calcium looping process for thermochemical storage of variable energy. Energies 2023, 16, 3299. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, Y.B.; Ahn, S.H.; Lee, J.S.; Jang, C.H.; Yoon, H.; Chun, W.; Kim, G.H. A New Approach for Fabricating Collagen/ECM-Based Bioinks Using Preosteoblasts and Human Adipose Stem Cells. Adv. Health Mater. 2015, 24, 1359–1368. [Google Scholar] [CrossRef]
- Morelli, G.; Pescara, T.; Greco, A.; Montanucci, P.; Basta, G.; Rossi, F.; Calafiore, R.; Gambelli, A.M. Utilization of a commercial 3D printer for the construction of a bio-hybrid device based on bioink and adult human mesenchymal cells. Energies 2023, 16, 374. [Google Scholar] [CrossRef]
- Rossi, F.; Cardinali, M.; Gambelli, A.M.; Filipponi, M.; Castellani, B.; Nicolini, A. Outdoor thermal comfort improvements due to innovative solar awning solutions: An experimental campaign. Energy Build. 2020, 225, 110341. [Google Scholar] [CrossRef]
- Castellani, B.; Nicolini, A.; Gambelli, A.M.; Filipponi, M.; Morini, E.; Rossi, F. Experimental assessment of the combined effect of retroreflective facades and pavement in urban canyons. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 609, p. 072004. [Google Scholar]
- Rossi, F.; Filipponi, M.; Castellani, B.; Bonafoni, S.; Ghenai, C. A novel measurement-based method for assessing global warming mitigation via high-albedo solutions. Energies 2022, 15, 5695. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Gambelli, A.M.; Zhao, X.; Gao, Y.; Rossi, F.; Mei, S. In situ experimental study on the effect of mixed inhibitors on the phase equilibrium of carbon dioxide hydrate. Chem. Eng. Sci. 2022, 248, 117230. [Google Scholar] [CrossRef]
- Li, Y.; Gambelli, A.M.; Chen, J.; Yin, Z.; Rossi, F.; Tronconi, E.; Mei, S. Experimental study on the competition between carbon dioxide hydrate and ice below the freezing point. Chem. Eng. Sci. 2023, 268, 118426. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Stornelli, G.; Di Schino, A.; Rossi, F. Methane and carbon dioxide hydrates properties in presence of Inconel 718 particles: Analyses on its potential application in gas separation processes to perform efficiency improvement. J. Env. Chem. Eng. 2021, 9, 106571. [Google Scholar] [CrossRef]
- Wang, S.; Shi, C.; Liu, H.; Zhang, L.; Zhao, J.; Song, Y.; Ling, Z. Methionine aqueous solution loaded vermiculite/MXene aerogels for efficient CO2 storage via gas hydrate. Fuel 2023, 334, 126833. [Google Scholar] [CrossRef]
- Li, Y.; Gambelli, A.M.; Rossi, F. Experimental study on the effect of SDS and micron copper particles mixture on carbon dioxide hydrates formation. Energies 2022, 15, 6540. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambelli, A.M. CCUS Strategies as Most Viable Option for Global Warming Mitigation. Energies 2023, 16, 4077. https://doi.org/10.3390/en16104077
Gambelli AM. CCUS Strategies as Most Viable Option for Global Warming Mitigation. Energies. 2023; 16(10):4077. https://doi.org/10.3390/en16104077
Chicago/Turabian StyleGambelli, Alberto Maria. 2023. "CCUS Strategies as Most Viable Option for Global Warming Mitigation" Energies 16, no. 10: 4077. https://doi.org/10.3390/en16104077
APA StyleGambelli, A. M. (2023). CCUS Strategies as Most Viable Option for Global Warming Mitigation. Energies, 16(10), 4077. https://doi.org/10.3390/en16104077