Bi-Functional Non-Superconducting Saturated-Core Inductor for Single-Stage Grid-Tied PV Systems: Filter and Fault Current Limiter
Abstract
:1. Introduction
- Its FCL functionality is quite effective, especially in single-stage grid-tied inverters, since it is a hardware/equipment-based solution rather than a software-based one. Thus, it does not add to the control complexity of the system’s single inverter.
- Consequently, it supports the penetration of single-staged PV systems in the utility grid, which feature less size, cost, and losses compared to two-staged ones.
- It replaces the already existing AC line smoothing inductor, thus avoiding the use of dedicated FCL equipment for short-circuit current limitation.
- Compared to existing FCLs, the non-superconducting saturated-core topology gives the best compromise regarding low cost, size, control complexity, high reliability, and harmonic filtering capability under normal conditions.
- Due to its bi-functionality, it has a number of positive impacts on the grid, as follows:
- Minimal grid current THD at grid normality as it acts as a current smoothing filter.
- Limited grid fault currents to 1.4 times their nominal value, thus preventing inverter breakdown, enhancing its control robustness, and protecting utility equipment from overheating and possible failure.
- Reduced unnecessary tripping of utility protective devices, thus supporting service continuity, reducing losses, and enhancing the entire system’s efficiency and reliability.
2. System under Investigation
2.1. System Design
2.1.1. Decoupling Capacitor Selection
2.1.2. Full Bridge Voltage Source Inverter (VSI)
2.1.3. Filtering Reactor
2.2. System Control
2.2.1. MPPT
2.2.2. Inner Grid Current Control Loop
2.2.3. Outer DC-Link Voltage Control Loop
3. Operation and Design of the Proposed SCI
3.1. Proposed SCI Operation
3.2. Proposed SCI Design
3.2.1. Core Design
3.2.2. Main and Control Winding Design
3.2.3. Main and Control Winding Resistance Determination
3.2.4. Winding and Core Loss Calculation
4. Simulation Results Analysis
5. Experimental Implementation
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burke, M.J.; Stephens, J.C. Political Power and Renewable Energy Futures: A Critical Review. Energy Res. Soc. Sci. 2018, 35, 78–93. [Google Scholar] [CrossRef]
- GSR2022_Full_Report. REN21. 2022. pp. 28–29. Available online: https://www.ren21.net/gsr-2022/ (accessed on 10 April 2023).
- Memar, M.-R.; Moazzami, M.; Shahinzadeh, H.; Fadaei, D. Techno-Economic and Environmental Analysis of a Grid-Connected Photovoltaic Energy System. In Proceedings of the 2017 Conference on Electrical Power Distribution Networks Conference (EPDC), Semnan, Iran, 19–20 April 2017; pp. 124–130. [Google Scholar]
- Nwaigwe, K.N.; Mutabilwa, P.; Dintwa, E. An Overview of Solar Power (PV Systems) Integration into Electricity Grids. Mater. Sci. Energy Technol. 2019, 2, 629–633. [Google Scholar] [CrossRef]
- Landera, Y.G.; Zevallos, O.C.; Neto, R.C.; Castro, J.F.d.C.; Neves, F.A.S. A Review of Grid Connection Requirements for Photovoltaic Power Plants. Energies 2023, 16, 2093. [Google Scholar] [CrossRef]
- Bollipo, R.B.; Mikkili, S.; Bonthagorla, P.K. Critical Review on PV MPPT Techniques: Classical, Intelligent and Optimisation. IET Renew. Power Gener. 2020, 14, 1433–1452. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; Liu, H.; Yang, Z.; Yuan, X. A Comprehensive Review on Grid Connected Photovoltaic Inverters, Their Modulation Techniques, and Control Strategies. Energies 2020, 13, 4185. [Google Scholar] [CrossRef]
- Jagadeesan, G.M.; Pitchaimuthu, R.; Sridharan, M. A Two-Stage Single-Phase Grid-Connected Solar-PV System with Simplified Power Regulation. Chin. J. Electr. Eng. 2022, 8, 81–92. [Google Scholar] [CrossRef]
- Ankit; Sahoo, S.K.; Sukchai, S.; Yanine, F.F. Review and Comparative Study of Single-Stage Inverters for a PV System. Renew. Sustain. Energy Rev. 2018, 91, 962–986. [Google Scholar] [CrossRef]
- Reddy, K.R.; Reddy, V.N.; Kumar, M.V.; Tummala, S.K. Configurations and Control Strategy of a Single Stage Grid Connected PV System. E3S Web Conf. 2020, 184, 01074. [Google Scholar] [CrossRef]
- Hu, H.; Harb, S.; Kutkut, N.; Batarseh, I.; Shen, Z.J. A Review of Power Decoupling Techniques for Microinverters With Three Different Decoupling Capacitor Locations in PV Systems. IEEE Trans. Power Electron. 2013, 28, 2711–2726. [Google Scholar] [CrossRef]
- Mastromauro, R.A.; Liserre, M.; Dell’Aquila, A. Control Issues in Single-Stage Photovoltaic Systems: MPPT, Current and Voltage Control. IEEE Trans. Ind. Inf. 2012, 8, 241–254. [Google Scholar] [CrossRef]
- Arafa, O.M.; Mansour, A.A.; Sakkoury, K.S.; Atia, Y.A.; Salem, M.M. Realization of Single-Phase Single-Stage Grid-Connected PV System. J. Electr. Syst. Inf. Technol. 2017, 4, 1–9. [Google Scholar] [CrossRef]
- Kou, G.; Chen, L.; Vansant, P.; Velez-Cedeno, F.; Liu, Y. Fault Characteristics of Distributed Solar Generation. IEEE Trans. Power Deliv. 2020, 35, 1062–1064. [Google Scholar] [CrossRef]
- Buzo, R.F.; Barradas, H.M.; Leão, F.B. Fault Current of PV Inverters Under Grid-Connected Operation: A Review. J. Control. Autom. Electr. Syst. 2021, 32, 1053–1062. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Pou, J.; Agelidis, V.G. Single- and Two-Stage Inverter-Based Grid-Connected Photovoltaic Power Plants with Ride-Through Capability Under Grid Faults. IEEE Trans. Sustain. Energy 2015, 6, 1150–1159. [Google Scholar] [CrossRef]
- Nasiri, M.; Arzani, A.; McCormack, S.J. A Simple and Effective Grid-Supporting Low Voltage Ride-through Scheme for Single-Stage Photovoltaic Power Plants. Sol. Energy 2022, 232, 248–262. [Google Scholar] [CrossRef]
- Barzegar-Bafrooei, M.R.; Foroud, A.A.; Ashkezari, J.D.; Niasati, M. On the Advance of SFCL: A Comprehensive Review. IET Gener. Transm. Distrib. 2019, 13, 3745–3759. [Google Scholar] [CrossRef]
- Joshi, J.; Swami, A.K.; Jately, V.; Azzopardi, B. A Comprehensive Review of Control Strategies to Overcome Challenges During LVRT in PV Systems. IEEE Access. 2021, 9, 121804–121834. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Zakzouk, N.E. A PMSG Wind Energy System Featuring Low-Voltage Ride-through via Mode-Shift Control. Appl. Sci. 2022, 12, 964. [Google Scholar] [CrossRef]
- Safaei, A.; Zolfaghari, M.; Gilvanejad, M.; Gharehpetian, G.B. A Survey on Fault Current Limiters: Development and Technical Aspects. Int. J. Electr. Power Energy Syst. 2020, 118, 105729. [Google Scholar] [CrossRef]
- El-Ela, A.A.A.; El-Sehiemy, R.A.; Shaheen, A.M.; Ellien, A.R. Review on Active Distribution Networks with Fault Current Limiters and Renewable Energy Resources. Energies 2022, 15, 7648. [Google Scholar] [CrossRef]
- Gonçalves Sotelo, G.; Santos, G.d.; Sass, F.; França, B.W.; Nogueira Dias, D.H.; Zamboti Fortes, M.; Polasek, A.; de Andrade, R., Jr. A Review of Superconducting Fault Current Limiters Compared with Other Proven Technologies. Superconductivity 2022, 3, 100018. [Google Scholar] [CrossRef]
- Shen, B.; Chen, Y.; Li, C.; Wang, S.; Chen, X. Superconducting Fault Current Limiter (SFCL): Experiment and the Simulation from Finite-Element Method (FEM) to Power/Energy System Software. Energy 2021, 234, 121251. [Google Scholar] [CrossRef]
- Motamedinejad, M.B.; Radmehr, M.; Radmehr, M.; Firouzi, M. Modified Solid-State Fault Current Limiter Based on AC/DC Reactor. Int. J. Electron. 2022, 109, 1214–1232. [Google Scholar] [CrossRef]
- Yuan, J.; Gan, P.; Zhang, Z.; Zhou, H.; Wei, L.; Muramatsu, K. Saturated-Core Fault Current Limiters for AC Power Systems: Towards Reliable, Economical and Better Performance Application. High Volt. 2020, 5, 416–424. [Google Scholar] [CrossRef]
- Ninad, N.A.; Lopes, L.A.C. Operation of Single-Phase Grid-Connected Inverters with Large DC Bus Voltage Ripple. In Proceedings of the 2007 IEEE Canada Electrical Power Conference, Montreal, QC, Canada, 25–26 October 2007; pp. 172–176. [Google Scholar]
- Araujo, S.V.; Zacharias, P.; Mallwitz, R. Highly Efficient Single-Phase Transformerless Inverters for Grid-Connected Photovoltaic Systems. IEEE Trans. Ind. Electron. 2010, 57, 3118–3128. [Google Scholar] [CrossRef]
- Zakzouk, N.E. Mitigation of Oscillating Power Effect on PV Power and Grid Current in Single-Phase Single-Stage PV Grid-Tied Systems. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018; pp. 437–442. [Google Scholar]
- Farhangi, B.; Farhangi, S. Comparison of Z-Source and Boost-Buck Inverter Topologies as a Single Phase Transformer-Less Photovoltaic Grid-Connected Power Conditioner. In Proceedings of the 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–6. [Google Scholar]
- Zakzouk, N.E.; Elsaharty, M.A.; Abdelsalam, A.K.; Helal, A.A.; Williams, B.W. Improved Performance Low-cost Incremental Conductance PV MPPT Technique. IET Renew. Power Gener. 2016, 10, 561–574. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Trans. Ind. Electron. 2006, 53, 1398–1409. [Google Scholar] [CrossRef]
- Zakzouk, N.E.; Abdelsalam, A.K.; Helal, A.A.; Williams, B.W. PV Single-Phase Grid-Connected Converter: DC-Link Voltage Sensorless Prospective. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 526–546. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, D.; Bai, B. Study of a High-Power Medium Frequency Transformer Using Amorphous Magnetic Material. Symmetry 2022, 14, 2129. [Google Scholar] [CrossRef]
- Ali, M.A.; Moussa, M.F.; Dessouky, Y.G. Designing a Magnetic Amplifier Used for DC Speed Control. In Proceedings of the 2019 21st International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 17–19 December 2019. [Google Scholar]
- Nasiri, M.; Arzani, A.; Guerrero, J.M. LVRT Operation Enhancement of Single-Stage Photovoltaic Power Plants: An Analytical Approach. IEEE Trans. Smart Grid 2021, 12, 5020–5029. [Google Scholar] [CrossRef]
- Moheb, A.M.; El-Hay, E.A.; El-Fergany, A.A. Comprehensive Review on Fault Ride-Through Requirements of Renewable Hybrid Microgrids. Energies 2022, 15, 6785. [Google Scholar] [CrossRef]
- Li, H.; Zheng, T.; Huang, S.; Wang, Y. UPFC Fault Ride-through Strategy Based on Virtual Impedance and Current Limiting Reactor. Int. J. Electr. Power Energy Syst. 2021, 125, 106491. [Google Scholar] [CrossRef]
- Li, H.; Zheng, T.; Huang, S.; Tang, Z.; Cao, H. A Fault Ride through Strategy of Unified Power Flow Controller and Its Coordination with Protection. Electr. Power Syst. Res. 2020, 184, 106323. [Google Scholar] [CrossRef]
- Ghavidel, P.; Farhadi, M.; Dabbaghjamanesh, M.; Jolfaei, A.; Sabahi, M. Fault Current Limiter Dynamic Voltage Restorer (FCL-DVR) With Reduced Number of Components. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 2, 526–534. [Google Scholar] [CrossRef]
- Mehedi, I.M.; Al Hasan Joy, J.; Islam, M.R.; Hasan, N.; Al-Saggaf, U.M.; Milyani, A.H.; Iskanderani, A.I.; Abusorrah, A.; Rawa, M.; Bassi, H. Reducing Fault Current by Using FACTS Devices to Improve Electrical Power Flow. Math. Probl. Eng. 2021, 2021, 8116816. [Google Scholar] [CrossRef]
- Heidary, A.; Radmanesh, H.; Rouzbehi, K.; Pou, J. A DC-Reactor-Based Solid-State Fault Current Limiter for HVdc Applications. IEEE Trans. Power Deliv. 2019, 34, 720–728. [Google Scholar] [CrossRef]
- Heidary, A.; Rouzbehi, K.; Mehrizi-Sani, A.; Sood, V.K. A Self-Activated Fault Current Limiter for Distribution Network Protection. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 4626–4633. [Google Scholar] [CrossRef]
- Heidary, A.; Popov, M.; Moghim, A.; Niasar, M.G.; Lekić, A. The Principles of Controlled DC Reactor Fault Current Limiter for Battery Energy Storage Protection. IEEE Trans. Ind. Electron. 2023, 1–9. [Google Scholar] [CrossRef]
- Kucukaydin, B.; Arikan, O. A Comparative Study on Applicability of Parallel Resonance Type Fault Current Limiters in Power Systems. Teh. Vjesn. 2022, 29, 993–1001. [Google Scholar] [CrossRef]
- Shahbabaei Kartijkolaie, H.; Radmehr, M.; Firouzi, M. LVRT Capability Enhancement of DFIG-Based Wind Farms by Using Capacitive DC Reactor-Type Fault Current Limiter. Int. J. Electr. Power Energy Syst. 2018, 102, 287–295. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Y.; Dai, S.; Ma, T.; Yuan, X.; Liu, M.; Chen, H.; Wang, M.; Peng, C. Application and Design of Resistive SFCL in ±160 KV MMC-HVdc System. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Song, M.; Sheng, C.; Ma, T.; Huang, Y.; Yang, C.; Xin, Y.; Jin, H.; Yang, T.; Xiong, J.; Li, C.; et al. Current Limiting Tests of a Prototype 160 KV/1 KA Resistive DC Superconducting Fault Current Limiter. Supercond. Sci. Technol. 2021, 34, 014002. [Google Scholar] [CrossRef]
- Ma, T.; Dai, S.; Song, M.; Li, C. Electromagnetic Design of High-Temperature Superconducting DC Bias Winding for Single-Phase 500 KV Saturated Iron-Core Fault Current Limiter. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Li, C.; Zhang, P.; Wang, D.; Song, M.; Ma, T.; Ma, P.; Ge, Z. Cooling Unit for the 500 KV Saturated Iron Core Fault Current Limiter. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Hasan, J.; Islam, M.R.; Islam, M.R.; Kouzani, A.Z.; Mahmud, M.A.P. A Capacitive Bridge-Type Superconducting Fault Current Limiter to Improve the Transient Performance of DFIG/PV/SG-Based Hybrid Power System. IEEE Trans. Appl. Supercond. 2021, 31, 5603605. [Google Scholar] [CrossRef]
- Zheng, F.; Zhang, J.; Lin, J.; Deng, C.; Huang, J. A Novel Flexible Fault Current Limiter for DC Distribution Applications. IEEE Trans. Smart Grid 2022, 13, 1049–1060. [Google Scholar] [CrossRef]
- Eladawy, M.; Metwally, I.A. Compact Designs of Permanent-magnet Biased Fault Current Limiters. IET Electr. Power Appl. 2020, 14, 471–479. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Z.; Zhou, H.; Gan, P.; Chen, H. Optimized Design Method of Permanent Magnets Saturated Core Fault Current Limiters for HVDC Applications. IEEE Trans. Power Deliv. 2021, 36, 721–730. [Google Scholar] [CrossRef]
Parameters | Ratings |
---|---|
KC200GT String (15 × 1) | = 15 × 26.3 = 394.5 V |
= 1 × 7.61 = 7.61 A | |
MPP = 3000 W at STC | |
2.5% | |
5 mH, for THDi = 3% | |
395 V | |
15 kHz |
Parameter | Value |
---|---|
Rated kVA | 5000 VA |
Main Winding Voltage (rms) | 220 V |
Control Winding Voltage (rms) | 110 V |
Main and Control Winding Resistances | 0.337 Ω |
Frequency | 50 Hz |
Equivalent winding resistance | 0.4 Ω |
Proposed SCI | ||
---|---|---|
Normal at STC (0 | ||
3000 W | 3000 W | |
400 V | 400 V | |
19 A | 19.5 A | |
THD % | 2.41% | 3.55% |
50% Fault (3 | ||
3000 W | 200 W | |
400 V | 480 V | |
38 A | 19 A | |
Short-circuit Fault ( | ||
80 W | 95 W | |
500 V at t = 7 s and keeps increasing | 490 V | |
230 A at t = 7 s and keeps increasing | 27 A |
Parameters | Ratings |
---|---|
KC200GT panel | = 26.3 V |
= 7.61 | |
MPP = 200 W at STC | |
±2.5% | |
5 mH, for THDi = 5% | |
26 V | |
15 kHz |
Parameter | Value |
---|---|
Rated kVA | 5 kVA |
Primary Voltage (rms) | 2 × 100 V |
Secondary Voltage (rms) | 4 × 12 |
Frequency | 50 Hz |
Proposed SCI | ||
---|---|---|
Normal (800 W/m2, 25 °C) | ||
165 W | 165 W | |
26 V | 26 V | |
16.5 A | 16.8 A | |
THD | 5% | 5% |
50% Fault | ||
165 W | 15 W | |
26 V | 30 V | |
35 A | 16.2 A | |
Short-circuit Fault | ||
-------- | 5 W | |
-------- | 33 V | |
-------- | 25 A |
FCL Topology | Type | Application | Cost | Weight | Harmonics |
---|---|---|---|---|---|
FACTs-based Topologies | UPFC [38,39] |
| High | High | High |
DVR [40] | |||||
STATCOM [41] | |||||
Solid-State-based topologies | Switched Impedance [42,43,44] |
| Low | Moderate | High |
Resonance Type [45] | |||||
Capacitive Type [46] | |||||
Superconducting Topology | Resistive [47,48] |
| High | High | Low |
Saturated Core [49,50] | |||||
Hybrid Topologies | Bridge Type [51,52] |
| Moderate | High | Moderate |
Non-superconducting | Permanent Magnet [53,54] |
| High | Low | Low |
Proposed Saturated Core Inductor (SCI) | FCL and grid current filter in single-stage grid-tied PV systems | Low | Moderate | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, R.A.; Zakzouk, N.E. Bi-Functional Non-Superconducting Saturated-Core Inductor for Single-Stage Grid-Tied PV Systems: Filter and Fault Current Limiter. Energies 2023, 16, 4206. https://doi.org/10.3390/en16104206
Ibrahim RA, Zakzouk NE. Bi-Functional Non-Superconducting Saturated-Core Inductor for Single-Stage Grid-Tied PV Systems: Filter and Fault Current Limiter. Energies. 2023; 16(10):4206. https://doi.org/10.3390/en16104206
Chicago/Turabian StyleIbrahim, Rania A., and Nahla E. Zakzouk. 2023. "Bi-Functional Non-Superconducting Saturated-Core Inductor for Single-Stage Grid-Tied PV Systems: Filter and Fault Current Limiter" Energies 16, no. 10: 4206. https://doi.org/10.3390/en16104206
APA StyleIbrahim, R. A., & Zakzouk, N. E. (2023). Bi-Functional Non-Superconducting Saturated-Core Inductor for Single-Stage Grid-Tied PV Systems: Filter and Fault Current Limiter. Energies, 16(10), 4206. https://doi.org/10.3390/en16104206