Techno-Economic Potential of V2B in a Neighborhood, Considering Tariff Models and Battery Cycle Limits
Abstract
:1. Introduction
1.1. Related Work
1.2. Scope and Contribution
2. Modeling
2.1. Objective Function
2.2. Constraints
3. Parameterization of the Model
4. Scenarios
5. Results
5.1. Yearly Energy Flows in the Six Scenarios
5.2. Energy Supply by Electric Vehicle Fleet
5.3. Grid Power Draw
5.4. Limiting Battery Cycles per Vehicle
5.5. Distribution of the Power Supply across the Fleet
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | |
B | Building |
Battery electric vehicle | |
Coefficient of performance | |
Energy flow | |
G | Electrical grid |
Heat pump | |
Instantaneous water heater | |
N | Node |
PV plant | |
State of energy () | |
Thermal storage | |
Vehicle-to-Home | |
Vehicle-to-Building | |
Indices | |
Electrical | |
g | Grid |
n | Node |
Grid feed-in | |
Vehicle-to-Home | |
Battery electric vehicle | |
Solar radiation | |
Energy requirement | |
Photovoltaic | |
Building | |
Heat pump | |
Instantaneous water heater | |
Initial | |
Maximum | |
Thermal storage | |
i | Index of the Month () |
t | Index of the time period, |
Sets | |
Set of all buildings | |
Set of all BEVs | |
Set of all PVs | |
Set of all time periods | |
Variables | |
EF from G to central N | |
EF from N to G | |
EF from to N | |
max. EF from G to N in month i | |
EF from N to | |
EF from N to | |
EF from N to | |
EF from to N | |
EF from N to B | |
EF from to N | |
EF from N to | |
EF from to N | |
EF from to N | |
EF from N to B | |
Temp. of | |
of BEV | |
Parameters | |
Cooling coefficient of thermal storage | |
A | Surface area of thermal storage |
Electricity price in time period t | |
Electricity grid feed-in compensation | |
Compensation for energy provided by BEV | |
Price for maximum grid power | |
Thermal capacity of water | |
Coefficient of performance of heat pump | |
d | Energy consumption of BEV per distance |
Driven distance of BEV in t | |
(Dis-)Charging efficiency of BEV | |
(Dis-)Charging efficiency of thermal storage | |
Efficiency of inverter | |
Efficiency of water heater | |
Efficiency of PV system in t | |
Max. energy flow to/from bev | |
Max. energy flow to/from inverter | |
Energy flow required by building in t | |
Is bev home in t | |
Is bev capable of | |
Max. of BEV | |
Initial of BEV | |
Min. temp. of th. storage | |
Max. temp. of th. storage | |
Initial temp. of th. storage | |
Max. energy flow from/to th. storage | |
Heat energy flow required by building in t | |
Radiation energy to PV system | |
Efficiency of BEV battery |
Appendix A
Property | Value | Unit |
---|---|---|
Module name | Meyer Burger White | |
Module area | 1.84 | |
Max. power | 400 | |
Efficiency | 21.7 | % |
Temp.-coefficient | −0.259 |
Appendix B
Appendix C
Appendix D
Sim. ID | Model Name | Quantity | Bat. Capacity [kWh] | Travelling Distance [km/a] | Charging Efficiency [%] | Max. Charging Power [kw] | Energy Need [Wh/km] |
---|---|---|---|---|---|---|---|
20 | VW eup | 1 | 32 | 8591 | 88 | 3.6 | 14.7 |
21 | Mercedes EQC | 1 | 80 | 8286 | 86 | 11 | 19.7 |
22 | Porsche Taycan | 1 | 84 | 6779 | 88 | 11 | 20.8 |
23, 36, 37 | Renault Zoe | 3 | 52 | 8242, 6778 | |||
18,516 | 81 | 22 | 17.9 | ||||
24, 39 | Kia Soul | 1 | 64 | 11,764, 5241 | 87 | 7.2 | 16.5 |
25 | Seat Mii | 1 | 32 | 7712 | 85 | 7.2 | 14.8 |
26, 28 | BMW i3 | 2 | 42 | 9417, 4478 | 78 | 11 | 14.0 |
27, 38, 43 | VW eGolf | 3 | 32 | 9856, 12,931 | |||
4968 | 90 | 7.2 | 16.1 | ||||
29, 31 | Audi eTron | 2 | 95 | 7654, 8654 | 89 | 22 | 22.9 |
30 | Opel Corsa | 1 | 50 | 8147 | 85 | 11 | 17 |
32 | Smart forfour | 1 | 18 | 8786 | 93 | 22 | 17.1 |
33, 42 | VW iD3 | 2 | 77 | 9176, 9805 | 90 | 11 | 17.3 |
34 | Smart fortwo | 1 | 18 | 10,293 | 93 | 22 | 17.1 |
35 | Tesla Model 3 | 1 | 79 | 9007 | 88 | 11 | 17.5 |
40 | Nissan Leaf | 1 | 62 | 8264 | 91 | 6.6 | 20.6 |
41, 44 | Hyundai Ioniq | 2 | 38 | 5912, 10,949 | 87 | 7.4 | 14.2 |
45 | Skoda Citigo | 1 | 32 | 8197 | 88 | 7.2 | 14.7 |
References
- Günther, D.; Gniffke, P. Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2021; Technical Report; Umweltbundesamt: Dessau-Roßlau, Germany, 2021. [Google Scholar]
- Sterchele, P.; Brandes, J.; Heilig, J.; Wrede, D.; Kost, C.; Schlegl, T.; Bett, A.; Henning, H.M. Wege zu Einem Klimaneutralen Energiesystem; Technical Report; Fraunhofer Institute for Solar Energy Systems ISE: Freiburg, Germany, 2020. [Google Scholar]
- Bibra, E.M.; Connelly, E.; Gorner, M.; Lowans, C.; Paoli, L.; Tattini, J.; Teter, J.; LeCroy, C.; MacDonnell, O.; Welch, D.; et al. Global EV Outlook 2021—Accelerating Ambitions Despite the Pandemic; Technical Report; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Rizvi, S.A.A.; Xin, A.; Masood, A.; Iqbal, S.; Jan, M.U.; ur Rehman, H. Electric Vehicles and their Impacts on Integration into Power Grid: A Review. In Proceedings of the 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018. [Google Scholar] [CrossRef]
- Nobis, C.; Kuhnimhof, T. Mobilität in Deutschland—MiD Ergebnisbericht (im Auftrag des BMVI); Technical Report; Federal Ministry for Transport, Building and Urban Development: Berlin, Germany, 2018. [Google Scholar]
- Liu, C.; Chau, K.T.; Wu, D.; Gao, S. Opportunities and Challenges of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies. Proc. IEEE 2013, 101, 2409–2427. [Google Scholar] [CrossRef]
- Nazari, S.; Borrelli, F.; Stefanopoulou, A. Electric Vehicles for Smart Buildings: A Survey on Applications, Energy Management Methods, and Battery Degradation. Proc. IEEE 2021, 109, 1128–1144. [Google Scholar] [CrossRef]
- Kobashi, T.; Jittrapirom, P.; Yoshida, T.; Hirano, Y.; Yamagata, Y. SolarEV City concept: Building the next urban power and mobility systems. Environ. Res. Lett. 2021, 16, 024042. [Google Scholar] [CrossRef]
- Kobashi, T.; Choi, Y.; Hirano, Y.; Yamagata, Y.; Say, K. Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts. Appl. Energy 2022, 306, 118142. [Google Scholar] [CrossRef]
- Chang, S.; Cho, J.; Heo, J.; Kang, J.; Kobashi, T. Energy infrastructure transitions with PV and EV combined systems using techno-economic analyses for decarbonization in cities. Appl. Energy 2022, 319, 119254. [Google Scholar] [CrossRef]
- Ginigeme, K.; Wang, Z. Distributed Optimal Vehicle-To-Grid Approaches with Consideration of Battery Degradation Cost under Real-Time Pricing. IEEE Access 2020, 8, 5225–5235. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Le, L.B. Joint Optimization of Electric Vehicle and Home Energy Scheduling Considering User Comfort Preference. IEEE Trans. Smart Grid 2014, 5, 188–199. [Google Scholar] [CrossRef]
- Biroon, R.A.; Abdollahi, Z.; Hadidi, R. Fast and Regular Electric Vehicle Charging Impacts on the Distribution Feeders. In Proceedings of the IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 29 September–3 October 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Das, R.; Wang, Y.; Putrus, G.; Kotter, R.; Marzband, M.; Herteleer, B.; Warmerdam, J. Multi-objective techno-economic-environmental optimisation of electric vehicle for energy services. Appl. Energy 2020, 257, 113965. [Google Scholar] [CrossRef]
- Zenginis, I.; Vardakas, J.S.; Echave, C.; Morató, M.; Abadal, J.; Verikoukis, C.V. Cooperation in microgrids through power exchange: An optimal sizing and operation approach. Appl. Energy 2017, 203, 972–981. [Google Scholar] [CrossRef]
- Borge-Diez, D.; Icaza, D.; Açıkkalp, E.; Amaris, H. Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share. Energy 2021, 237, 121608. [Google Scholar] [CrossRef]
- Quddus, M.A.; Shahvari, O.; Marufuzzaman, M.; Usher, J.M.; Jaradat, R. A collaborative energy sharing optimization model among electric vehiclecharging stations, commercial buildings, and power grid. Appl. Energy 2018, 229, 841–857. [Google Scholar] [CrossRef]
- Buonomano, A. Building to Vehicle to Building concept: A comprehensive parametric andsensitivity analysis for decision making aims. Appl. Energy 2020, 261, 114077. [Google Scholar] [CrossRef]
- Wang, B.; Yu, X.; Xu, H.; Wu, Q.; Wang, L.; Huang, R.; Li, Z.; Zhou, Q. Scenario analysis, management, and optimization of a new Vehicle-to-Micro-Grid (V2µG) network based on off-grid renewable building energy systems. Appl. Energy 2022, 325, 119873. [Google Scholar] [CrossRef]
- Cardoso, G.; Stadler, M.; Bozchalui, M.C.; Sharma, R.; Marnay, C.; Barbosa-Póvoa, A.; Ferrão, P. Stochastic Programming of Vehicle to Building Interactions with Uncertainty in PEVs Driving for a Medium Office Building. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013. [Google Scholar]
- Zhou, Y.; Cao, S.; Hensen, J.L.M.; Hasan, A. Heuristic battery-protective strategy for energy management of an interactive renewables–buildings–vehicles energy sharing network with high energy flexibility. Energy Convers. Manag. 2020, 214, 112891. [Google Scholar] [CrossRef]
- Zhou, Y. Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area. Appl. Energy 2020, 318, 119131. [Google Scholar] [CrossRef]
- Guo, X.; Bao, Z.; Yan, W. Stochastic model predictive control based scheduling optimization of multi-energy system considering hybrid CHPs and EVs. Appl. Sci. 2019, 9, 356. [Google Scholar] [CrossRef]
- Moura, P.; Yu, G.K.W.; Mohammadi, J. Management of electric vehicles as flexibility resource for optimized integration of renewable energy with large buildings. In Proceedings of the 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), The Hague, The Netherlands, 26–28 October 2020; Volume 2020, pp. 474–478. [Google Scholar] [CrossRef]
- Schreck, S.; Sudhoff, R.; Thiem, S.; Niessen, S. On the Importance of Grid Tariff Designs in Local Energy Markets. Energies 2022, 15, 6209. [Google Scholar] [CrossRef]
- Ahsan, S.M.; Khan, H.A.; ul Hassan, N. Optimized power dispatch for smart building(s) and electric vehicles with V2X operation. Energy Rep. 2022, 8, 10849–10867. [Google Scholar] [CrossRef]
- Kern, T.; Dossow, P.; Morlock, E. Revenue opportunities by integrating combined vehicle-to-home and vehicle-to-grid applications in smart homes. Appl. Energy 2022, 307, 118187. [Google Scholar] [CrossRef]
- Singh, K.; Singh, A. Behavioural modelling for personal and societal benefits of V2G/V2H integration on EV adoption. Appl. Energy 2022, 319, 119265. [Google Scholar] [CrossRef]
- Higashitani, T.; Ikegami, T.; Uemichi, A.; Akisawa, A. Evaluation of residential power supply by photovoltaics and electric vehicles. Renew. Energy 2021, 178, 745–756. [Google Scholar] [CrossRef]
- Moura, P.; Sriram, U.; Mohammadi, J. Sharing Mobile and Stationary Energy Storage Resources in Transactive Energy Communities. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, C.; Wang, L.; Zhang, G. Real-Time Energy Management for Microgrid with EV Station and CHP Generation. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1492–1501. [Google Scholar] [CrossRef]
- Reitberger, S. E-Auto von VW kann nun Strom in Netz speisen: Doch die Technik stößt an Grenzen. Available online: https://efahrer.chip.de/news/e-auto-von-vw-kann-nun-strom-in-netz-speisen-doch-die-technik-stoesst-an-grenzen_108599 (accessed on 22 May 2023).
- Perron, L.; Furnon, V. OR-Tools. Available online: https://developers.google.com/optimization/ (accessed on 22 May 2023).
- Deutscher Wetterdienst. Ortsgenaue Testreferenzjahre von Deutschland für Mittlere, Extreme und Zukünftige Witterungsverhältnisse; Research Report; Deutscher Wetterdienst: Offenbach, Germany, 2017.
- BDEW; VKU; GEODE. Leitfaden Abwicklung von Standardlastprofilen; Technical Report; BDEW; VKU; GEODE: Berlin, Germany, 2016. [Google Scholar]
- Bitterer, R.; Schieferdecker, B. Repräsentative VDEW-Lastprofile; Technical Report; Verband der Elektrizitätswirtschaft e. V. (VDEW): Frankfurt, Germany, 1999. [Google Scholar]
- Fünfgeld, C.; Tiedemann, R. Anwendung der Repräsentativen VDEW-Lastprofile; Technical Report; Verband der Elektrizitätswirtschaft e. V. (VDEW): Frankfurt, Germany, 2000. [Google Scholar]
- Quaschning, V. Simulation der Abschattungsverluste bei Solarelektrischen Systemen. Ph.D. Dissertation, Fachbereich Elektrotechnik der Technischen Universität, Berlin, Germany, 1996. [Google Scholar]
- Mattei, M.; Notton, G.; Cristofari, C.; Muselli, M.; Poggi, P. Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew. Energy 2006, 31, 553–567. [Google Scholar] [CrossRef]
- Neuzulassungen. Available online: https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/neuzulassungen_node.html (accessed on 22 May 2023).
- ADAC Ecotest. Available online: https://www.adac.de/rund-ums-fahrzeug/tests/ecotest/ (accessed on 22 May 2023).
- Dimplex. Geräteinformationen Wärmepumpe. 2011. Available online: https://www.dimplex-partner.de/fileadmin/dimplex/downloads/projektierungshandbuecher/de/496-geraeteinformationen-wp-08-2012.pdf (accessed on 22 May 2023).
- Günther, D.; Wapler, J.; Langner, R.; Helmling, S.; Miara, M.; Fischer, D.; Zimmermann, D.; Wolf, T.; Wille-Hausmann, B. Wärmepumpen in Bestandsgebäuden—Ergebnisse aus dem Forschungsprojekt ´´WPsmart im Bestand”; Technical Report; Fraunhofer ISE: Greiburg, Germany, 2020. [Google Scholar]
- Europäische Kommission. Delegierte Verordnung (EU) Nr. 812/2013 der Kommission vom 18 Februar 2013 zur Ergänzung der Richtlinie 2010/30/EU des Europäischen Parlaments und des Rates im Hinblick auf die Energieeffizienzkennzeichnung von Warmwasserbereitern, Warmwasserspeichern und Verbundanlagen aus Warmwasserbereitern und Solareinrichtungen; Europäische Kommission: Brussels, Belgium, 2013; pp. 83–139. [Google Scholar]
- Schwencke, T.; Bantle, C. BDEW-Strompreisanalyse November 2021 Haushalte und Industrie; Technical Report; Bundesverband der Energie- und Wasserwirtschaft e.V. (BDEW): Berlin, Germany, 2021. [Google Scholar]
- Pohlmann, Y. Supplementary Data. 2022. Available online: https://gitlab.cc-asp.fraunhofer.de/smart-systems/open-data/7153 (accessed on 22 May 2023).
- Datenblatt—Meyer Burger White. Available online: https://www.meyerburger.com/fileadmin/user_upload/PDFs/Produktdatenblaetter/DE/Meyer-Burger_2022-06_Datasheet_Glass_DE_V02.pdf (accessed on 27 October 2022).
Type | Floor Area [m] | Heat Demand [kWh/ma] | Electricity Demand [kWh/ma] | Profile Type (Heat/Electricity) |
---|---|---|---|---|
SFH | 600 | 53.3 | 16 | /H0 |
MFH | 2400 | 38 | 16 | /H0 |
Gastronomy | 100 | 47 | 84 | GGA/G2 |
Retail | 200 | 41 | 323 | GHA/G4 |
Health | 200 | 108 | 73 | GBD/G1 |
Daycare | 50 | 76 | 31 | GKO/G1 |
Office | 447 | 56 | 38 | GKO/G1 |
Sums | 3997 | 186.5 [] | 154.15 | — |
Tariff Model | Unidirectional Electric Vehicles | Bidirectional Electric Vehicles |
---|---|---|
Flat tariff | 1 a | 1 b |
Dynamic tariff | 2 a | 2 b |
Power tariff | 3 a | 3 b |
No. | Electricity Price Model | Charging Behavior | Grid Supply (MWh/a) | Feed in (MWh/a) | Charging BEV (MWh/a) | Feedback BEV (MWh/a) |
---|---|---|---|---|---|---|
1a | flat | uni | 134 | 36 | 44 | 0 |
1b | flat | bi | 116 | 16 | 65 | 17 |
2a | dynamic | uni | 139 | 36 | 44 | 0 |
2b | dynamic | bi | 127 | 16 | 158 | 90 |
3a | power | uni | 135 | 37 | 44 | 0 |
3b | power | bi | 117 | 16 | 74 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pohlmann, Y.; Klinck, C.-F. Techno-Economic Potential of V2B in a Neighborhood, Considering Tariff Models and Battery Cycle Limits. Energies 2023, 16, 4387. https://doi.org/10.3390/en16114387
Pohlmann Y, Klinck C-F. Techno-Economic Potential of V2B in a Neighborhood, Considering Tariff Models and Battery Cycle Limits. Energies. 2023; 16(11):4387. https://doi.org/10.3390/en16114387
Chicago/Turabian StylePohlmann, Yannick, and Carl-Friedrich Klinck. 2023. "Techno-Economic Potential of V2B in a Neighborhood, Considering Tariff Models and Battery Cycle Limits" Energies 16, no. 11: 4387. https://doi.org/10.3390/en16114387
APA StylePohlmann, Y., & Klinck, C.-F. (2023). Techno-Economic Potential of V2B in a Neighborhood, Considering Tariff Models and Battery Cycle Limits. Energies, 16(11), 4387. https://doi.org/10.3390/en16114387