Outdoor Thermal Comfort Optimization in a Cold Climate to Mitigate the Level of Urban Heat Island in an Urban Area
Abstract
:1. Introduction
2. Background
2.1. UHI Effect and Surface Temperature Studies
2.2. Outdoor Thermal Comfort Studies
2.3. Novelty of This Investigation
3. Methodology
- Step 0: Capturing data
- Step 1: Sampling
- Step 2: Simulation
- Step 3: Assessment
- Step 4: Application
3.1. Step 0 “Urban Data Geoprocessing”
- First, create a spatial index for each object and connect the objects to the grid system.
- Second, use the homogeneous ground to define urban indices mainly anchored in the heterogeneous data. The methodology uses the Python, Numpy, and Pandas libraries, the Geopandas package, and QGIS Tool. The approach helps to capture urban data from Tallinn GIS resources [37], taking into account the location, general characteristics, and other spatial properties of urban elements [34,37].
3.2. Step 1: Sampling, Finding Critical Urban Canyons
3.3. Step 2: Simulation in Building and Urban Scale
3.4. Step 3: Assessment and Results
3.5. Step 4: Application
4. CFD Simulation and Numerical Analysis
4.1. Meteorological Setting
4.2. Outdoor Thermal Comfort Assessment, PET
Personal Parameters
5. Results
5.1. Surface Temperature
5.2. Non-Uniform Spatial Distribution of PET
5.3. Normalized Spatial Distribution of PET
Statistical Methods and Exploration of Data
5.4. Analyzing Data Based on the Evaluation Method
= (22.5 ∗ 4 ∗ 0.064) + (24.6 ∗ 3 ∗ 0.597) + (34.5 ∗ 1 ∗ 0.022) + (38 ∗ (−3) ∗ 0.233) + (43.4 ∗ (−4) ∗ 0.083)
= 5.7 + 44.1 + 0.8 − 26.6 − 14.5 = 9.5
6. Discussion
Step 4: Application of the Study
7. Conclusions
Limitations of the Study
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnefa, A.; Wong, N.H.; Zinzi, M. Local climate change and urban heat island mitigation techniques—The state of the art. J. Civ. Eng. Manag. 2016, 22, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate: Designing the Spaces between Buildings; Urban Microclimate; Routledge: London, UK, 2012. [Google Scholar] [CrossRef]
- Onishi, A.; Cao, X.; Ito, T.; Shi, F.; Imura, H. Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban For. Urban Green. 2010, 9, 323–332. [Google Scholar] [CrossRef]
- Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.-H.; Akbari, H. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, P.A.; Haghighat, F. Approaches to study urban heat island–abilities and limitations. Build. Environ. 2010, 45, 2192–2201. [Google Scholar] [CrossRef]
- Sagris, V.; Sepp, M. Landsat-8 tirs data for assessing urban heat island effect and its impact on human health. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2385–2389. [Google Scholar] [CrossRef]
- Aleksandrowicz, O.; Vuckovic, M.; Kiesel, K.; Mahdavi, A. Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban Clim. 2017, 21, 1–26. [Google Scholar] [CrossRef]
- Vásquez-Álvarez, P.E.; Flores-Vázquez, C.; Cobos-Torres, J.-C.; Cobos-Mora, S.L. Urban Heat Island Mitigation through Planned Simulation. Sustainability 2022, 14, 8612. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.; Chunho, L. A review on the generation, determination and mitigation of urban heat island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Giridharan, R.; Emmanuel, R. The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: A review. Sustain. Cities Soc. 2018, 40, 677–687. [Google Scholar] [CrossRef] [Green Version]
- Shishegar, N. Street Design and Urban Microclimate: Analyzing the Effects of Street Geometry and Orientation on Airflow and Solar Access in Urban Canyons. J. Clean Energy Technol. 2013, 1, 52–56. [Google Scholar] [CrossRef]
- Eslamirad; Nasim; De Luca, F.; Lylykangas, K.S. The role of building morphology on pedestrian level comfort in Northern climate. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 2042, p. 012053. [Google Scholar] [CrossRef]
- Eslamirad; Nasim; De Luca, F.; Lylykangas, K.S.; Yahia, S.B. Data generative machine learning model for the assessment of outdoor thermal and wind comfort in a northern urban environment. Front. Archit. Res. 2023, 12, 541–555. [Google Scholar] [CrossRef]
- Eslamirad; Nasim; Kolbadinejad, S.M.; Mahdavinejad, M.; Mehranrad, M. Thermal comfort prediction by applying supervised machine learning in green sidewalks of Tehran. Smart Sustain. Built Environ. 2020, 9, 361–374. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Solecki, W.D.; Romero-Lankao, P.; Mehrotra, S.; Dhakal, S.; Ibrahim, S.A. (Eds.) Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Martilli, A.; Krayenhoff, E.S.; Nazarian, N. Is the Urban Heat Island intensity relevant for heat mitigation studies? Urban Clim. 2020, 31, 100541. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) variations within a city boundary: A systematic literature review. Renew. Sustain. Energy Rev. 2021, 148, 111256. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Sodoudi, S. The effectiveness of cool and green roofs in mitigating urban heat island and improving human thermal comfort. Build. Environ. 2022, 217, 109082. [Google Scholar] [CrossRef]
- Montávez; Juan, P.; Rodríguez, A.; Jiménez, J.I. A study of the urban heat island of Granada. Int. J. Climatol. A J. R. Meteorol. Soc. 2000, 20, 899–911. [Google Scholar] [CrossRef]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Dionysia, K.; Lilli, K.; Gobakis, K.; Mavrigiannaki, A.; Haddad, S.; Garshasbi, S.; Mohajer, H.R.H.; Paolini, R.; Vasilakopoulou, K.; Bartesaghi, C.; et al. Analyzing the Impact of Urban Planning and Building Typologies in Urban Heat Island Mitigation. Buildings 2022, 12, 537. [Google Scholar] [CrossRef]
- Chao, X.; Chen, G.; Huang, Q.; Su, M.; Rong, Q.; Yue, W.; Haase, D. Can improving the spatial equity of urban green space mitigate the effect of urban heat islands? An empirical study. Sci. Total Environ. 2022, 841, 156687. [Google Scholar] [CrossRef]
- Cortes, A.; Rejuso, A.J.; Santos, J.A.; Blanco, A. Evaluating mitigation strategies for urban heat island in mandaue city using envi-met. J. Urban Manag. 2022, 11, 97–106. [Google Scholar] [CrossRef]
- Rajan, E.H.S.; Amirtham, L.R. Urban heat island intensity and evaluation of outdoor thermal comfort in Chennai, India. Env. Dev Sustain. 2021, 23, 16304–16324. [Google Scholar] [CrossRef]
- Darbani, S.; Elham; Parapari, D.M.; Boland, J.; Sharifi, E. Impacts of urban form and urban heat island on the outdoor thermal comfort: A pilot study on Mashhad. Int. J. Biometeorol. Vol. Int. J. Biometeorol. 2021, 65, 1101–1117. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, H.; Faizi, M.; Sanaieian, H. Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings. Sustain. Cities Soc. 2019, 46, 101448. [Google Scholar] [CrossRef]
- Arnfield, A. Street design and urban canyon solar access. Energy Build. 1990, 14, 117–131. [Google Scholar] [CrossRef]
- van Esch, M.; Looman, R.; de Bruin-Hordijk, G. The effects of urban and building design parameters on solar access to the urban canyon and the potential for direct passive solar heating strategies. Energy Build. 2012, 47, 189–200. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Koopmans, S.; Heusinkveld, B.G.; van Hove, L.W.A.; Holtslag, A.A.M. Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in The Netherlands. J. Geophys. Res. 2011, 116, D20129. [Google Scholar] [CrossRef]
- Yahia, M.; Johansson, E. Influence of urban planning regulations on the microclimate in a hot dry climate: The example of Damascus, Syria. J. Hous. Built Environ. 2012, 28, 51–65. [Google Scholar] [CrossRef]
- Battista, G.; de Lieto Vollaro, E.; Ocłoń, P.; de Lieto Vollaro, R. Effects of urban heat island mitigation strategies in an urban square: A numerical modelling and experimental investigation. Energy Build. 2023, 282, 112809. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Eslamirad, N.; Sepúlveda, A.; De Luca, F.; Lylykangas, K.S. Evaluating outdoor thermal comfort using a mixed-method to improve the environmental quality of a university campus. Energies 2022, 15, 1577. [Google Scholar] [CrossRef]
- Eslamirad; Nasim; De Luca, F.; Lylykangas, K.S.; Yahia, S.B.; Rasoulinezhad, M. Geoprocess of geospatial urban data in Tallinn, Estonia. Data Brief 2023, 48, 109172. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Eslamirad, N. Geoprocess of Geospatial Urban Data in Tallinn, Estonia. Mendely Data, V3, 4 02 2023. Available online: https://data.mendeley.com/drafts/2bm7kdf8gb (accessed on 11 May 2023).
- General Data of Tallinn. Available online: https://www.tallinn.ee/en/statistika/general-data-tallinn (accessed on 5 April 2023).
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew. Sustain. Energy Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Matzarakis, A. Human thermal perception of Coastal Mediterranean outdoor urban environments. Appl. Geogr. 2013, 37, 1–10. [Google Scholar] [CrossRef]
- Deb, C.; Ramachandraiah, A. The significance of Physiological Equivalent Temperature (PET) in outdoor thermal comfort studies. Int. J. Eng. Sci. Technol. 2010, 2, 2825–2828. [Google Scholar]
- Moazzam, M.F.U.; Doh, Y.H.; Lee, B.G. Impact of urbanization on land surface temperature and surface urban heat island using optical remote sensing data: A case study of jeju island, republic of korea. Build. Environ. 2022, 22, 109368. [Google Scholar] [CrossRef]
- Neto, A.F.; Bianchi, I.; Wurtz, F.; Delinchant, B. Thermal Comfort Assessment; ELECON, Electricity Consumption Analysis and Energy Efficiency: Gujarat, India, 2016. [Google Scholar] [CrossRef]
- Giampaoletti, M.; Pistore, L.; Zapata-Lancaster, G.; Goycoolea, J.P.F.; Janakieska, M.M.; Gramatikov, K.; Kocaman, E.; Kuru, M.; Andreucci, M.; Calis, G.; et al. RESTORE Regenerative Technologies for the Indoor Environment—Inspirational Guidelines for Practitioners; ELECON, Electricity Consumption Analysis and Energy Efficiency: Gujarat, India, 2020. [Google Scholar]
- Nazarian, N.; Acero, J.A.; Norford, L. Outdoor thermal comfort autonomy: Performance metrics for climate-conscious urban design. Build. Environ. 2019, 155, 145–160. [Google Scholar] [CrossRef]
- Chakrabartty, S. Scoring and Analysis of Likert Scale: Few Approaches. J. Knowl. Manag. Inf. Technol. 2014, 1, 31–44. [Google Scholar]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D. Likert Scale: Explored and Explained. Br. J. Appl. Sci. Technol. 2015, 7, 396–403. [Google Scholar] [CrossRef]
Sample | Height (m) | Floors | Length (m) | Total Area (m2) |
---|---|---|---|---|
Case study 1/M1 | 50 | 17 | 291.3 | 2258.4 |
Case study 2/M2 | 45.4 | 14 | 208.5 | 2093.3 |
Case study 3/M3 | 37.3 | 9 | 202.8 | 2470.6 |
Scenarios of Simulated Case Studies in the Different Extensions of the Canopy | |||
---|---|---|---|
Model | Case Study | Orientation (°) | Extension |
M1 | Cs1 | 347 | NE-SW |
M2 | Cs2 | 22 | N-S |
M3 | Cs3 | 325 | NE-SW |
M1-1 | Cs1 | 0 | N-S |
M1-2 | Cs1 | 45 | NW-SE |
M1-3 | Cs1 | 90 | W-E |
M1-4 | Cs1 | 135 | SW-NE |
M1-5 | Cs1 | 180 | S-N |
M1-6 | Cs1 | 225 | SE-NW |
M1-7 | Cs1 | 270 | E-W |
M1-8 | Cs1 | 315 | NE-SW |
M2-1 | Cs2 | 0 | N-S |
M2-2 | Cs2 | 45 | NW-SE |
M2-3 | Cs2 | 90 | W-E |
M2-4 | Cs2 | 135 | SW-NE |
M2-5 | Cs2 | 180 | S-N |
M2-6 | Cs2 | 225 | SE-NW |
M2-7 | Cs2 | 270 | E-W |
M2-8 | Cs2 | 315 | NE-SW |
M3-1 | Cs3 | 0 | N-S |
M3-2 | Cs3 | 45 | NW-SE |
M3-3 | Cs3 | 90 | W-E |
M3-4 | Cs3 | 135 | SW-NE |
M3-5 | Cs3 | 180 | S-N |
M3-6 | Cs3 | 225 | SE-NW |
M3-7 | Cs3 | 270 | E-W |
M3-8 | Cs3 | 315 | NE-SW |
Thermal Perception Grade of Physiological Stress | ||
---|---|---|
PET (°C) | Thermal Perception | Grade of Physiological Stress |
Very cold | Extreme cold stress | |
4 | ||
Cold | Strong cold stress | |
8 | ||
Cool | Moderate Cold stress | |
13 | ||
Slightly cool | Slight cold stress | |
18 | ||
Comfortable | No thermal stress | |
23 | ||
Slightly warm | Slight heat stress | |
29 | ||
Warm | Moderate heat stress | |
35 | ||
Hot | Strong heat stress | |
41 | ||
Very hot | Extreme heat stress |
Case Studies | Canopy Area (m2) | Simulated Area (m2) |
---|---|---|
Case study 1 | 20,650 | 5000 |
Case study 2 | 15,000 | 770 |
Case study 3 | 12,700 | 1400 |
Date, 25 July 2014. Time: 17:00 | |
---|---|
Air temperature (°C) | Max 28/Min 17 |
Max relative humidity (%) | Max 75/Min 45 |
Wind speed at inflow border (m/s) | 2.00 |
Wind direction at inflow (°) | 90.00 |
Roughness length (m) | 0.010 |
Specific humidity in 2500 m (g/kg) | 8.00 |
Basic Personal Parameters | |
---|---|
Age of the person | 35 |
Weight (kg) | 75 |
Height (kg) | 1.75 |
Surface area of the body (sm2) | 1.91 |
Clo | 0.10 |
Metabolic work (W) | 164.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eslamirad, N.; Sepúlveda, A.; De Luca, F.; Sakari Lylykangas, K.; Ben Yahia, S. Outdoor Thermal Comfort Optimization in a Cold Climate to Mitigate the Level of Urban Heat Island in an Urban Area. Energies 2023, 16, 4546. https://doi.org/10.3390/en16124546
Eslamirad N, Sepúlveda A, De Luca F, Sakari Lylykangas K, Ben Yahia S. Outdoor Thermal Comfort Optimization in a Cold Climate to Mitigate the Level of Urban Heat Island in an Urban Area. Energies. 2023; 16(12):4546. https://doi.org/10.3390/en16124546
Chicago/Turabian StyleEslamirad, Nasim, Abel Sepúlveda, Francesco De Luca, Kimmo Sakari Lylykangas, and Sadok Ben Yahia. 2023. "Outdoor Thermal Comfort Optimization in a Cold Climate to Mitigate the Level of Urban Heat Island in an Urban Area" Energies 16, no. 12: 4546. https://doi.org/10.3390/en16124546
APA StyleEslamirad, N., Sepúlveda, A., De Luca, F., Sakari Lylykangas, K., & Ben Yahia, S. (2023). Outdoor Thermal Comfort Optimization in a Cold Climate to Mitigate the Level of Urban Heat Island in an Urban Area. Energies, 16(12), 4546. https://doi.org/10.3390/en16124546