Tubular C3N4 Nanotubes as Metal-Free Sulfur Hosts toward Stable Lithium–Sulfur Batteries
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2016, 164, A5019. [Google Scholar] [CrossRef]
- Xie, J.; Lu, Y.-C. A Retrospective on Lithium-Ion Batteries. Nat. Commun. 2020, 11, 2499. [Google Scholar] [CrossRef]
- Seh, Z.W.; Sun, Y.; Zhang, Q.; Cui, Y. Designing High-Energy Lithium–Sulfur Batteries. Chem. Soc. Rev. 2016, 45, 5605–5634. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef]
- Manthiram, A.; Chung, S.-H.; Zu, C. Lithium–Sulfur Batteries: Progress and Prospects. Adv. Mater. 2015, 27, 1980–2006. [Google Scholar] [CrossRef]
- Eftekhari, A.; Kim, D.-W. Cathode Materials for Lithium–Sulfur Batteries: A Practical Perspective. J. Mater. Chem. A 2017, 5, 17734–17776. [Google Scholar] [CrossRef]
- Yang, D.; Li, M.; Zheng, X.; Han, X.; Zhang, C.; Jacas Biendicho, J.; Llorca, J.; Wang, J.; Hao, H.; Li, J.; et al. Phase Engineering of Defective Copper Selenide toward Robust Lithium–Sulfur Batteries. ACS Nano 2022, 16, 11102–11114. [Google Scholar] [CrossRef]
- Fei, B.; Zhang, C.; Cai, D.; Zheng, J.; Chen, Q.; Xie, Y.; Zhu, L.; Cabot, A.; Zhan, H. Hierarchical Nanoreactor with Multiple Adsorption and Catalytic Sites for Robust Lithium–Sulfur Batteries. ACS Nano 2021, 15, 6849–6860. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, D.; Biendicho, J.J.; Han, X.; Zhang, C.; Liu, K.; Diao, J.; Li, J.; Wang, J.; Heggen, M.; et al. Enhanced Polysulfide Conversion with Highly Conductive and Electrocatalytic Iodine-Doped Bismuth Selenide Nanosheets in Lithium–Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2200529. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Zhang, C.; Pan, J.L.; Sun, G.W.; Shi, Z.; Li, C.; Chang, X.; Sun, G.Z.; Zhou, J.Y.; Cabot, A. Surface Strain-Enhanced MoS2 as a High-Performance Cathode Catalyst for Lithium–Sulfur Batteries. eScience 2022, 2, 405–415. [Google Scholar] [CrossRef]
- Xu, H.; Kong, Z.; Siegenthaler, J.; Zheng, B.; Tong, Y.; Li, J.; Schuelke, T.; Fan, Q.H.; Wang, K.; Xu, H.; et al. Review on Recent Advances in Two-Dimensional Nanomaterials-Based Cathodes for Lithium-Sulfur Batteries. EcoMat 2023, 5, e12286. [Google Scholar] [CrossRef]
- Xu, Z.-L.; Kim, J.-K.; Kang, K. Carbon Nanomaterials for Advanced Lithium Sulfur Batteries. Nano Today 2018, 19, 84–107. [Google Scholar] [CrossRef]
- Wang, J.; Han, W.-Q. A Review of Heteroatom Doped Materials for Advanced Lithium–Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2107166. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Ma, T.; Zhang, Y.; Huang, H. 2D Graphitic Carbon Nitride for Energy Conversion and Storage. Adv. Funct. Mater. 2021, 31, 2102540. [Google Scholar] [CrossRef]
- Zuo, Y.; Xu, X.; Zhang, C.; Li, J.; Du, R.; Wang, X.; Han, X.; Arbiol, J.; Llorca, J.; Liu, J.; et al. SnS2/g-C3N4/Graphite Nanocomposites as Durable Lithium-Ion Battery Anode with High Pseudocapacitance Contribution. Electrochim. Acta 2020, 349, 136369. [Google Scholar] [CrossRef]
- Sun, W.; Song, Z.; Feng, Z.; Huang, Y.; Xu, Z.J.; Lu, Y.-C.; Zou, Q. Carbon-Nitride-Based Materials for Advanced Lithium–Sulfur Batteries. Nano-Micro Lett. 2022, 14, 222. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Yang, D.; Tang, P.; Zhang, C.; Biendicho, J.J.; Zhang, Y.; Llorca, J.; Wang, X.; Li, J.; Heggen, M.; et al. Atomically Dispersed Fe in a C2N Based Catalyst as a Sulfur Host for Efficient Lithium–Sulfur Batteries. Adv. Energy Mater. 2020, 11, 2003507. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, F.; Qin, Y.; Wang, N. Exfoliated Graphitic Carbon Nitride Nanosheets/Gold Nanoparticles/Spherical Montmorillonite Ternary Porous Heterostructures for the Degradation of Organic Dyes. ACS Appl. Nano Mater. 2020, 3, 7847–7857. [Google Scholar] [CrossRef]
- Du, R.; Xiao, K.; Li, B.; Han, X.; Zhang, C.; Wang, X.; Zuo, Y.; Guardia, P.; Li, J.; Chen, J.; et al. Controlled Oxygen Doping in Highly Dispersed Ni-Loaded g-C3N4 Nanotubes for Efficient Photocatalytic H2O2 Production. Chem. Eng. J. 2022, 441, 135999. [Google Scholar] [CrossRef]
- Jun, Y.-S.; Park, J.; Lee, S.U.; Thomas, A.; Hong, W.H.; Stucky, G.D. Three-Dimensional Macroscopic Assemblies of Low-Dimensional Carbon Nitrides for Enhanced Hydrogen Evolution. Angew. Chem. 2013, 125, 11289–11293. [Google Scholar] [CrossRef]
- Chen, F.; Liu, L.-L.; Wu, J.-H.; Rui, X.-H.; Chen, J.-J.; Yu, Y. Single-Atom Iron Anchored Tubular g-C3N4 Catalysts for Ultrafast Fenton-Like Reaction: Roles of High-Valency Iron-Oxo Species and Organic Radicals. Adv. Mater. 2022, 34, 2202891. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, Y.; Chen, M.; Shi, X.; Zhang, Y.; Cao, J.; Ho, W.; Lee, S.C. Roles of N-Vacancies over Porous g-C3N4 Microtubes during Photocatalytic NOx Removal. ACS Appl. Mater. Interfaces 2019, 11, 10651–10662. [Google Scholar] [CrossRef]
- Iqbal, O.; Ali, H.; Li, N.; Ansari, M.Z.; Al-Sulami, A.I.; Alshammari, K.F.; Abd-Rabboh, H.S.M.; Al-Hadeethi, Y.; Taha, T.A.; Zada, A.; et al. A Review on the Synthesis, Properties, and Characterizations of Graphitic Carbon Nitride (g-C3N4) for Energy Conversion and Storage Applications. Mater. Today Phys. 2023, 34, 101080. [Google Scholar] [CrossRef]
- Han, Z.; Wang, N.; Fan, H.; Ai, S. Ag Nanoparticles Loaded on Porous Graphitic Carbon Nitride with Enhanced Photocatalytic Activity for Degradation of Phenol. Solid State Sci. 2017, 65, 110–115. [Google Scholar] [CrossRef]
- Xue, J.; Ma, S.; Zhou, Y.; Zhang, Z.; He, M. Facile Photochemical Synthesis of Au/Pt/g-C3N4 with Plasmon-Enhanced Photocatalytic Activity for Antibiotic Degradation. ACS Appl. Mater. Interfaces 2015, 7, 9630–9637. [Google Scholar] [CrossRef]
- Liu, Y.; Han, J.; Zeng, X.; Tian, Z.; Yu, F.; Sun, X.; Liu, Q.; Wang, W. G-C3N4 Homophase Junction with High Crystallinity Using MoS2 as Cocatalyst for Robust Visible-Light-Driven Photocatalytic Pollutant Degradation. ChemistrySelect 2022, 7, e202103884. [Google Scholar] [CrossRef]
- Zhang, C.; Du, R.; Biendicho, J.J.; Yi, M.; Xiao, K.; Yang, D.; Zhang, T.; Wang, X.; Arbiol, J.; Llorca, J.; et al. Tubular CoFeP@CN as a Mott–Schottky Catalyst with Multiple Adsorption Sites for Robust Lithium−Sulfur Batteries. Adv. Energy Mater. 2021, 11, 2100432. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, S.; Hu, R.; Gu, J.; Cui, Y.; Li, B.; Chen, W.; Liu, C.; Shang, J.; Yang, S. Catalytic Conversion of Polysulfides on Single Atom Zinc Implanted MXene toward High-Rate Lithium–Sulfur Batteries. Adv. Funct. Mater. 2020, 30, 2002471. [Google Scholar] [CrossRef]
- Zhang, C.; Biendicho, J.J.; Zhang, T.; Du, R.; Li, J.; Yang, X.; Arbiol, J.; Zhou, Y.; Morante, J.R.; Cabot, A. Combined High Catalytic Activity and Efficient Polar Tubular Nanostructure in Urchin-Like Metallic NiCo2Se4 for High-Performance Lithium–Sulfur Batteries. Adv. Funct. Mater. 2019, 29, 1903842. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Zhou, G.; Lv, W.; Ling, G.; Zhi, L.; Yang, Q.-H. Catalytic Effects in Lithium–Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect. Adv. Sci. 2018, 5, 1700270. [Google Scholar] [CrossRef]
- Wang, P.; Xi, B.; Huang, M.; Chen, W.; Feng, J.; Xiong, S. Emerging Catalysts to Promote Kinetics of Lithium–Sulfur Batteries. Adv. Energy Mater. 2021, 11, 2002893. [Google Scholar] [CrossRef]
- Yang, D.; Liang, Z.; Zhang, C.; Biendicho, J.J.; Botifoll, M.; Spadaro, M.C.; Chen, Q.; Li, M.; Ramon, A.; Moghaddam, A.O.; et al. NbSe2 Meets C2N: A 2D-2D Heterostructure Catalysts as Multifunctional Polysulfide Mediator in Ultra-Long-Life Lithium–Sulfur Batteries. Adv. Energy Mater. 2021, 11, 2101250. [Google Scholar] [CrossRef]
- Zhang, T.; Shao, W.; Liu, S.; Song, Z.; Mao, R.; Jin, X.; Jian, X.; Hu, F. A Flexible Design Strategy to Modify Ti3C2Tx MXene Surface Terminations via Nucleophilic Substitution for Long-Life Li-S Batteries. J. Energy Chem. 2022, 74, 349–358. [Google Scholar] [CrossRef]
- Chen, Z.-X.; Zhang, Y.-T.; Bi, C.-X.; Zhao, M.; Zhang, R.; Li, B.-Q.; Huang, J.-Q. Premature Deposition of Lithium Polysulfide in Lithium–Sulfur Batteries. J. Energy Chem. 2023, 82, 507–512. [Google Scholar] [CrossRef]
- Fan, F.Y.; Carter, W.C.; Chiang, Y.-M. Mechanism and Kinetics of Li2S Precipitation in Lithium-Sulfur Batteries. Adv. Mater. 2015, 27, 5203–5209. [Google Scholar] [CrossRef]
- Yuan, H.; Peng, H.-J.; Li, B.-Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J.-Q.; Zhang, Q. Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate Lithium-Sulfur Batteries. Adv. Energy Mater. 2018, 9, 1802768. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Q.; Zhan, H. Supercapacitors Based on Reduced Graphene Oxide Nanofibers Supported Ni(OH)2 Nanoplates with Enhanced Electrochemical Performance. ACS Appl. Mater. Interfaces 2016, 8, 22977–22987. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Ma, X.; Han, X.; Xing, C.; Qi, X.; He, R.; Arbiol, J.; Pan, H.; Zhao, J.; et al. Selective Ethylene Glycol Oxidation to Formate on Nickel Selenide with Simultaneous Evolution of Hydrogen. Adv. Sci. 2023, 10, 2300841. [Google Scholar] [CrossRef]
- Zhao, M.; Tan, P.; Cai, D.; Liu, Y.; Zhang, C.; Fei, B.; Sa, B.; Chen, Q.; Zhan, H. Customizing Component Regulated Dense Heterointerfaces for Crafting Robust Lithium-Sulfur Batteries. Adv. Funct. Mater. 2023, 33, 2211505. [Google Scholar] [CrossRef]
- Fu, J.; Shen, Z.; Cai, D.; Fei, B.; Zhang, C.; Wang, Y.; Chen, Q.; Zhan, H. A Hierarchical VN/Co3ZnC@NCNT Composite as a Multifunctional Integrated Host for Lithium–Sulfur Batteries with Enriched Adsorption Sites and Accelerated Conversion Kinetics. J. Mater. Chem. A 2022, 10, 20525–20534. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Zhang, C.; Sun, G.W.; Pan, J.L.; Gong, L.; Sun, G.Z.; Biendicho, J.J.; Balcells, L.; Fan, X.L.; Morante, J.R.; et al. Spin Effect to Promote Reaction Kinetics and Overall Performance of Lithium-Sulfur Batteries under External Magnetic Field. Angew. Chem. Int. Ed. 2022, 61, e202211570. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, C.; Luo, Z.; Zhang, T.; Liu, J.; Li, J.; Zuo, Y.; Biendicho, J.J.; Llorca, J.; Arbiol, J.; et al. A Low Temperature Solid State Reaction to Produce Hollow MnxFe3-XO4 Nanoparticles as Anode for Lithium-Ion Batteries. Nano Energy 2019, 66, 104199. [Google Scholar] [CrossRef]
- Zhang, C.; Fei, B.; Yang, D.; Zhan, H.; Wang, J.; Diao, J.; Li, J.; Henkelman, G.; Cai, D.; Biendicho, J.J.; et al. Robust Lithium–Sulfur Batteries Enabled by Highly Conductive WSe2-Based Superlattices with Tunable Interlayer Space. Adv. Funct. Mater. 2022, 32, 2201322. [Google Scholar] [CrossRef]
- Qie, L.; Zu, C.; Manthiram, A. A High Energy Lithium-Sulfur Battery with Ultrahigh-Loading Lithium Polysulfide Cathode and Its Failure Mechanism. Adv. Energy Mater. 2016, 6, 1502459. [Google Scholar] [CrossRef]
- Yang, J.; Xu, L.; Li, S.; Peng, C. The Role of Titanium-Deficient Anatase TiO2 Interlayers in Boosting Lithium–Sulfur Battery Performance: Polysulfide Trapping, Catalysis and Enhanced Lithium Ion Transport. Nanoscale 2020, 12, 4645–4654. [Google Scholar] [CrossRef]
- Yang, D.; Liang, Z.; Tang, P.; Zhang, C.; Tang, M.; Li, Q.; Biendicho, J.J.; Li, J.; Heggen, M.; Dunin-Borkowski, R.E.; et al. A High Conductivity 1D π–d Conjugated Metal–Organic Framework with Efficient Polysulfide Trapping-Diffusion-Catalysis in Lithium–Sulfur Batteries. Adv. Mater. 2022, 34, 2108835. [Google Scholar] [CrossRef]
- Chu, R.; Nguyen, T.T.; Bai, Y.; Kim, N.H.; Lee, J.H. Uniformly Controlled Treble Boundary Using Enriched Adsorption Sites and Accelerated Catalyst Cathode for Robust Lithium–Sulfur Batteries. Adv. Energy Mater. 2022, 12, 2102805. [Google Scholar] [CrossRef]
- Lv, D.; Zheng, J.; Li, Q.; Xie, X.; Ferrara, S.; Nie, Z.; Mehdi, L.B.; Browning, N.D.; Zhang, J.-G.; Graff, G.L.; et al. High Energy Density Lithium–Sulfur Batteries: Challenges of Thick Sulfur Cathodes. Adv. Energy Mater. 2015, 5, 1402290. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Ju, Z.; Wang, L.; Hui, Z.; Mayilvahanan, K.; Takeuchi, K.J.; Marschilok, A.C.; West, A.C.; Takeuchi, E.S.; et al. From Fundamental Understanding to Engineering Design of High-Performance Thick Electrodes for Scalable Energy-Storage Systems. Adv. Mater. 2021, 33, 2101275. [Google Scholar] [CrossRef]
- Zheng, H.; Li, J.; Song, X.; Liu, G.; Battaglia, V.S. A Comprehensive Understanding of Electrode Thickness Effects on the Electrochemical Performances of Li-Ion Battery Cathodes. Electrochim. Acta 2012, 71, 258–265. [Google Scholar] [CrossRef]
- Dong, F.; Sun, Y.; Wu, L.; Fu, M.; Wu, Z. Facile Transformation of Low Cost Thiourea into Nitrogen-Rich Graphitic Carbon Nitride Nanocatalyst with High Visible Light Photocatalytic Performance. Catal. Sci. Technol. 2012, 2, 1332–1335. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Ho, W.; Zhang, Y.; Huang, H.; Cai, Q.; Dong, F. Highly Enhanced Visible-Light Photocatalytic NOx Purification and Conversion Pathway on Self-Structurally Modified g-C3N4 Nanosheets. Sci. Bull. 2018, 63, 609–620. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, G.; Lin, Z.; Wang, X. Condensed and Low-Defected Graphitic Carbon Nitride with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Appl. Catal. B Environ. 2016, 181, 413–419. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wu, G.; Chen, W. Porous Graphitic Carbon Nitride Synthesized via Direct Polymerization of Urea for Efficient Sunlight-Driven Photocatalytic Hydrogen Production. Nanoscale 2012, 4, 5300–5303. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Zhang, H.; Yu, Y.; Chen, Y.; Yan, J.; Li, X.; Zhang, H. Trithiocyanuric Acid Derived g–C3N4 for Anchoring the Polysulfide in Li–S Batteries Application. J. Energy Chem. 2020, 43, 71–77. [Google Scholar] [CrossRef]
- Li, X.; Hartley, G.; Ward, A.J.; Young, P.A.; Masters, A.F.; Maschmeyer, T. Hydrogenated Defects in Graphitic Carbon Nitride Nanosheets for Improved Photocatalytic Hydrogen Evolution. J. Phys. Chem. C 2015, 119, 14938–14946. [Google Scholar] [CrossRef]
- Xu, H.; Yan, J.; She, X.; Xu, L.; Xia, J.; Xu, Y.; Song, Y.; Huang, L.; Li, H. Graphene-Analogue Carbon Nitride: Novel Exfoliation Synthesis and Its Application in Photocatalysis and Photoelectrochemical Selective Detection of Trace Amount of Cu2+. Nanoscale 2014, 6, 1406–1415. [Google Scholar] [CrossRef]
- Ma, H.; Li, Y.; Li, S.; Liu, N. Novel PO Codoped G-C3N4 with Large Specific Surface Area: Hydrothermal Synthesis Assisted by Dissolution–Precipitation Process and Their Visible Light Activity under Anoxic Conditions. Appl. Surf. Sci. 2015, 357, 131–138. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Antonietti, M.; Zhang, Y. Facile One-Pot Synthesis of Nanoporous Carbon Nitride Solids by Using Soft Templates. ChemSusChem 2010, 3, 435–439. [Google Scholar] [CrossRef]
- Li, X.-H.; Wang, X.; Antonietti, M. Mesoporous G-C3N4 Nanorods as Multifunctional Supports of Ultrafine Metal Nanoparticles: Hydrogen Generation from Water and Reduction of Nitrophenol with Tandem Catalysis in One Step. Chem. Sci. 2012, 3, 2170–2174. [Google Scholar] [CrossRef]
- Lee, E.Z.; Jun, Y.-S.; Hong, W.H.; Thomas, A.; Jin, M.M. Cubic Mesoporous Graphitic Carbon(IV) Nitride: An All-in-One Chemosensor for Selective Optical Sensing of Metal Ions. Angew. Chem. 2010, 122, 9900–9904. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Z.; Yang, W.; Yan, X.; Guo, R.; Han, W.-Q. Facile Synthesis of RGO/g-C3N4/CNT Microspheres via an Ethanol-Assisted Spray-Drying Method for High-Performance Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2019, 11, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Nazar, L.F. Long-Life and High-Areal-Capacity Li–S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption. ACS Nano 2016, 10, 4111–4118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, Z.; Hou, Y.-N.; Tang, Y.; Dong, Y.; Wang, S.; Hu, X.; Zhang, Z.; Wang, X.; Qiu, J. Nanopore-Confined g-C3N4 Nanodots in N, S Co-Doped Hollow Porous Carbon with Boosted Capacity for Lithium–Sulfur Batteries. J. Mater. Chem. A 2018, 6, 7133–7141. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, X.; Li, J.; Han, T.; Zhu, M.; Xu, X.; Hu, C.; Liu, J. A Binder-Free Lithium-Sulfur Battery Cathode Using Three-Dimensional Porous g-C3N4 Nanoflakes as Sulfur Host Displaying High Binding Energies with Lithium Polysulfides. J. Alloys Compd. 2021, 881, 160629. [Google Scholar] [CrossRef]
- Wang, W.; Dong, W.; Hong, X.; Liu, Y.; Yang, S. Preparation of G-C3N4/CNTs Composite by Dissolution-Precipitation Method as Sulfur Host for High-Performance Lithium-Sulfur Batteries. Mater. Chem. Phys. 2022, 283, 126014. [Google Scholar] [CrossRef]
- Moon, S.-H.; Shin, J.-H.; Kim, J.-H.; Jang, J.-S.; Kim, S.-B.; Park, Y.-Y.; Lee, S.-N.; Park, K.-W. Polypyrrole Coated G-C3N4/RGO/S Composite as Sulfur Host for High Stability Lithium-Sulfur Batteries. Mater. Chem. Phys. 2022, 287, 126267. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Du, R.; Martí-Sánchez, S.; Xiao, K.; Yang, D.; Zhang, C.; Li, C.; Zeng, G.; Chang, X.; He, R.; et al. Tubular C3N4 Nanotubes as Metal-Free Sulfur Hosts toward Stable Lithium–Sulfur Batteries. Energies 2023, 16, 4545. https://doi.org/10.3390/en16124545
Zhang C, Du R, Martí-Sánchez S, Xiao K, Yang D, Zhang C, Li C, Zeng G, Chang X, He R, et al. Tubular C3N4 Nanotubes as Metal-Free Sulfur Hosts toward Stable Lithium–Sulfur Batteries. Energies. 2023; 16(12):4545. https://doi.org/10.3390/en16124545
Chicago/Turabian StyleZhang, Chaoqi, Ruifeng Du, Sara Martí-Sánchez, Ke Xiao, Dawei Yang, Chaoyue Zhang, Canhuang Li, Guifang Zeng, Xingqi Chang, Ren He, and et al. 2023. "Tubular C3N4 Nanotubes as Metal-Free Sulfur Hosts toward Stable Lithium–Sulfur Batteries" Energies 16, no. 12: 4545. https://doi.org/10.3390/en16124545
APA StyleZhang, C., Du, R., Martí-Sánchez, S., Xiao, K., Yang, D., Zhang, C., Li, C., Zeng, G., Chang, X., He, R., Arbiol, J., Li, J., Jacas Biendicho, J., & Cabot, A. (2023). Tubular C3N4 Nanotubes as Metal-Free Sulfur Hosts toward Stable Lithium–Sulfur Batteries. Energies, 16(12), 4545. https://doi.org/10.3390/en16124545