Review of Biofuel Effect on Emissions of Various Types of Marine Propulsion and Auxiliary Engines
Abstract
:1. Introduction
2. Overview of Biofuel Effect on Engine Fuel Consumption and NOx Emissions
3. Measurement Particulars
4. Results
4.1. Propulsion Two-Stroke Low-Speed Engines
4.1.1. Performance Effect on Two-Stroke Low-Speed Engines
4.1.2. Emissions of Two-Stroke Low-Speed Engines
4.2. Auxiliary Four-Stroke Medium-Speed Generators
4.2.1. Performance Effect on Four-Stroke Medium-Speed Generators
4.2.2. Emissions of Four-Stroke Medium-Speed Generators
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
CI | Compression ignition |
CN | Cetane number |
FAME | Fatty acid methyl ester |
FC | Fuel consumption |
GHG | Greenhouse gas |
HFO | Heavy fuel oil |
IMO | International Maritime Organization |
ISO | International Organization for Standardization |
LCV | Lower calorific value |
MGO | Marine gas oil |
Pcomp | Compression pressure |
Pmax | Maximum combustion pressure |
Pscav | Scavenging pressure |
BSFC | Brake specific diesel fuel consumption |
SOI | Start of injection |
VLSFO | Very-low-sulfur fuel oil |
ΔP | Pressure increase due to combustion |
References
- Lloyd’s Register. IMO GHG Strategy–What Does It Mean? 2018. Available online: https://www.lr.org/en/insights/articles/imo-ghg-strategy-what-does-it-mean/ (accessed on 20 March 2023).
- IMO. Initial IMO GHG Strategy. International Maritime Organization. 2022. Available online: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx (accessed on 20 March 2023).
- Sou, W.S.; Goh, T.; Lee, X.N.; Ng, S.H.; Chai, K.H. Reducing the carbon intensity of international shipping–The impact of energy efficiency measures. Energy Policy 2022, 170, 113239. [Google Scholar] [CrossRef]
- IMO. Rules on Ship Carbon Intensity and Rating System Enter into Force. IMO. 2022. Available online: https://www.imo.org/en/MediaCentre/PressBriefings/pages/CII-and-EEXI-entry-into-force.aspx (accessed on 20 March 2023).
- Chuah, L.F.; Mokhtar, K.; Ruslan, S.M.M.; Abu Bakar, A.; Abdullah, M.A.; Osman, N.H.; Bokhari, A.; Mubashir, M.; Show, P.L. Implementation of the energy efficiency existing ship index and carbon intensity indicator on domestic ship for marine environmental protection. Environ. Res. 2023, 222, 115348. [Google Scholar] [CrossRef]
- Comer, B.; Chen, C.; Rutherford, D. Relating Short-Term Measures to IMO’ s Minimum 2050 Emissions Reduction Target. ICCT Working Paper 2018-13. 2018. Available online: https://theicct.org/wp-content/uploads/2021/06/IMO_Short_term_potential_20181011.pdf%0Ahttps://www.theicct.org/sites/default/files/publications/IMO_Short_term_potential_20181011.pdf (accessed on 20 March 2023).
- IMO Symposium on Alternative Low- and Zero-Carbon Fuels for Shipping. Available online: https://www.imo.org/en/About/Events/Pages/IMO-Symposium-on-alternative-low--and-zero-carbon-fuels-for-shipping-2022.aspx (accessed on 20 March 2023).
- Kass, M.D.; Abdullah, Z.; Biddy, M.J.; Drennan, C.; Haq, Z.; Hawkins, T.; Jones, S.; Holliday, J.; Longman, D.E.; Menter, S.; et al. Understanding the Opportunities of Biofuels for Marine Shipping. 2018. Available online: www.osti.gov (accessed on 20 March 2023).
- Li, S.; Tan, E.C.D.; Dutta, A.; Snowden-Swan, L.J.; Thorson, M.R.; Ramasamy, K.K. Techno-economic Analysis of Sustainable Biofuels for Marine Transportation. Environ. Sci. Technol. 2022, 56, 17206–17214. Available online: https://pubs.acs.org/doi/full/10.1021/acs.est.2c03960 (accessed on 20 March 2023). [CrossRef]
- Tan, E.C.D.; Harris, K.; Tifft, S.M.; Steward, D.; Kinchin, C.; Thompson, T.N. Adoption of biofuels for marine shipping decarbonization: A long-term price and scalability assessment. Biofuels Bioprod. Biorefining 2022, 16, 942–961. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/bbb.2350 (accessed on 20 March 2023). [CrossRef]
- Mukherjee, A.; Bruijnincx, P.; Junginger, M. A Perspective on Biofuels Use and CCS for GHG Mitigation in the Marine Sector. iScience 2020, 23, 101758. [Google Scholar] [CrossRef]
- Mat Aron, N.S.; Khoo, K.S.; Chew, K.W.; Show, P.L.; Chen, W.; Nguyen, T.H.P. Sustainability of the four generations of biofuels–A review. Int. J. Energy Res. 2020, 44, 9266–9282. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/er.5557 (accessed on 20 March 2023). [CrossRef]
- Mohr, A.; Raman, S. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 2015, 63, 281–310. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Alminshid, A.H.; Aljaafari, H.A.S. Promising evolution of biofuel generations. Subject review. Renew Energy Focus 2019, 28, 127–139. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1755008418303259 (accessed on 20 March 2023). [CrossRef]
- Noor, C.M.; Noor, M.M.; Mamat, R. Biodiesel as alternative fuel for marine diesel engine applications: A review. Renew. Sustain. Energy Rev. Pergamon 2018, 94, 127–142. [Google Scholar] [CrossRef]
- Lin, C.Y. Effects of biodiesel blend on marine fuel characteristics for marine vessels. Energies 2013, 6, 4945–4955. Available online: https://www.mdpi.com/1996-1073/6/9/4945/htm (accessed on 20 March 2023). [CrossRef] [Green Version]
- Rakopoulos, C.D.; Hountalas, D.T.; Zannis, T.C.; Levendis, Y.A. Operational and Environmental Evaluation of Diesel Engines Burning Oxygen-Enriched Intake Air or Oxygen-Enriched Fuels: A Review. SAE Trans. 2004, 113, 1723–1743. Available online: http://www.jstor.org/stable/44740884 (accessed on 20 March 2023).
- Aydin, H.; Bayindir, H. Performance and emission analysis of cottonseed oil methyl ester in a diesel engine. Renew Energy 2010, 35, 588–592. [Google Scholar] [CrossRef]
- Panoutsou, C.; Germer, S.; Karka, P.; Papadokostantakis, S.; Kroyan, Y.; Wojcieszyk, M.; Maniatis, K.; Marchand, P.; Landalv, I. Advanced biofuels to decarbonise European transport by 2030: Markets, challenges, and policies that impact their successful market uptake. Energy Strateg. Rev. 2021, 34, 100633. [Google Scholar] [CrossRef]
- Stathatou, P.M.; Bergeron, S.; Fee, C.; Jeffrey, P.; Triantafyllou, M.; Gershenfeld, N. Towards decarbonization of shipping: Direct emissions & life cycle impacts from a biofuel trial aboard an ocean-going dry bulk vessel. Sustain. Energy Fuels 2022, 6, 1687–1697. Available online: https://pubs.rsc.org/en/content/articlehtml/2022/se/d1se01495a (accessed on 20 March 2023).
- Chountalas, T.D.; Founti, M.; Tsalavoutas, I. Evaluation of biofuel effect on performance & emissions of a 2-stroke marine diesel engine using on-board measurements. Energy 2023, 278, 127845. [Google Scholar] [CrossRef]
- Wei, L.; Cheng, R.; Mao, H.; Geng, P.; Zhang, Y.; You, K. Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends. Energy 2018, 144, 73–80. Available online: https://www.sciencedirect.com/science/article/pii/S0360544217320315 (accessed on 20 March 2023). [CrossRef]
- Aydın, S. Comprehensive analysis of combustion, performance and emissions of power generator diesel engine fueled with different source of biodiesel blends. Energy 2020, 205, 118074. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0360544220311816 (accessed on 31 January 2023). [CrossRef]
- Wu, G.; Jiang, G.; Yang, Z.; Huang, Z. Emission characteristics for waste cooking oil biodiesel blend in a marine diesel propulsion engine. Pol. J. Environ. Stud. 2019, 28, 2911–2921. Available online: http://www.pjoes.com/Emission-Characteristics-for-Waste-Cooking-Oil-nBiodiesel-Blend-in-a-Marine-Diesel,92704,0,2.html (accessed on 30 March 2023). [CrossRef]
- Boubahri, C.; Ridha, E.; Rachid, S.; Jamel, B. Experimental study of a diesel engine performance running on waste vegetable oil biodiesel blend. J. Energy Resour. Technol. Trans. ASME 2012, 134, 032202. Available online: https://asmedigitalcollection.asme.org/energyresources/article/134/3/032202/465055/Experimental-Study-of-a-Diesel-Engine-Performance (accessed on 21 March 2023).
- Love, N.D.; Parthasarathy, R.N.; Gollahalli, S.R. Rapid characterization of radiation and pollutant emissions of biodiesel and hydrocarbon liquid fuels. J. Energy Resour. Technol. Trans. ASME 2009, 131, 012202. Available online: https://asmedigitalcollection.asme.org/energyresources/article/131/1/012202/455601/Rapid-Characterization-of-Radiation-and-Pollutant (accessed on 21 March 2023). [CrossRef]
- Puškár, M.; Kopas, M.; Sabadka, D.; Kliment, M.; Šoltésová, M. Reduction of the gaseous emissions in the marine diesel engine using biodiesel mixtures. J. Mar. Sci. Eng. 2020, 8, 330. Available online: https://www.mdpi.com/2077-1312/8/5/330/htm (accessed on 21 March 2023). [CrossRef]
- Nishio, S.; Fukuda, T.; Fathallah, A.Z.M.; Setiapraja, H. Influence of Palm Biofuel for Marine Diesel Engine on Combustion and Exhaust Emission Characteristics. Mar. Eng. 2018, 53, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Kalligeros, S.; Zannikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G.; Teas, C.; Sakellaropoulos, F. An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass Bioenerg. 2003, 24, 141–149. [Google Scholar] [CrossRef]
- Wu, F.; Wang, J.; Chen, W.; Shuai, S. A study on emission performance of a diesel engine fueled with five typical methyl ester biodiesels. Atmos. Environ. 2009, 43, 1481–1485. [Google Scholar] [CrossRef]
- Mofijur, M.; Rasul, M.; Hassan, N.M.S.; Uddin, M.N. Investigation of exhaust emissions from a stationary diesel engine fuelled with biodiesel. In Energy Procedia; Elsevier: Amsterdam, The Netherlands, 2019; pp. 791–797. [Google Scholar]
- Sagin, S.; Karianskyi, S.; Madey, V.; Sagin, A.; Stoliaryk, T.; Tkachenko, I. Impact of Biofuel on the Environmental and Economic Performance of Marine Diesel Engines. J. Mar. Sci. Eng. 2023, 11, 120. Available online: https://www.mdpi.com/2077-1312/11/1/120/htm (accessed on 21 March 2023). [CrossRef]
- Zheng, M.; Mulenga, M.C.; Reader, G.T.; Wang, M.; Ting, D.S.K.; Tjong, J. Biodiesel engine performance and emissions in low temperature combustion. Fuel 2008, 87, 714–722. [Google Scholar] [CrossRef]
- Varatharajan, K.; Cheralathan, M. Influence of fuel properties and composition on NO x emissions from biodiesel powered diesel engines: A review. Renew. Sustain. Energy Rev. Pergamon 2012, 16, 3702–3710. [Google Scholar] [CrossRef]
- Mueller, C.J.; Boehman, A.L.; Martin, G.C. An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel. SAE Int. J. Fuels Lubr. 2009, 2, 789–816. Available online: http://www.jstor.org/stable/26273427 (accessed on 20 March 2023). [CrossRef] [Green Version]
- Sun, J.; Caton, J.A.; Jacobs, T.J. Oxides of nitrogen emissions from biodiesel-fuelled diesel engines. Prog. Energy Combust Sci. 2010, 36, 677–695. Available online: https://www.sciencedirect.com/science/article/pii/S0360128510000237 (accessed on 20 March 2023). [CrossRef]
- Hoekman, S.K.; Robbins, C. Review of the effects of biodiesel on NOx emissions. Fuel Process Technol. 2012, 96, 237–249. Available online: https://www.sciencedirect.com/science/article/pii/S0378382012000021 (accessed on 20 March 2023). [CrossRef]
- Rickeard, D.J.; Thompson, N.D. A Review of the Potential for Bio-Fuels as Transportation Fuels. In SAE Technical Papers. SAE International. 1993. Available online: https://www.sae.org/publications/technical-papers/content/932778/ (accessed on 23 March 2023).
- Monyem, A.; van Gerpen, J.H.; Canakci, M. The effect of timing and oxidation on emissions from biodiesel-fueled engines. Trans. Am. Soc. Agric. Eng. 2001, 44, 35–42. Available online: https://elibrary.asabe.org/azdez.asp?JID=3&AID=2301&CID=t2001&v=44&i=1&T=1 (accessed on 22 March 2023). [CrossRef]
- Pandey, R.K.; Rehman, A.; Sarviya, R.M. Impact of alternative fuel properties on fuel spray behavior and atomization. Renew. Sustain. Energy Rev. Pergamon 2012, 16, 1762–1778. [Google Scholar] [CrossRef]
- Agarwal, D.; Sinha, S.; Agarwal, A.K. Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine. Renew Energy 2006, 31, 2356–2369. Available online: https://www.sciencedirect.com/science/article/pii/S0960148105003587 (accessed on 20 March 2023). [CrossRef]
- Rajkumar, S.; Thangaraja, J. Effect of biodiesel, biodiesel binary blends, hydrogenated biodiesel and injection parameters on NOx and soot emissions in a turbocharged diesel engine. Fuel 2019, 240, 101–118. Available online: https://www.sciencedirect.com/science/article/pii/S0016236118320350 (accessed on 20 March 2023). [CrossRef]
- Rajak, U.; Nashine, P.; Dasore, A.; Balijepalli, R.; Chaurasiya, P.K.; Verma, T.N. Numerical analysis of performance and emission behavior of CI engine fueled with microalgae biodiesel blend. Mater Today Proc. 2022, 49, 301–306. [Google Scholar] [CrossRef]
- Aro, E.M. From first generation biofuels to advanced solar biofuels. Ambio 2016, 45, 24–31. Available online: https://link.springer.com/article/10.1007/s13280-015-0730-0 (accessed on 20 March 2023). [CrossRef] [Green Version]
- Moravvej, Z.; Makarem, M.A.; Rahimpour, M.R. The fourth generation of biofuel. In Second and Third Generation of Feedstocks: The Evolution of Biofuels; Elsevier: Amsterdam, The Netherlands, 2019; pp. 557–597. [Google Scholar] [CrossRef]
- International Energy Agency. State of Technology Review-Algae Bioenergy an IEA Bioenergy Inter-Task Strategic Project. 2017. Available online: https://www.ieabioenergy.com/blog/publications/state-of-technology-review-algae-bioenergy/ (accessed on 20 March 2023).
- Lloyd’s Register. NOx from Marine Diesel Engines Using Biofuels NOx from Marine Diesel Engines Using Biofuels. 2022. Available online: https://www.lr.org/en/reports/nox-from-marine-diesel-engines-using-biofuels/ (accessed on 20 March 2023).
- International Maritime Organization. MEPC.1/Circ.795/Rev.7, London, 2022. Available online: https://www.classnk.or.jp/hp/pdf/activities/statutory/soxpm/mepc1circ795rev7.pdf (accessed on 8 June 2023).
- Testo Inc. Testo 350 Flue Gas Analyzer: Instruction Manual. 2020. Available online: https://static-int.testo.com/media/d1/56/d4836ea87dd7/testo-350-Instruction-Manual.pdf (accessed on 8 June 2023).
- International Maritime Organization. NOx Technical Code 2008, Technical Code on Control of Emission of Nitrogen Oxides from Marine Diesel Engines. 2008. Available online: https://www.imorules.com/NOX2008.html (accessed on 8 June 2023).
- Chountalas, T.; Founti, M. Effect of Low-Sulfur Fuel on Auxiliary Engine Combustion and Performance. In Proceedings of the SNAME 7th International Symposium on Ship Operations, Management and Economics, Virtual, 6–7 April 2021. [Google Scholar]
- Hsieh, C.-W.C.; Felby, C. Biofuels for the Marine Shipping Sector: An Overview and Analysis of Sector Infrastructure, Fuel Technologies and Regulations. 2017. Available online: https://www.ieabioenergy.com/wp-content/uploads/2018/02/Marine-biofuel-report-final-Oct-2017.pdf (accessed on 27 April 2023).
Instrument | Measured Parameter | Range | Accuracy |
---|---|---|---|
Torquemeter | Torque | 0–250 rpm | <0.5% |
Speed | 0.1 rpm | ||
Power Meter | Electrical Power | 0.1 kW | |
Coriolis Mass Flowmeter | Fuel Consumption | 0–10,000 kg/h | 0.30% |
Volumetric Flowmeter | Fuel Consumption | 0–2500 L/min | 1.50% |
Cylinder Pressure Sensor | Cylinder Pressure | 0–250 Bar | 0.50% |
Scavenge Pressure Sensor | Scavenging air Pressure | 0–10 Bar | 0.10% |
Scavenge Temperature Sensor | Scavenging air Temperature | −10–80 °C | 0.2 °C |
Exhaust Temperature Sensor | Exhaust Gas Temperature | −10–600 °C | 0.5 °C |
Instrument | Measured Parameter | Range | Accuracy |
---|---|---|---|
Testo 350 Maritime | CO2 | 0–25 %vol | ±0.3 %vol |
O2 | 0–25 %vol | ±0.3 %vol | |
NOx | <100–1999 ppm | ±5% | |
CO | 0–10,000 ppm | ±5% | |
SO2 | 0–5000 ppm | ±5% | |
Ambient pressure, absolute | 600–1150 hPa | ±10 hPa | |
Humidity Meter | Ambient Humidity | 0–100 %RH | ±2% |
Engine No. | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Cylinder No. | 6 | 6 | 6 | 6 | 6 |
Rated Speed (rpm) | 75 | 77 | 85.5 | 89 | 89 |
Rated Power (kW) | 15,748 | 10,215 | 16,780 | 9660 | 9660 |
Bore (mm) | 700 | 600 | 700 | 600 | 600 |
Stroke (mm) | 3256 | 2790 | 2800 | 2400 | 2400 |
Electronic Control | Yes | Yes | Yes | Yes | Yes |
Fuels Tested | B30, HFO, MGO | B30, VLSFO, MGO | B30, VLSFO | B30, VLSFO | B30 |
Engine No. | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Cylinder No. | 6 | 6 | 6 | 6 | 6 |
Rated Speed (rpm) | 900 | 900 | 900 | 900 | 900 |
Rated Power (kW) | 970 | 970 | 1710 | 610 | 610 |
Bore (mm) | 220 | 220 | 210 | 185 | 185 |
Stroke (mm) | 320 | 320 | 320 | 280 | 280 |
Fuels Tested | B30, HFO, MGO | B30, HFO, MGO | B30, VLSFO | B30 | B30 |
Units Tested (#) | 1 | 1, 3 | 2, 3 | 1 | 1 |
Vessel No. | 1 | 2 | 3 | 4 | 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fuel Type | B30 | VLSFO | MGO | B30 | HFO | MGO | B30 | VLSFO | B30 | VLSFO | B30 |
LCV (kcal/kg) | 9563.3 | 9864.3 | 10,122.3 | 9575.23 | 9548.95 | 10,172.49 | 9608.27 | 9790.24 | 9981.37 | 9904.92 | 9981.37 |
Density @ 15 °C (kg/m3) | 930.2 | 970 | 880.2 | 930 | 989.7 | 863.1 | 929.5 | 979.6 | 939.6 | 956.1 | 934.9 |
Viscosity @ 50 °C (cSt) | 38.37 | 154.7 | 3.812 | 38.66 | 357.8 | 3.591 | 37.7 | 37.7 | 6.7 | 194.8 | 44.7 |
Sulfur (%m/m) | 36 | 0.45 | 0.069 | 0.35 | 3.23 | 0.078 | 0.36 | 0.47 | 0.34 | 0.47 | 0.48 |
CCAI | 821 | 841 | - | 820 | 851 | - | 818 | 870 | 867 | 824 | 823 |
Cetane No. | - | - | 41 | - | - | 47 | - | - | - | - | - |
Carbon (%m/m) | 84.4 | 86.9 | 87.4 | 83.7 | 84.3 | 87.6 | 81.9 | 86.9 | 82.1 | 85.8 | 80.5 |
Hydrogen (%m/m) | 11.9 | 11.1 | 12.6 | 11.8 | 10.3 | 12.1 | 12.2 | 11.1 | 10.6 | 12.1 | 10.8 |
Nitrogen (%m/m) | 0.2 | 0.4 | 0.11 | 0.48 | 0.41 | <0.10 | 0.5 | 0.4 | 0.2 | 0.45 | 0.2 |
Oxygen (%m/m) | 3.22 | <0.2 | <0.2 | 3.67 | 1.76 | 0.22 | 4.69 | 0.2 | 1.6 | <0.2 | 3.1 |
FAME (%V/V) | 28.31 | <0.1 | <0.1 | 29.7 | <0.10 | 0.2 | 34.15 | <0.10 | 25 | <0.10 | 28.54 |
B30 | B30 | ||||||||||
9981.37 | 9981.37 | ||||||||||
934.9 | 934.9 | ||||||||||
44.7 | 44.7 | ||||||||||
0.48 | 0.48 | ||||||||||
823 | 823 | ||||||||||
- | - | ||||||||||
80.5 | 80.5 | ||||||||||
10.8 | 10.8 | ||||||||||
0.2 | 0.2 | ||||||||||
3.1 | 3.1 | ||||||||||
28.54 | 28.54 | ||||||||||
B30 | B30 |
Engine 1 | Engine 2 | |||||||
Specific Emissions (%) | 25% Load | 50% Load | 75% Load | Total Weighted | 25% Load | 50% Load | 75% Load | Total Weighted |
Reference | −0.47 | 3.65 | 3.22 | 9.89 | −6.85 | 12.85 | −5.06 | 4.20 |
Gas Oil | 6.42 | 7.87 | 6.96 | 7.07 | - | - | - | - |
Crude Oil | 7.90 | −0.06 | 2.67 | 2.61 | −2.30 | −0.79 | −1.96 | −1.90 |
Pmax (bar) | ||||||||
Reference | −4.50 | −3.30 | −3.10 | 5.00 | 1.60 | 2.50 | ||
Gas Oil | −2.20 | −0.10 | −1.60 | - | - | - | ||
Crude Oil | −1.30 | −1.40 | 2.20 | −0.50 | −0.30 | −1.10 | ||
ΔP (bar) | ||||||||
Reference | −2.70 | −2.00 | 5.10 | 3.30 | −2.50 | 5.10 | ||
Gas Oil | 0.80 | 2.10 | 2.60 | - | - | - | ||
Crude Oil | −0.40 | −2.30 | 2.70 | −0.50 | −3.00 | 1.80 | ||
Engine 3 | Engine 4 | |||||||
Specific Emissions (%) | 25% Load | 50% Load | 75% Load | Total Weighted | 25% Load | 50% Load | 75% Load | Total Weighted |
Reference | 29.05 | 4.14 | 8.10 | 16.27 | 24.09 | −0.07 | 10.53 | 17.09 |
Crude Oil | 7.90 | 10.25 | 13.45 | 11.77 | - | - | - | - |
Pmax (bar) | ||||||||
Refrence | 3.10 | −8.80 | −2.50 | −15.20 | −0.80 | −2.40 | ||
Crude Oil | −4.90 | −3.30 | −1.10 | - | - | - | ||
ΔP (bar) | ||||||||
Reference | 0.70 | 6.10 | 7.40 | −18.90 | −5.30 | 2.80 | ||
Gas Oil | 3.10 | 2.00 | 2.70 | - | - | - | ||
Engine 5 | ||||||||
Specific Emissions (%) | 25% Load | 50% Load | 75% Load | Total Weighted | ||||
Reference | −0.30 | −16.67 | −5.15 | −0.14 | ||||
Gas Oil | 10.66 | −17.34 | −9.47 | −9.40 | ||||
Crude Oil | 15.37 | −1.25 | −0.08 | 0.97 | ||||
Pmax (bar) | ||||||||
Reference | 6.10 | −5.50 | −2.00 | |||||
Gas Oil | −8.50 | −14.90 | −8.30 | |||||
Crude Oil | −3.90 | −8.60 | −0.20 | |||||
ΔP (bar) | ||||||||
Reference | 3.00 | 0.60 | 2.30 | |||||
Gas Oil | −2.40 | −5.10 | −2.10 | |||||
Crude Oil | −0.70 | −4.20 | 0.90 |
Auxiliary Generator 1 | Auxiliary Generator 2 | |||||||
Specific Emissions (%) | 25% Load | 50% Load | 75% Load | Total Weighted | 25% Load | 50% Load | 75% Load | Total Weighted |
Reference | −13.12 | 1.45 | 10.59 | 3.86 | −1.06 | −6.3 | −8.54 | −6.34 |
Gas Oil | 2.15 | 6.55 | 9.18 | 7.03 | - | - | - | - |
Crude Oil | 10.62 | 17.4 | 12.44 | 13.97 | −9.23 | −3.99 | −10.8 | −8.11 |
Pmax | ||||||||
Reference | −2.5 | −8.1 | −19.5 | −2.6 | −11.3 | −16.6 | ||
Gas Oil | 0.9 | 2.9 | 4 | - | - | - | ||
Crude Oil | −5.4 | 3.8 | 3.8 | −2.1 | −7.5 | −5.2 | ||
ΔP | ||||||||
Reference | 1.9 | −3.2 | −5.6 | −4.4 | −12.6 | −19.4 | ||
Gas Oil | 0.4 | 1.5 | 2.9 | |||||
Crude Oil | −5.6 | 5.1 | 3.3 | −3.4 | −8 | −4.6 | ||
Auxiliary Generator 3 | Auxiliary Generator 4 | |||||||
Specific Emissions (%) | 25% Load | 50% Load | 75% Load | Total Weighted | 25% Load | 50% Load | 75% Load | Total Weighted |
Reference | 32.13 | 8.37 | −1.49 | 6.82 | −4.52 | - | 5.87 | 5.11 |
Crude Oil | 18.6 | −6.76 | −12.33 | −5.69 | - | - | - | - |
Pmax (bar) | ||||||||
Reference | 1.7 | −1.1 | −1.7 | 8.7 | - | 14.3 | ||
Crude Oil | −1 | −5.5 | −3.3 | - | - | - | ||
ΔP (bar) | ||||||||
Reference | −8.1 | −17 | −20.5 | 8.7 | - | 16.3 | ||
Crude Oil | −2.9 | −9 | −7.5 | - | - | - | ||
Auxiliary Generator 5 | ||||||||
Specific Emissions (%) | 25% Load | 50% Load | 75% Load | Total Weighted | ||||
Reference | - | 19.35 | −10.41 | −1.9 | ||||
Pmax (bar) | ||||||||
Reference | - | 18.7 | 8.6 | |||||
ΔP (bar) | ||||||||
Reference | - | 19.2 | −3.3 | |||||
Auxiliary Generator 6 | Auxiliary Generator 7 | |||||||
Specific Emissions (%) | 25% Load | 50% Load | 75% Load | Total Weighted | 25% Load | 50% Load | 75% Load | Total Weighted |
Reference | −24.45 | −21.11 | −19.5 | −19.98 | −25.83 | −27.57 | −26.4 | −25.75 |
Gas Oil | −3.52 | 10.08 | 13.7 | 9.08 | −3.29 | 13.36 | 22.84 | 12.97 |
Crude Oil | −1.64 | 6.34 | −1.58 | 1.12 | 15.56 | 16.75 | 4.43 | 10.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chountalas, T.D.; Founti, M.; Hountalas, D.T. Review of Biofuel Effect on Emissions of Various Types of Marine Propulsion and Auxiliary Engines. Energies 2023, 16, 4647. https://doi.org/10.3390/en16124647
Chountalas TD, Founti M, Hountalas DT. Review of Biofuel Effect on Emissions of Various Types of Marine Propulsion and Auxiliary Engines. Energies. 2023; 16(12):4647. https://doi.org/10.3390/en16124647
Chicago/Turabian StyleChountalas, Theofanis D., Maria Founti, and Dimitrios T. Hountalas. 2023. "Review of Biofuel Effect on Emissions of Various Types of Marine Propulsion and Auxiliary Engines" Energies 16, no. 12: 4647. https://doi.org/10.3390/en16124647
APA StyleChountalas, T. D., Founti, M., & Hountalas, D. T. (2023). Review of Biofuel Effect on Emissions of Various Types of Marine Propulsion and Auxiliary Engines. Energies, 16(12), 4647. https://doi.org/10.3390/en16124647