GA-Based Voltage Optimization of Distribution Feeder with High-Penetration of DERs Using Megawatt-Scale Units
Abstract
:1. Introduction
2. Description of the Feeder
3. Proposed Optimization Scheme
3.1. GA Optimization
3.2. OpenDSS MATLAB Co-Simulation Scheme
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, W.; Chou, S.-C.; Viswanathan, K. Optimal Dispatching of Smart Hybrid Energy Systems for Addressing a Low-Carbon Community. Energies 2023, 16, 3698. [Google Scholar] [CrossRef]
- Laribi, O.; Rudion, K. Optimized Planning of Distribution Grids Considering Grid Expansion, Battery Systems and Dynamic Curtailment. Energies 2021, 14, 5242. [Google Scholar] [CrossRef]
- Riaz, M.; Ahmad, S.; Hussain, I.; Naeem, M.; Mihet-Popa, L. Probabilistic Optimization Techniques in Smart Power System. Energies 2022, 15, 825. [Google Scholar] [CrossRef]
- Peng, F.Z. Flexible AC Transmission Systems (FACTS) and Resilient AC Distribution Systems (RACDS) in Smart Grid. Proc. IEEE 2017, 105, 2099–2115. [Google Scholar] [CrossRef]
- Bloemink, J.M.; Green, T.C. Benefits of Distribution-Level Power Electronics for Supporting Distributed Generation Growth. IEEE Trans. Power Deliv. 2013, 28, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Chawda, G.S.; Shaik, A.G.; Mahela, O.P.; Padmanaban, S.; Holm-Nielsen, J.B. Comprehensive Review of Distributed FACTS Control Algorithms for Power Quality Enhancement in Utility Grid with Renewable Energy Penetration. IEEE Access 2020, 8, 107614–107634. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Yue, D.; Dou, C.; Ding, L.; Tan, D. Voltage Regulation with High Penetration of Low-Carbon Energy in Distribution Networks: A Source–Grid–Load-Collaboration-Based Perspective. IEEE Trans. Ind. Inform. 2022, 18, 3987–3999. [Google Scholar] [CrossRef]
- Fazio, A.R.D.; Risi, C.; Russo, M.; Santis, M.D. Distributed Coordinated Reactive Power Control for Voltage Regulation in Distribution Networks. IEEE Trans. Smart Grid 2020, 12, 312–323. [Google Scholar]
- Tang, Z.; Hill, D.J.; Liu, T. Coordinated Optimization for Zone-Based Voltage Control in Distribution Grids. IEEE Trans. Ind. Appl. 2022, 58, 173–184. [Google Scholar]
- Liu, Y.; Guo, L.; Lu, C.; Chai, Y.; Gao, S.; Xu, B. A Fully Distributed Voltage Optimization Method for Distribution Networks Considering Integer Constraints of Step Voltage Regulators. IEEE Access 2019, 7, 60055–60066. [Google Scholar] [CrossRef]
- Tziovani, L.; Hadjidemetriou, L.; Kolios, P.; Astolfi, A.; Kyriakides, E.; Timotheou, S. Energy Management and Control of Photovoltaic and Storage Systems in Active Distribution Grids. IEEE Trans. Power Syst. 2022, 37, 1956–1968. [Google Scholar] [CrossRef]
- Rayati, M.; Bozorg, M.; Cherkaoui, R.; Carpita, M. Distributionally Robust Chance Constrained Optimization for Providing Flexibility in an Active Distribution Network. IEEE Trans. Smart Grid 2022, 13, 2920–2934. [Google Scholar] [CrossRef]
- Adetunji, K.E.; Hofsajer, I.W.; Abu-Mahfouz, A.M.; Cheng, L. A Review of Metaheuristic Techniques for Optimal Integration of Electrical Units in Distribution Networks. IEEE Access 2021, 9, 5046–5068. [Google Scholar] [CrossRef]
- Menesy, A.S.; Sultan, H.M.; Habiballah, I.O.; Masrur, H.; Khan, K.R.; Khalid, M. Optimal Configuration of a Hybrid Photovoltaic/Wind Turbine/Biomass/Hydro-Pumped Storage-Based Energy System Using a Heap-Based Optimization Algorithm. Energies 2023, 16, 3648. [Google Scholar] [CrossRef]
- Yurchenko, D.; Machado, L.Q.; Wang, J.; Bowen, C.; Sharkh, S.; Moshrefi-Torbati, M.; Val, D.V. Global optimization approach for designing high-efficiency piezoelectric beam-based energy harvesting devices. Nano Energy 2022, 93, 106684. [Google Scholar] [CrossRef]
- Kumar, S.; Mandal, K.K.; Chakraborty, N. Optimal DG placement by multi-objective opposition based chaotic differential evolution for technoeconomic analysis. Appl. Soft Comput. 2019, 78, 70–83. [Google Scholar] [CrossRef]
- Injeti, S.K. A Pareto Optimal Approach for Allocation of Distributed Generators in Radial Distribution Systems Using Improved Differential Search Algorithm. J. Electr. Syst. Inf. Technol. 2018, 5, 908–927. [Google Scholar] [CrossRef]
- Singh, B.; Singh, S. GA-Based Optimization for Integration of DGs, STATCOM and PHEVs In Distribution Systems. Energy Rep. 2019, 5, 84–103. [Google Scholar] [CrossRef]
- Huiling, T.; Jiekang, W.; Fan, W.; Lingmin, C.; Zhijun, L.; Haoran, Y. An Optimization Framework for Collaborative Control of Power Loss and Voltage in Distribution Systems with DGs and EVs Using Stochastic Fuzzy Chance Constrained Programming. IEEE Access 2020, 8, 49013–49027. [Google Scholar] [CrossRef]
- Zeynali, S.; Rostami, N.; Feyzi, M.R. Multi-Objective Optimal Short-term Planning of Renewable Distributed Generations and Capacitor Banks in Power System Considering Different Uncertainties Including Plug-In Electric Vehicles. Int. J. Electr. Power Energy Syst. 2020, 119, 105885. [Google Scholar] [CrossRef]
- IEEE PES Test Feeder. Available online: https://cmte.ieee.org/pes-testfeeders/resources/ (accessed on 27 April 2023).
- Dharmawardena, H.; Venayagamoorthy, G.K. A Distribution System Test Feeder for DER Integration Studies. In Proceedings of the Clemson University Power Systems Conference (PSC), Charleston, SC, USA, 4–7 September 2018. [Google Scholar]
- Malachi, Y.; Singer, S. A genetic algorithm for the corrective control of voltage and reactive power. IEEE Trans. Power Syst. 2006, 21, 295–300. [Google Scholar] [CrossRef]
- Rousis, A.O.; Konstantelos, I.; Strbac, G. A planning model for a hybrid AC–DC microgrid using a novel GA/AC OPF algorithm. IEEE Trans. Power Syst. 2020, 35, 227–237. [Google Scholar] [CrossRef] [Green Version]
PVs | Apparent Power (kVA) | MPP (kW) |
---|---|---|
844 | 1000 | 900 |
890 | 750 | 500 |
860 | 1250 | 1000 |
828 | 200 | 150 |
806 | 100 | 100 |
836 | 150 | 150 |
840 | 250 | 200 |
812 | 250 | 225 |
Parameter | Value |
---|---|
Fitness Limit | 0.04 |
Function Tolerance | 0.001 |
Selection Function | Uniform |
Fitness Scaling | Top |
Selection Function | Uniform |
Crossover | Scattered |
Crossover Fraction | 0.9 |
Mutation | Gaussian |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adib, A.; Pinto, J.O.P.; Chinthavali, M.S. GA-Based Voltage Optimization of Distribution Feeder with High-Penetration of DERs Using Megawatt-Scale Units. Energies 2023, 16, 4842. https://doi.org/10.3390/en16134842
Adib A, Pinto JOP, Chinthavali MS. GA-Based Voltage Optimization of Distribution Feeder with High-Penetration of DERs Using Megawatt-Scale Units. Energies. 2023; 16(13):4842. https://doi.org/10.3390/en16134842
Chicago/Turabian StyleAdib, Aswad, Joao Onofre Pereira Pinto, and Madhu S. Chinthavali. 2023. "GA-Based Voltage Optimization of Distribution Feeder with High-Penetration of DERs Using Megawatt-Scale Units" Energies 16, no. 13: 4842. https://doi.org/10.3390/en16134842
APA StyleAdib, A., Pinto, J. O. P., & Chinthavali, M. S. (2023). GA-Based Voltage Optimization of Distribution Feeder with High-Penetration of DERs Using Megawatt-Scale Units. Energies, 16(13), 4842. https://doi.org/10.3390/en16134842