Fuzzy Multi-Criteria Decision for Geoinformation System-Based Offshore Wind Farm Positioning in Croatia
Abstract
:1. Introduction
1.1. Research Focus
- Analyze the trends in EU and non-EU countries in OWF positioning methodology;
- The question of whether it is possible to position OWF in the Croatian part of the Adriatic Sea (considering Croatian legislation, waterways and some MSP and other parameters);
- Find the best positions for OWFs installing in Croatia based on different parameters.
1.2. Literary Review
1.2.1. EU Countries
Croatia and Its Part of the Adriatic Sea
Some EU States and Their Methodology Usage Experience
1.2.2. Some Non-EU Countries and Their Methodology Usage Experience
2. Materials and Methods
2.1. Research Inputs and Their Description
- Wind speed;
- Water depths;
- Seabed sediment;
- Sea borders and legislation frame;
- Exclusion areas (Natura 2000; cables and pipelines; navigation corridors, tourism, explosive ordnance);
- Vessel’s density;
- Electric grid, airports and ports.
2.1.1. Wind Speed
2.1.2. Water Depths
2.1.3. Seabed Sediment and Its Thickness
2.1.4. Sea Borders and Legislation Frame
2.1.5. Exclusion Areas
2.1.6. Vessel’s Density
2.1.7. Electric Grid, Airports, Ports
2.2. GIS, Fuzzy AHP and TOPSIS Analysis
- Maritime navigation corridors;
- Submarine cables and pipelines;
- Sea borders;
- Natura 2000 *;
- Tourist protection zone.
- Water depth (C1);
- Wind speed (C2);
- Distance from ports (C3);
- Distance to airports (C4);
- Distance from power grid (C5);
- Traffic density (C6).
- (a)
- Both criteria are equally important;
- (b)
- Criterion Ci is more important than Cj;
- (c)
- Criterion Cj is more important than Ci.
- Define the vector summation of each ri;
- Find the (−1) power of the summation vector. Replace the fuzzy triangular number to make it in increasing order;
- Find the fuzzy weight of criterion i (wi), and multiply each ri with this reverse vector.
3. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EUROSTAT. Share of Renewable Energy More than Doubled between 2004 and 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics#Share_of_renewable_energy_more_than_doubled_between_2004_and_2021 (accessed on 1 March 2023).
- EUROSTAT. Wind and Water Provide Most Renewable Electricity; Solar Is the Fastest-Growing Energy Source. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics#Wind_and_water_provide_most_renewable_electricity.3B_solar_is_the_fastest-growing_energy_source (accessed on 1 March 2023).
- Chen, C.-H.; Su, N.-J. Global Trends and Characteristics of Offshore Wind Farm Research over the Past Three Decades: A Bibliometric Analysis. J. Mar. Sci. Eng. 2022, 10, 1339. [Google Scholar] [CrossRef]
- Ramsay, W.; Goupee, A.; Allen, C.; Viselli, A.; Kimball, R. Optimization of a Lightweight Floating Offshore Wind Turbine with Water Ballast Motion Mitigation Technology. Wind 2022, 2, 535–570. [Google Scholar] [CrossRef]
- Xu, S.; Xue, Y.; Zhao, W.; Wan, D. A Review of High-Fidelity Computational Fluid Dynamics for Floating Offshore Wind Turbines. J. Mar. Sci. Eng. 2022, 10, 1357. [Google Scholar] [CrossRef]
- Altuzarra, J.; Herrera, A.; Matías, O.; Urbano, J.; Romero, C.; Wang, S.; Guedes Soares, C. Mooring System Transport and Installation Logistics for a Floating Offshore Wind Farm in Lannion, France. J. Mar. Sci. Eng. 2022, 10, 1354. [Google Scholar] [CrossRef]
- Belvasi, N.; Judge, F.; Murphy, J.; Desmond, C. Analysis of Floating Offshore Wind Platform Hydrodynamics Using Underwater SPIV: A Review. Energies 2022, 15, 4641. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, X.; Yuan, J.; Liu, X.; Hu, H.; Lin, P. A Review of the Development of Key Technologies for Offshore Wind Power in China. J. Mar. Sci. Eng. 2022, 10, 929. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Y.; Yan, J.; Zhou, Y.; Yan, S.; Shi, W.; Li, X. Integrated Dynamics Response Analysis for IEA 10-MW Spar Floating Offshore Wind Turbine. J. Mar. Sci. Eng. 2022, 10, 542. [Google Scholar] [CrossRef]
- Alsubal, S.; Liew, M.S.; Shawn, L.E. Preliminary Design and Dynamic Response of Multi-Purpose Floating Offshore Wind Turbine Platform: Part 1. J. Mar. Sci. Eng. 2022, 10, 336. [Google Scholar] [CrossRef]
- Amiri, N.; Shaterabadi, M.; Reza Kashyzadeh, K.; Chizari, M. A Comprehensive Review on Design, Monitoring, and Failure in Fixed Offshore Platforms. J. Mar. Sci. Eng. 2021, 9, 1349. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, L.; Shi, W.; Wang, B.; Li, X. Dynamic Responses for WindFloat Floating Offshore Wind Turbine at Intermediate Water Depth Based on Local Conditions in China. J. Mar. Sci. Eng. 2021, 9, 1093. [Google Scholar] [CrossRef]
- Basbas, H.; Liu, Y.-C.; Laghrouche, S.; Hilairet, M.; Plestan, F. Review on Floating Offshore Wind Turbine Models for Nonlinear Control Design. Energies 2022, 15, 5477. [Google Scholar] [CrossRef]
- Ghigo, A.; Cottura, L.; Caradonna, R.; Bracco, G.; Mattiazzo, G. Platform Optimization and Cost Analysis in a Floating Offshore Wind Farm. J. Mar. Sci. Eng. 2020, 8, 835. [Google Scholar] [CrossRef]
- Díaz, H.; Serna, J.; Nieto, J.; Guedes Soares, C. Market Needs, Opportunities and Barriers for the Floating Wind Industry. J. Mar. Sci. Eng. 2022, 10, 934. [Google Scholar] [CrossRef]
- Cordal-Iglesias, D.; Filgueira-Vizoso, A.; Baita-Saavedra, E.; Graña-López, M.Á.; Castro-Santos, L. Framework for Development of an Economic Analysis Tool for Floating Concrete Offshore Wind Platforms. J. Mar. Sci. Eng. 2020, 8, 958. [Google Scholar] [CrossRef]
- Filgueira-Vizoso, A.; Castro-Santos, L.; Iglesias, D.C.; Puime-Guillén, F.; Lamas-Galdo, I.; García-Diez, A.I.; Uzunoglu, E.; Díaz, H.; Guedes Soares, C. The Technical and Economic Feasibility of the CENTEC Floating Offshore Wind Platform. J. Mar. Sci. Eng. 2022, 10, 1344. [Google Scholar] [CrossRef]
- Li, H.; Guedes Soares, C. Assessment of failure rates and reliability of floating offshore wind turbines. Reliab. Eng. Syst. Saf. 2022, 228, 108777. [Google Scholar] [CrossRef]
- Myhr, A.; Bjerkseter, C.; Ågotnes, A.; Nygaard, T.A. Levelised cost of energy for offshore floating wind turbines in a life cycle perspective. Renew. Energy 2014, 66, 714–728. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Shi, W.; Zhang, L.; Michailides, C.; Li, X. Wind–Wave Coupling Effect on the Dynamic Response of a Combined Wind–Wave Energy Converter. J. Mar. Sci. Eng. 2021, 9, 1101. [Google Scholar] [CrossRef]
- Fenu, B.; Attanasio, V.; Casalone, P.; Novo, R.; Cervelli, G.; Bonfanti, M.; Sirigu, S.A.; Bracco, G.; Mattiazzo, G. Analysis of a Gyroscopic-Stabilized Floating Offshore Hybrid Wind-Wave Platform. J. Mar. Sci. Eng. 2020, 8, 439. [Google Scholar] [CrossRef]
- Farkas, A.; Degiuli, N.; Martić, I. Assessment of Offshore Wave Energy Potential in the Croatian Part of the Adriatic Sea and Comparison with Wind Energy Potential. Energies 2019, 12, 2357. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Guo, Y.; Wang, H. Review on Monitoring and Operation-Maintenance Technology of Far-Reaching Sea Smart Wind Farms. J. Mar. Sci. Eng. 2022, 10, 820. [Google Scholar] [CrossRef]
- European Parliament. Available online: https://www.eea.europa.eu/policy-documents/directive-2014-89-eu-maritime (accessed on 27 February 2023).
- WindEurope. Available online: https://windeurope.org/intelligence-platform/product/european-offshore-wind-farms-map-public/ (accessed on 16 January 2023).
- Croatian Encyclopedia, Leksikografski Zavod Miroslav Krleža. Adriatic Sea. Available online: https://www.enciklopedija.hr/Natuknica.aspx?ID=28478 (accessed on 23 November 2022).
- Frančula, N.; Lapaine, M. Površina hrvatskoga mora. Hrvat. Rev. 2001, 51, 107–111. [Google Scholar]
- The European Maritime Spatial Planning Platform. Available online: https://maritime-spatial-planning.ec.europa.eu/countries/croatia (accessed on 27 October 2022).
- Klarin, B. Energetski otoci—Hibridni pučinski objekti. Pomor. Zb. 2016, Special edition, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Hadžić, N.; Čatipović, I.; Tomić, M.; Vladimir, N.; Kozmar, H. Offshore Wind Turbines—Research and Development. Pomor. Zb. 2018, Special edition, 59–70. [Google Scholar] [CrossRef]
- Liščić, B.; Senjanović, I.; Čorić, V.; Kozmar, H.; Tomić, M.; Hadžić, N. Offshore Wind Power Plant in the Adriatic Sea: An Opportunity for the Croatian Economy. Trans. Marit. Sci. 2014, 3, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Vagiona, D.G.; Kamilakis, M. Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece. Sustainability 2018, 10, 749. [Google Scholar] [CrossRef] [Green Version]
- Vagiona, D.G.; Karanikolas, N.M. A multicriteria approach to evaluate offshore wind farms siting in Greece. Glob. NEST J. 2012, 14, 235–243. [Google Scholar]
- Chaouachib, A.; Covriga, C.F.; Ardeleana, M. Multi-criteria selection of offshore wind farms: Case study for the Baltic States. Energy Policy 2017, 103, 179–192. [Google Scholar] [CrossRef]
- Ziemba, P. Multi-Criteria Fuzzy Evaluation of the Planned Offshore Wind Farm Investments in Poland. Energies 2021, 14, 978. [Google Scholar] [CrossRef]
- Cradden, L.; Kalogeri, C.; Martinez Barrios, I.; Galanis, G.; Ingram, D.; Kallos, G. Multi-criteria site selection for offshore renewable energy platforms. Renew. Energy 2016, 87, 791–806. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Tao, Y.; Zhang, B.; Wang, S.; Xu, C.; Zhou, J. A decision framework of offshore wind power station site selection using a PROMETHEE method under intuitionistic fuzzy environment: A case in China. Ocean. Coast. Manag. 2020, 184, 105016. [Google Scholar] [CrossRef]
- Mayaki, E.A.; Adedipe, O.; Lawal, S.A. Multi-Criteria Evaluation of the Appropriate Offshore Wind Farm Location in Nigeria. IOP Conf. Ser. Mater. Sci. Eng. 2018, 413, 012041. [Google Scholar] [CrossRef]
- Taoufik, M.; Fekri, A. GIS-based multi-criteria analysis of offshore wind farm development in Morocco. Energy Convers. Manag. X 2021, 11, 100103. [Google Scholar] [CrossRef]
- Mahdy, M.; Bahaj, A.S. Multi criteria decision analysis for offshore wind energy potential in Egypt. Renew. Energy 2018, 118, 278–289. [Google Scholar] [CrossRef]
- Pereira de Azevedo, S.S.; Pereira Junior, A.O.; Fidelis da Silva, N.; Barbosa de Araújo, R.S.; Carlos Júnior, A.A. Assessment of Offshore Wind Power Potential along the Brazilian Coast. Energies 2020, 13, 2557. [Google Scholar] [CrossRef]
- Ilbahara, E.; Cebia, S.; Kahramanb, C. A state-of-the-art review on multi-attribute renewable energy decision making. Energy Strategy Rev. 2019, 25, 18–33. [Google Scholar] [CrossRef]
- Tasri, A.; Susilawati, A. Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustain. Energy Technol. Assess. 2014, 7, 34–44. [Google Scholar] [CrossRef]
- Ministry of Economy and Sustainable Development of the Republic of Croatia. Action Program of Marine Environment and Coastal Area Management Strategy. Available online: https://mingor.gov.hr/UserDocsImages/Uprava_vodnoga_gospodarstva_i_zast_mora/Strategija_upravljanja_morem/Akcijski%20program%20Sustav%20pra%C4%87enja%202021_2026.pdf (accessed on 20 January 2023).
- Sourianos, E.; Kyriakou, K.; Hatiris, G.A. GIS-based spatial decision support system for the optimum siting of offshore windfarms. Eur. Water 2017, 58, 337–343. [Google Scholar]
- Schallenberg-Rodríguez, J.; García Montesdeoca, N. Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands. Energy 2018, 143, 91–103. [Google Scholar] [CrossRef]
- Gavériaux, L.; Laverrière, G.; Wang, T.; Maslov, N.; Claramunt, C. GIS-based multicriteria analysis for offshore wind turbine deployment in Hong Kong. Ann. GIS 2019, 25, 207–218. [Google Scholar] [CrossRef]
- Díaz, H.; Fonseca, R.B.; Guedes Soares, C. Site selection process for floating offshore wind farms in Madeira Islands. In Advances in Renewable Energies Offshore; Taylor & Francis Group: London, UK, 2019; pp. 729–737. [Google Scholar]
- Croatian Meteorological and Hydrological Service. Wind Atlas. Available online: https://meteo.hr/klima_e.php?section=klima_hrvatska¶m=k1_8 (accessed on 2 November 2022).
- Global Wind Atlas (GWA). Available online: https://globalwindatlas.info/en (accessed on 3 November 2022).
- EMODnet. Available online: https://emodnet.ec.europa.eu/en (accessed on 11 December 2022).
- Schwartz, M.L. (Ed.) Encyclopedia of Coastal Science; Encyclopedia of Earth Sciences; Springer: Amsterdam, The Netherlands, 2005; Volume 24. [Google Scholar]
- Straume, E.O.; Gaina, C.; Medvedev, S.; Hochmuth, K.; Gohl, K.; Whittaker, J.M.; Abdul Fattah, R.; Doornenbal, J.C.; Hopper, J.R. GlobSed: Updated total sediment thickness in the world’s oceans. Geochem. Geophys. Geosyst. 2019, 20, 1756–1772. [Google Scholar] [CrossRef]
- Official Gazette 10/21. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2021_02_10_192.html (accessed on 7 January 2023).
- Official Gazette 153/13. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2013_12_153_3220.html (accessed on 17 January 2023).
- Official Gazette 65/17. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2017_07_65_1494.html (accessed on 17 January 2023).
- Kilić Pamuković, J.; Rogulj, K.; Racetin, I.; Vrdoljak, L. Prostorno planiranje na moru. In Proceedings of the 15th Symposium of Chartered Geodetic Engineers, Opatija, Croatia, 12–15 October 2022; Racetin, I., Zrinjski, M., Župan, R., Eds.; Croatian Chamber of Chartered Geodetic Engineers: Zagreb, Croatia, 2022; pp. 161–166. [Google Scholar]
- Official Gazette 136/11. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2011_11_136_2724.html (accessed on 19 January 2023).
- Official Gazette 28/21. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/full/2021_03_28_602.html (accessed on 21 January 2023).
- Official Gazette 17/94. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/1994_03_17_313.html (accessed on 20 December 2022).
- Official Gazette 39/20. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2020_04_39_830.html (accessed on 20 December 2022).
- Natura 2020. Available online: https://ec.europa.eu/environment/nature/natura2000/index_en.htm (accessed on 2 March 2023).
- Open Street Map. Available online: https://www.openstreetmap.org/ (accessed on 9 January 2023).
Criterion/Score | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
C1 Water depth (m) | >1000 | 500–1000 | 200–500 | 100–200 | 50–100 | 0–50 |
C2 Wind speed (m/s) | <4 | 4–5 | 5–6 | 6–7 | 7–8 | >8 |
C3 Distance from ports (km) | 10–20 | 20–30 | 30–40 | 40–50 | 50–60 | >60 |
C4 Distance to airports (km) | 10–15 | 15–20 | 20–25 | 25–30 | 30–35 | >35 |
C5 Distance from power grid (km) | - | >60 | 40–60 | 30–40 | 20–30 | <20 |
C6 Traffic density | - | VHD | HD | MD | LD | VLD |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
C1 Water depth (m) | 1 | 1/3 | 7 | 9 | 5 | 7 |
C2 Wind speed (m/s) | 3 | 1 | 9 | 7 | 5 | 7 |
C3 Distance from ports (km) | 1/7 | 1/9 | 1 | 3 | 1/7 | 1/5 |
C4 Distance to airports (km) | 1/9 | 1/7 | 1/3 | 1 | 1/5 | 3 |
C5 Distance from power grid (km) | 1/5 | 1/5 | 7 | 5 | 1 | 7 |
C6 Traffic density | 1/7 | 1/5 | 5 | 1/3 | 1/7 | 1 |
Criterion | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
C1 | 1,1,1 | 1/4,1/3,1/2 | 6,7,8 | 6,7,8 | 4,5,6 | 6,7,8 |
C2 | 2,3,4 | 1,1,1 | 6,7,8 | 6,7,8 | 3,4,5 | 6,7,8 |
C3 | 1/8,1/7,1/6 | 1/8,1/7,1/6 | 1,1,1 | 1,1,1 | 1/5,1/4,1/3 | 1/3,1/2,1 |
C4 | 1/8,1/7,1/6 | 1/8,1/7,1/6 | 1,1,1 | 1,1,1 | 1/4,1/3,1/2 | 1,2,3 |
C5 | 1/6,1/5,1/4 | 1/5,1/4,1/3 | 3,4,5 | 2,3,4 | 1,1,1 | 4,5,6 |
C6 | 1/8,1/7,1/6 | 1/8,1/7,1/6 | 1,2,3 | 1/3,1/2,1 | 1/6,1/5,1/4 | 1,1,1 |
r1~ | 2.449489743 | 2.880871 | 3.396762659 |
r2~ | 3.301927249 | 4.00324861 | 4.659972203 |
r3~ | 0.31838661 | 0.3696457 | 0.458243212 |
r4~ | 0.396850263 | 0.48859848 | 0.588795922 |
r5~ | 0.963492484 | 1.20093696 | 1.467799268 |
r6~ | 0.308857335 | 0.39976581 | 0.524557532 |
SUM | 7.739003684 | 9.34306655 | 11.0961308 |
INVERSE | 0.129215599 | 0.10703124 | 0.090121504 |
incr. order | 0.090121504 | 0.10703124 | 0.129215599 |
wi~ | Mi | Ni | |||
---|---|---|---|---|---|
C1 | 0.220751701 | 0.3083432 | 0.43891472 | 0.322669873 | 0.309145396 |
C2 | 0.297574651 | 0.42847266 | 0.6021411 | 0.442729472 | 0.424172783 |
C3 | 0.02869348 | 0.03956364 | 0.05921217 | 0.042489763 | 0.040708835 |
C4 | 0.035764743 | 0.0522953 | 0.07608162 | 0.054713887 | 0.052420594 |
C5 | 0.086831392 | 0.12853777 | 0.18966256 | 0.135010575 | 0.129351704 |
C6 | 0.027834688 | 0.04278743 | 0.06778102 | 0.046134378 | 0.044200689 |
SUM | 1.043747949 | 1 |
C1 | C2 | C3 | C4 | C5 | C6 | |
---|---|---|---|---|---|---|
min | max | max | max | min | max | |
A1 | 50 | 7.1 | 35.2 | 30.2 | 28.5 | 2 |
A4 | 6.4 | 6.58 | 26.3 | 55 | 41 | 3 |
A5 | 170 | 7.26 | 34 | 43 | 19 | 1 |
A7 | 174 | 6.73 | 21 | 17.5 | 18 | 4 |
C1 | C2 | C3 | C4 | C5 | C6 | |
---|---|---|---|---|---|---|
min | max | max | max | min | max | |
A1 | 10.063238 | 3.640808 | 20.86112 | 11.68486 | 14.40773 | 0.730297 |
A4 | 0.16487609 | 3.127036 | 11.64565 | 38.75566 | 29.81767 | 1.643168 |
A5 | 116.331032 | 3.80675 | 19.46302 | 23.68899 | 6.403437 | 0.182574 |
A7 | 121.869838 | 3.271231 | 7.424905 | 3.92361 | 5.747129 | 2.921187 |
C1 | C2 | C3 | C4 | C5 | C6 | |
---|---|---|---|---|---|---|
min | max | max | max | min | max | |
A1 | 3.11100371 | 1.544332 | 0.849232 | 0.612527 | 1.863665 | 0.03228 |
A4 | 0.05097068 | 1.326404 | 0.474081 | 2.031595 | 3.856966 | 0.072629 |
A5 | 35.9632029 | 1.61472 | 0.792317 | 1.241791 | 0.828296 | 0.00807 |
A7 | 37.6754993 | 1.387567 | 0.302259 | 0.205678 | 0.743401 | 0.129118 |
wj | 0.3091454 | 0.424173 | 0.040709 | 0.052421 | 0.129352 | 0.044201 |
C1 | C2 | C3 | C4 | C5 | C6 | |||
---|---|---|---|---|---|---|---|---|
min | max | max | max | min | max | |||
A1 | 3.111004 | 1.544332 | 0.849232 | 0.612527 | 1.863665 | 0.03228 | 3.556245 | 34.62933 |
A4 | 0.050971 | 1.326404 | 0.474081 | 2.031595 | 3.856966 | 0.072629 | 3.149817 | 37.66926 |
A5 | 35.9632 | 1.61472 | 0.792317 | 1.241791 | 0.828296 | 0.00807 | 35.92127 | 3.674455 |
A7 | 37.6755 | 1.387567 | 0.302259 | 0.205678 | 0.743401 | 0.129118 | 37.67346 | 3.116518 |
ideal best | 0.050971 | 1.61472 | 0.849232 | 2.031595 | 0.743401 | 0.129118 | ||
anti-ideal | 37.6755 | 1.326404 | 0.302259 | 0.205678 | 3.856966 | 0.00807 |
Ranking | ||||
---|---|---|---|---|
A1 | 3.556245 | 34.62933 | 0.906869414 | 2 |
A4 | 3.149817 | 37.66926 | 0.922834686 | 1 |
A5 | 35.92127 | 3.674455 | 0.092799293 | 3 |
A7 | 37.67346 | 3.116518 | 0.076403998 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Racetin, I.; Ostojić Škomrlj, N.; Peko, M.; Zrinjski, M. Fuzzy Multi-Criteria Decision for Geoinformation System-Based Offshore Wind Farm Positioning in Croatia. Energies 2023, 16, 4886. https://doi.org/10.3390/en16134886
Racetin I, Ostojić Škomrlj N, Peko M, Zrinjski M. Fuzzy Multi-Criteria Decision for Geoinformation System-Based Offshore Wind Farm Positioning in Croatia. Energies. 2023; 16(13):4886. https://doi.org/10.3390/en16134886
Chicago/Turabian StyleRacetin, Ivana, Nives Ostojić Škomrlj, Marina Peko, and Mladen Zrinjski. 2023. "Fuzzy Multi-Criteria Decision for Geoinformation System-Based Offshore Wind Farm Positioning in Croatia" Energies 16, no. 13: 4886. https://doi.org/10.3390/en16134886
APA StyleRacetin, I., Ostojić Škomrlj, N., Peko, M., & Zrinjski, M. (2023). Fuzzy Multi-Criteria Decision for Geoinformation System-Based Offshore Wind Farm Positioning in Croatia. Energies, 16(13), 4886. https://doi.org/10.3390/en16134886