Glycerol as an Anti-Knock Additive and Secondary Fuel as a Substitute for Gasoline-Based Fuels for the IC Engine
Abstract
:1. Introduction
2. Test Setup
2.1. Methodology
- N-Butanol+Glycerol at ratio of 3:1 respectively
- Gasoline 95
- N-Butanol.
- Indicated Mean Effective Pressure (IMEP) of the engine,
- Knock Intensity (KI),
- Knock-to-Power indicator.
2.2. Test Matrix
3. Results and Discussion
4. Conclusions
- The novelty of the research work presented in this article deals with a new blend, which consist of glycerol and N-butanol, which are renewable liquids.
- Glycerol added to N-butanol at the percentage of 25% by volume decreases knock intensity in a spark-ignition engine.
- The mixture of 75% N-butanol and 25% glycerol can be combusted in the engine working at a compression ratio of 11. As compared to gasoline combustion tests, the knock is at the acceptable level of below 60 kPa at the optimal spark timing of −10 CA deg aTDC for a maximum of IMEP.
- The proposed mixture of butanol-glycerol at the volumetric percentage of 75–25, respectively can be treated as a fully renewable fuel for a spark-ignition engine working as a propulsion unit in a vehicle or a power generation set.
- Regarding the indicator Knock-to-Power, its significantly low value for the proposed mixture of 75% N-butanol and 25% glycerol, in comparison to gasoline tests at compression ratio of 10, provides the premises for the potential to work at higher compression ratios.
- The proposed Knock-to-Power indicator for knock evaluation is the innovative quantity developed for the purpose of linking knock and engine load in a dimensionless grading.
- The indicator Knock-to-Power is considered a valuable tool to assess the potential of heavy knock occurrence under engine load.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
aTDC | after top dead center |
CA | crank angle |
CI | compression ignition |
CO | carbon monoxide |
CR | compression ratio |
HC | hydrocarbon |
HRR | heat release rate |
IC | internal combustion |
IMEP | indicated mean effective pressure |
KI | knock intensity |
LHV | lower heating value |
MON | motored octane number |
NOx | nitric oxides |
RON | research octane number |
SI | spark-ignition |
WOT | wide-open throttle |
References
- Heywood, J.B. Internal Combustion Engine Fundamentals, 2nd ed.; McGraw-Hill College: New York, NY, USA, 2018; ISBN 9781260116106. [Google Scholar]
- Kalghatgi, G.T.; Bradley, D. Pre-Ignition and ‘Super-Knock’ in Turbo-Charged Spark-Ignition Engines. Int. J. Engine Res. 2012, 13, 399–414. [Google Scholar] [CrossRef]
- Mehl, M.; Chen, J.Y.; Pitz, W.J.; Sarathy, S.M.; Westbrook, C.K. An Approach for Formulating Surrogates for Gasoline with Application toward a Reduced Surrogate Mechanism for CFD Engine Modeling. Energy Fuels 2011, 25, 5215–5223. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Reitz, R.D. Knocking Combustion in Spark-Ignition Engines. Prog. Energy Combust. Sci. 2017, 61, 78–112. [Google Scholar] [CrossRef]
- Ettefagh, M.M.; Sadeghi, M.H.; Pirouzpanah, V.; Arjmandi Tash, H. Knock Detection in Spark Ignition Engines by Vibration Analysis of Cylinder Block: A Parametric Modeling Approach. Mech. Syst. Signal Process. 2008, 22, 1495–1514. [Google Scholar] [CrossRef]
- Molinaro, F.; Castanié, F. Signal Processing Pattern Classification Techniques to Improve Knock Detection in Spark Ignition Engines. Mech. Syst. Signal Process. 1995, 9, 51–62. [Google Scholar] [CrossRef]
- Jones, J.C.P.; Spelina, J.M.; Frey, J. Likelihood-Based Control of Engine Knock. IEEE Trans. Control Syst. Technol. 2013, 21, 2169–2180. [Google Scholar] [CrossRef]
- Novella, R.; Pla, B.; Bares, P.; Jiménez, I. Acoustic Characterization of Combustion Chambers in Reciprocating Engines: An Application for Low Knocking Cycles Recognition. Int. J. Engine Res. 2020, 23, 120–131. [Google Scholar] [CrossRef]
- Barbosa, R.; Galvagno, A.; Tajima, H.; Tomidokoro, T.; Yokomori, T. Deep Learning for Knock Occurrence Prediction in SI Engines. Energies 2022, 15, 9315. [Google Scholar] [CrossRef]
- Zou, F.K.; Zeng, H.; Wang, H.Y.; Wang, X.X.; Xu, Z.X. Implementation and Parameter Analysis of the Knock Phenomenon of a Marine Dual-Fuel Engine Based on a Two-Zone Combustion Model. Processes 2021, 9, 602. [Google Scholar] [CrossRef]
- Luo, W.; Chen, B.; Naber, J.; Glugla, C. Stochastic Knock Detection, Control, Software Integration, and Evaluation on a V6 Spark-Ignition Engine under Steady-State Operation. SAE Tech. Pap. 2014, 2014-01-1358. [Google Scholar] [CrossRef]
- Spelina, J.M.; Peyton Jones, J.C.; Frey, J. Stochastic Simulation and Analysis of a Classical Knock Controller. Int. J. Engine Res. 2015, 16, 461–473. [Google Scholar] [CrossRef]
- Zembi, J.; Battistoni, M.; Ranuzzi, F.; Cavina, N.; De Cesare, M. CFD Analysis of Port Water Injection in a GDI Engine under Incipient Knock Conditions. Energies 2019, 12, 3409. [Google Scholar] [CrossRef] [Green Version]
- Kołodziej, B.; Matyka, M. Odnawialne Źródła Energii. Rolnicze Surowce Energetyczne; PWRiL Sp. z o.o.: Poznań, Poland, 2012; ISBN 978-83-09-01139-2. [Google Scholar]
- Chłopek, M. Ciśnieniowa Aglomeracja Kompozytowych Paliw Stałych; Rozprawa d.; Akademia Górniczo-Hutnicza im. Stanisława Staszica: Kraków, Poland, 2015. [Google Scholar]
- Bembenek, M. Badania Wpływu Kształtu Powierzchni Roboczej Walców Na Efekty Pracy Prasy Walcowej; Praca dokt.; Akademia Górniczo-Hutnicza im. St.Staszica w Krakowie: Kraków, Poland, 2010. [Google Scholar]
- Ahn, B.J.; Chang, H.S.; Lee, S.M.; Choi, D.H.; Cho, S.T.; Han, G.S.; Yang, I. Effect of binders on the durability of wood pellets fabricated from Larix kaemferi C. and Liriodendron tulipifera L. sawdust. Renew. Energy 2014, 62, 18–23. [Google Scholar] [CrossRef]
- Sileghem, L.; Wallner, T.; Verhelst, S. A Quasi-Dimensional Model for SI Engines Fueled with Gasoline–Alcohol Blends: Knock Modeling. Fuel 2015, 140, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Pipitone, E.; Beccari, S.; Genchi, G. A Refined Model for Knock Onset Prediction in Spark Ignition Engines Fueled With Mixtures of Gasoline and Propane. J. Eng. Gas Turbines Power-Trans. Asme 2015, 137, 111501. [Google Scholar] [CrossRef]
- Fontanesi, S.; D’Adamo, A.; Rutland, C.J. Large-Eddy Simulation Analysis of Spark Configuration Effect on Cycle-to-Cycle Variability of Combustion and Knock. Int. J. Engine Res. 2015, 16, 403–418. [Google Scholar] [CrossRef] [Green Version]
- Holly, W.E.; Lauer, T.; Schuemie, H.A.; Murakami, S. Prediction of the Knocking Combustion and NOx Formation for Fuel Gases with Different Methane Numbers. Int. J. Engine Res. 2016, 17, 35–43. [Google Scholar] [CrossRef]
- Rankovic, N.; Bourhis, G.; Loos, M.; Dauphin, R. Understanding Octane Number Evolution for Enabling Alternative Low RON Refinery Streams and Octane Boosters as Transportation Fuels. Fuel 2015, 150, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Bradley, D. Combustion and the Design of Future Engine Fuels. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2009, 223, 2751–2765. [Google Scholar] [CrossRef]
- Wei, H.; Feng, D.; Pan, M.; Pan, J.Y.; Rao, X.K.; Gao, D. Experimental Investigation on the Knocking Combustion Characteristics of N-Butanol Gasoline Blends in a DISI Engine. Appl. Energy 2016, 175, 346–355. [Google Scholar] [CrossRef]
- Yang, J.; Yang, X.; Liu, J.; Han, Z.; Zhong, Z. Dyno Test Investigations of Gasoline Engine Fueled with Butanol-Gasoline Blends. SAE Tech. Pap. 2009, 2009-01-1891. [Google Scholar] [CrossRef]
- Feng, D.; Wei, H.; Pan, M.; Zhou, L.; Hua, J. Combustion Performance of Dual-Injection Using n-Butanol Direct-Injection and Gasoline Port Fuel-Injection in a SI Engine. Energy 2018, 160, 573–581. [Google Scholar] [CrossRef]
- Huang, Q.J.; Chung, C.H.; Syu, Y.F.; Wu, Y.Y.; Li, C.K. Research on Applying Butanol-Gasoline Blend Fuel on Scooter Engine. SAE Tech. Pap. 2016, 2016-32-0056, 2688–3627. [Google Scholar] [CrossRef]
- Thomas, R.; Sreesankaran, M.; Jaidi, J.; Paul, D.M.; Manjunath, P. Experimental Evaluation of the Effect of Compression Ratio on Performance and Emission of SI Engine Fuelled with Gasoline and N-Butanol Blend at Different Loads. Perspect. Sci. 2016, 8, 743–746. [Google Scholar] [CrossRef] [Green Version]
- Niass, T.; Amer, A.A.; Xu, W.; Vogel, S.R.; Krebber-Hortmann, K.; Adomeit, P.; Brassat, A. Butanol Blending—A Promising Approach to Enhance the Thermodynamic Potential of Gasoline—Part 1. SAE Int. J. Fuels Lubr. 2012, 5, 265–273. [Google Scholar] [CrossRef]
- Galloni, E.; Fontana, G.; Staccone, S.; Scala, F. Performance Analyses of a Spark-Ignition Engine Firing with Gasoline–Butanol Blends at Partial Load Operation. Energy Convers. Manag. 2016, 110, 319–326. [Google Scholar] [CrossRef]
- Scala, F.; Galloni, E.; Fontana, G. Numerical Analysis of a Downsized Spark-Ignition Engine Fueled by Butanol/Gasoline Blends at Part-Load Operation. Appl. Therm. Eng. 2016, 102, 383–390. [Google Scholar] [CrossRef]
- Irimescu, A.; Merola, S.S.; Tornatore, C.; Valentino, G. Effect of Coolant Temperature on Air–Fuel Mixture Formation and Combustion in an Optical Direct Injection Spark Ignition Engine Fueled with Gasoline and Butanol. J. Energy Inst. 2017, 90, 452–465. [Google Scholar] [CrossRef]
- Merola, S.S.; Valentino, G.; Tornatore, C.; Marchitto, L. In-Cylinder Spectroscopic Measurements of Knocking Combustion in a SI Engine Fuelled with Butanol–Gasoline Blend. Energy 2013, 62, 150–161. [Google Scholar] [CrossRef]
- Deng, B.; Fu, J.; Zhang, D.; Yang, J.; Feng, R.; Liu, J.; Li, K.; Liu, X. The Heat Release Analysis of Bio-Butanol/Gasoline Blends on a High Speed SI (Spark Ignition) Engine. Energy 2013, 60, 230–241. [Google Scholar] [CrossRef]
- Czerwinski, J.; Güdel, M.; Engelmann, D.; Pechout, M. Influences of Butanol Blends on Combustion and Emissions of a Small SI Engine. SAE Tech. Pap. 2018, 2018-32-0058. [Google Scholar] [CrossRef]
- Beatrice, C.; Di Blasio, G.; Guido, C.; Cannilla, C.; Bonura, G.; Frusteri, F. Mixture of Glycerol Ethers as Diesel Bio-Derivable Oxy-Fuel: Impact on Combustion and Emissions of an Automotive Engine Combustion System. Appl. Energy 2014, 132, 236–247. [Google Scholar] [CrossRef]
- Gruca, M.; Pyrc, M.; Szwaja, M.; Szwaja, S. Effective Combustion of Glycerol in a Compression Ignition Engine Equipped with Double Direct Fuel Injection. Energies 2020, 13, 6349. [Google Scholar] [CrossRef]
- Presciutti, A.; Asdrubali, F.; Baldinelli, G.; Rotili, A.; Malavasi, M.; Di Salvia, G. Energy and Exergy Analysis of Glycerol Combustion in an Innovative Flameless Power Plant. J. Clean. Prod. 2018, 172, 3817–3824. [Google Scholar] [CrossRef]
- Szwaja, S.; Gruca, M.; Pyrc, M. Investigation on Ethanol-Glycerol Blend Combustion in the Internal Combustion Sparkignited Engine. Engine Performance and Exhaust Emissions. Fuel Process. Technol. 2022, 226, 107085. [Google Scholar] [CrossRef]
- Szwaja, S.; Gruca, M.; Pyrc, M.; Juknelevičius, R. Performance and Exhaust Emissions of a Spark Ignition Internal Combustion Engine Fed with Butanol–Glycerol Blend. Energies 2021, 14, 6473. [Google Scholar] [CrossRef]
Parameter | Unit | Glycerol | N-Butanol | Gasoline 95 |
---|---|---|---|---|
Chemical structure | - | C3H8O3 | C4H9OH | C8H15 |
Molecular weight | g/mol | 92 | 74 | 111 |
Density @ 20 °C | g/cm3 | 1.26 | 0.81 | 0.75 |
Lower Heating Value | MJ/kg | 16.0 | 32.0 | 42.9 |
Water content | % | 14 ÷ 17 | - | - |
Heat of vaporization (at boiling point) | kJ/kg | 826 | 584 | 349 |
Cetane Number | - | 0 ÷ 10 | - | 5 ÷ 20 |
Parameter | Data/Description |
---|---|
Number of strokes | 4 |
Ignition system | Spark ignition |
Number of cylinders | 1 |
Cylinder position | Vertical |
Timing type | OHV |
Number of valves | 2 |
Cylinder bore, mm | 85 |
Piston stroke, mm | 115 |
Connecting rod length, mm | 266 |
Swept volume, cm3 | 652.57 |
Compression ratio | 8…11 |
Instrument | Range | Accuracy |
---|---|---|
Air flowmeter CGR-01 | 0.25…25 m3/h | 0.1% |
Fuel flowmeter | 0.64…128 mg/cycle | 1.5% |
Charge amplifier Kistler 5018A | 2…10 pC 10…100 pC 100…2,200,000 pC | <±2% <±0.6% <±0.3% |
Pressure sensor: Kistler 6118C | 0…200 bar | <±1% |
Data acq. system: USB-1608HS | ±10 V | ±0.07% |
Thermocouple NiCR-NiAl (K) | (−40)…1140 °C | 1.5 °C |
Encoder PR90 | max 6000 rpm | 0.3 deg/rev |
Fuels | Gasoline 95 | N-Butanol | N-Butanol+ Glycerol |
---|---|---|---|
Varying parameters | |||
Spark Timing (CA deg aTDC) | from −4 to −24 | from −3 to −24 | from −6 to −24 |
Compression ratio | from 8 to 11 | from 8 to 11 | from 8 to 11 |
Constants | |||
Fuel dose | Fixed | Fixed | Fixed |
Air-to-fuel ratio expressed by lambda | from 1.0 to 1.03 | from 1.0 to 1.03 | from 1.0 to 1.03 |
Engine speed (rpm) | 600 | 600 | 600 |
Engine throttling | WOT | WOT | WOT |
Fuel | Knock-to-Power | Knock Intensity | IMEP | Optimal ST |
---|---|---|---|---|
- | kPa | kPa | CA deg aTDC | |
N-Butanol | 1.48 | 52.4 | 763 | −9 |
Gasoline 95 | 1.00 | 59.1 | 792 | −10 |
N-Butanol + Glycerol | 0.32 | 44.9 | 775 | −15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szwaja, S.; Gruca, M.; Pyrc, M.; Juknelevičius, R. Glycerol as an Anti-Knock Additive and Secondary Fuel as a Substitute for Gasoline-Based Fuels for the IC Engine. Energies 2023, 16, 4940. https://doi.org/10.3390/en16134940
Szwaja S, Gruca M, Pyrc M, Juknelevičius R. Glycerol as an Anti-Knock Additive and Secondary Fuel as a Substitute for Gasoline-Based Fuels for the IC Engine. Energies. 2023; 16(13):4940. https://doi.org/10.3390/en16134940
Chicago/Turabian StyleSzwaja, Stanislaw, Michal Gruca, Michal Pyrc, and Romualdas Juknelevičius. 2023. "Glycerol as an Anti-Knock Additive and Secondary Fuel as a Substitute for Gasoline-Based Fuels for the IC Engine" Energies 16, no. 13: 4940. https://doi.org/10.3390/en16134940
APA StyleSzwaja, S., Gruca, M., Pyrc, M., & Juknelevičius, R. (2023). Glycerol as an Anti-Knock Additive and Secondary Fuel as a Substitute for Gasoline-Based Fuels for the IC Engine. Energies, 16(13), 4940. https://doi.org/10.3390/en16134940