Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations
Abstract
:1. Introduction
1.1. Recent Reviews of DSM
1.2. Contributions
1.3. Organization
2. Problem Definitions
3. Industrial DSM
3.1. Economic and Technical Constraints
3.2. Behavioral Constraints
3.3. Review of Industrial Demand Response
3.4. Future Work
3.5. Summary
4. Commercial DSM
4.1. Economic and Technical Constraints
4.2. Behavioral Constraints
4.3. Review of Commercial Demand Response
4.4. Future Work
4.5. Summary
5. Residential DSM
5.1. Economic and Technical Constraints
5.2. Behavioral Constraints
5.3. Review of Residential Demand Response
5.4. Summary
6. Current State and Potential Future of Behavior-Based DSM
6.1. Types of Behavior Models
6.2. Variable Behavior in DSM Models
6.3. Summary and Future Work
7. Key Considerations and Practical Implications
7.1. Key Considerations
7.2. Practical Implications
8. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Joskow, P.L. Challenges for wholesale electricity markets with intermittent renewable generation at scale: The US experience. Oxf. Rev. Econ. Policy 2019, 35, 291–331. [Google Scholar] [CrossRef]
- Dalala, Z.; Al-Omari, M.; Al-Addous, M.; Bdour, M.; Al-Khasawneh, Y.; Alkasrawi, M. Increased renewable energy penetration in national electrical grids constraints and solutions. Energy 2022, 246, 123361. [Google Scholar] [CrossRef]
- Upton, G.B., Jr.; Snyder, B.F. Funding renewable energy: An analysis of renewable portfolio standards. Energy Econ. 2017, 66, 205–216. [Google Scholar] [CrossRef]
- Carley, S.; Baldwin, E.; MacLean, L.M.; Brass, J.N. Global expansion of renewable energy generation: An analysis of policy instruments. Environ. Resour. Econ. 2017, 68, 397–440. [Google Scholar] [CrossRef]
- Gellings, C.W.; Chamberlin, J.H. Demand-Side Management: Concepts and Methods; Fairmont Press: Lilburn, GA, USA, 1987. [Google Scholar]
- Panda, S.; Mohanty, S.; Rout, P.K.; Sahu, B.K.; Bajaj, M.; Zawbaa, H.M.; Kamel, S. Residential Demand Side Management model, optimization and future perspective: A review. Energy Rep. 2022, 8, 3727–3766. [Google Scholar] [CrossRef]
- Deng, R.; Yang, Z.; Chow, M.-Y.; Chen, J. A survey on demand response in smart grids: Mathematical models and approaches. IEEE Trans. Industr. Inform. 2015, 11, 570–582. [Google Scholar] [CrossRef]
- Pina, A.; Silva, C.; Ferrão, P. The impact of demand side management strategies in the penetration of renewable electricity. Energy 2012, 41, 128–137. [Google Scholar] [CrossRef]
- Mesarić, P.; Krajcar, S. Home demand side management integrated with electric vehicles and renewable energy sources. Energy Build. 2015, 108, 1–9. [Google Scholar] [CrossRef]
- HJabir, J.; Teh, J.; Ishak, D.; Abunima, H. Impacts of demand-side management on electrical power systems: A review. Energies 2018, 11, 1050. [Google Scholar]
- Gelazanskas, L.; Gamage, K.A.A. Demand side management in smart grid: A review and proposals for future direction. Sustain. Cities Soc. 2014, 11, 22–30. [Google Scholar] [CrossRef]
- Gellings, C.W. Evolving practice of demand-side management. J. Mod. Power Syst. Clean Energy 2017, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bharathi, C.; Rekha, D.; Vijayakumar, V. Genetic algorithm based demand side management for smart grid. Wirel. Pers. Commun. 2017, 93, 481–502. [Google Scholar] [CrossRef]
- Department for Energy Security and Net Zero and Department for Business Energy & Industrial Strategy. Electricity Statistics. 2022. Available online: https://www.gov.uk/government/collections/electricity-statistics (accessed on 23 May 2023).
- Ministry of Business Innovation & Employment. Electricity Statistics. 2023. Available online: https://www.mbie.govt.nz/building-and-energy/energy-and-natural-resources/energy-statistics-and-modelling/energy-statistics/electricity-statistics/ (accessed on 23 May 2023).
- United States Environmental Protection Agency. Electricity Customers. 2023. Available online: https://www.epa.gov/energy/electricity-customers (accessed on 23 May 2023).
- Barbato, A.; Capone, A. Optimization models and methods for demand-side management of residential users: A survey. Energies 2014, 7, 5787–5824. [Google Scholar] [CrossRef] [Green Version]
- Gyamfi, S.; Krumdieck, S.; Urmee, T. Residential peak electricity demand response—Highlights of some behavioural issues. Renew. Sustain. Energy Rev. 2013, 25, 71–77. [Google Scholar] [CrossRef] [Green Version]
- McCormack, M.C.; Belli, A.J.; Waugh, D.; Matsui, E.C.; Peng, R.D.; Williams, D.A.L.; Paulin, L.; Saha, A.; Aloe, C.M.; Diette, G.B.; et al. Respiratory effects of indoor heat and the interaction with air pollution in chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 2016, 13, 2125–2131. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.-C.; Chen, N.-T.; Hsia, Y.-F.; Hsu, N.-Y.; Su, H.-J. Influence of Indoor Temperature Exposure on Emergency Department Visits Due to Infectious and Non-Infectious Respiratory Diseases for Older People. Int. J. Environ. Res. Public Health 2021, 18, 5273. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Lin, Y.-K. Temperature effects on outpatient visits of respiratory diseases, asthma, and chronic airway obstruction in Taiwan. Int. J. Biometeorol. 2015, 59, 815–825. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Judgment under Uncertainty: Heuristics and Biases. Science 1974, 185, 1124–1131. [Google Scholar] [CrossRef]
- Ghorbaniparvar, M.; Li, X.; Zhou, N. Demand side management with a human behavior model for energy cost optimization in smart grids. In Proceedings of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, 14–16 December 2015; pp. 503–507. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, K.; Zhang, C.; Lu, X.; Chen, W.; Yang, S. Residential electricity consumption behavior: Influencing factors, related theories and intervention strategies. Renew. Sustain. Energy Rev. 2018, 81, 399–412. [Google Scholar] [CrossRef]
- Golmohamadi, H. Demand-side management in industrial sector: A review of heavy industries. Renew. Sustain. Energy Rev. 2022, 156, 111963. [Google Scholar] [CrossRef]
- Zhang, Q.; Grossmann, I.E. Enterprise-wide optimization for industrial demand side management: Fundamentals, advances, and perspectives. Chem. Eng. Res. Des. 2016, 116, 114–131. [Google Scholar] [CrossRef] [Green Version]
- Grossmann, I. Enterprise-wide optimization: A new frontier in process systems engineering. AIChE J. 2005, 51, 1846–1857. [Google Scholar] [CrossRef]
- Elio, J.; Phelan, P.; Villalobos, R.; Milcarek, R.J. A review of energy storage technologies for demand-side management in industrial facilities. J. Clean. Prod. 2021, 307, 127322. [Google Scholar] [CrossRef]
- Shoreh, M.H.; Siano, P.; Shafie-khah, M.; Loia, V.; Catalão, J.P.S. A survey of industrial applications of Demand Response. Electr. Power Syst. Res. 2016, 141, 31–49. [Google Scholar] [CrossRef]
- Shafie-khah, M.; Siano, P.; Aghaei, J.; Masoum, M.A.S.; Li, F.; Catalão, J.P.S. Comprehensive review of the recent advances in industrial and commercial DR. IEEE Trans. Industr. Inform. 2019, 15, 3757–3771. [Google Scholar] [CrossRef]
- Vardakas, J.S.; Zorba, N.; Verikoukis, C.V. A survey on demand response programs in smart grids: Pricing methods and optimization algorithms. IEEE Commun. Surv. Tutor. 2014, 17, 152–178. [Google Scholar] [CrossRef]
- Aghaei, J.; Alizadeh, M.-I. Demand response in smart electricity grids equipped with renewable energy sources: A review. Renew. Sustain. Energy Rev. 2013, 18, 64–72. [Google Scholar] [CrossRef]
- Srivastava, A.; Van Passel, S.; Laes, E. Assessing the success of electricity demand response programs: A meta-analysis. Energy Res. Soc. Sci. 2018, 40, 110–117. [Google Scholar] [CrossRef]
- Lindberg, C.-F.; Zahedian, K.; Solgi, M.; Lindkvist, R. Potential and limitations for industrial demand side management. Energy Procedia 2014, 61, 415–418. [Google Scholar] [CrossRef] [Green Version]
- Yao, E.; Samadi, P.; Wong, V.W.S.; Schober, R. Residential demand side management under high penetration of rooftop photovoltaic units. IEEE Trans. Smart Grid 2015, 7, 1597–1608. [Google Scholar] [CrossRef]
- International Energy Agency. Demand Response. Paris. 2022. Available online: https://www.iea.org/reports/demand-response (accessed on 23 May 2023).
- Shen, J.; Jiang, C.; Liu, Y.; Qian, J. A microgrid energy management system with demand response for providing grid peak shaving. Electr. Power Compon. Syst. 2016, 44, 843–852. [Google Scholar] [CrossRef]
- Zakeri, G.; Craigie, D.; Philpott, A.; Todd, M. Optimization of demand response through peak shaving. Oper. Res. Lett. 2014, 42, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Aravinthan, V. Strategies of residential peak shaving with integration of demand response and V2H. In Proceedings of the 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, China, 8–11 December 2013; pp. 1–5. [Google Scholar]
- Golmohamadi, H. Operational scheduling of responsive prosumer farms for day-ahead peak shaving by agricultural demand response aggregators. Int. J. Energy Res. 2021, 45, 938–960. [Google Scholar] [CrossRef]
- De Jonghe, C.; Hobbs, B.F.; Belmans, R. Optimal generation mix with short-term demand response and wind penetration. IEEE Trans. Power Syst. 2012, 27, 830–839. [Google Scholar] [CrossRef]
- Muratori, M.; Schuelke-Leech, B.-A.; Rizzoni, G. Role of residential demand response in modern electricity markets. Renew. Sustain. Energy Rev. 2014, 33, 546–553. [Google Scholar] [CrossRef]
- Teh, J. Adequacy assessment of wind integrated generating systems incorporating demand response and battery energy storage system. Energies 2018, 11, 2649. [Google Scholar] [CrossRef] [Green Version]
- Liasi, S.G.; Golkar, M.A. Electric vehicles connection to microgrid effects on peak demand with and without demand response. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1272–1277. [Google Scholar] [CrossRef]
- Feuerriegel, S.; Neumann, D. Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications. Energy Policy 2016, 96, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Pourmousavi, S.A.; Patrick, S.N.; Nehrir, M.H. Real-Time Demand Response Through Aggregate Electric Water Heaters for Load Shifting and Balancing Wind Generation. IEEE Trans. Smart Grid 2014, 5, 769–778. [Google Scholar] [CrossRef]
- Faria, P.; Vale, Z. A demand response approach to scheduling constrained load shifting. Energies 2019, 12, 1752. [Google Scholar] [CrossRef] [Green Version]
- Gils, H.C. Assessment of the theoretical demand response potential in Europe. Energy 2014, 67, 1–18. [Google Scholar] [CrossRef]
- Mota, B.; Faria, P.; Vale, Z. Residential load shifting in demand response events for bill reduction using a genetic algorithm. Energy 2022, 260, 124978. [Google Scholar] [CrossRef]
- Asadinejad, A.; Tomsovic, K. Optimal use of incentive and price based demand response to reduce costs and price volatility. Electr. Power Syst. Res. 2017, 144, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Rahmani-andebili, M. Modeling nonlinear incentive-based and price-based demand response programs and implementing on real power markets. Electr. Power Syst. Res. 2016, 132, 115–124. [Google Scholar] [CrossRef]
- Trujillo-Baute, E.; del Río, P.; Mir-Artigues, P. Analysing the impact of renewable energy regulation on retail electricity prices. Energy Policy 2018, 114, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Ketterer, J.C. The impact of wind power generation on the electricity price in Germany. Energy Econ. 2014, 44, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Monfared, H.J.; Ghasemi, A. Retail electricity pricing based on the value of electricity for consumers. Sustain. Energy Grids Netw. 2019, 18, 100205. [Google Scholar] [CrossRef]
- Wang, F.; Ge, X.; Yang, P.; Li, K.; Mi, Z.; Siano, P.; Duić, N. Day-ahead optimal bidding and scheduling strategies for DER aggregator considering responsive uncertainty under real-time pricing. Energy 2020, 213, 118765. [Google Scholar] [CrossRef]
- Abikarram, J.B.; McConky, K.; Proano, R. Energy cost minimization for unrelated parallel machine scheduling under real time and demand charge pricing. J. Clean. Prod. 2019, 208, 232–242. [Google Scholar] [CrossRef]
- Wang, S.; Bi, S.; Zhang, Y.A. Reinforcement Learning for Real-Time Pricing and Scheduling Control in EV Charging Stations. IEEE Trans. Industr. Inform. 2021, 17, 849–859. [Google Scholar] [CrossRef]
- Parrish, B.; Heptonstall, P.; Gross, R.; Sovacool, B.K. A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response. Energy Policy 2020, 138, 111221. [Google Scholar] [CrossRef]
- Csereklyei, Z.; Qu, S.; Ancev, T. The effect of wind and solar power generation on wholesale electricity prices in Australia. Energy Policy 2019, 131, 358–369. [Google Scholar] [CrossRef]
- Nakajima, T.; Hamori, S. Testing causal relationships between wholesale electricity prices and primary energy prices. Energy Policy 2013, 62, 869–877. [Google Scholar] [CrossRef]
- Nyamdash, B.; Denny, E. The impact of electricity storage on wholesale electricity prices. Energy Policy 2013, 58, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Moreno, B.; Díaz, G. The impact of virtual power plant technology composition on wholesale electricity prices: A comparative study of some European Union electricity markets. Renew. Sustain. Energy Rev. 2019, 99, 100–108. [Google Scholar] [CrossRef]
- Syed, M.H.; Crolla, P.; Burt, G.M.; Kok, J.K. Ancillary service provision by demand side management: A real-time power hardware-in-the-loop co-simulation demonstration. In Proceedings of the 2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST), Vienna, Austria, 8–11 September 2015; pp. 492–498. [Google Scholar] [CrossRef] [Green Version]
- Hayes, B.; Hernando-Gil, I.; Collin, A.; Harrison, G.; Djokić, S. Optimal Power Flow for Maximizing Network Benefits From Demand-Side Management. IEEE Trans. Power Syst. 2014, 29, 1739–1747. [Google Scholar] [CrossRef] [Green Version]
- Chandra, R.; Banerjee, S.; Radhakrishnan, K.K.; Panda, S.K. Transactive Energy Market Framework for Decentralized Coordination of Demand Side Management Within a Cluster of Buildings. IEEE Trans. Ind. Appl. 2021, 57, 3385–3395. [Google Scholar] [CrossRef]
- Mohanty, S.; Panda, S.; Parida, S.M.; Rout, P.K.; Sahu, B.K.; Bajaj, M.; Zawbaa, H.M.; Kumar, N.M.; Kamel, S. Demand side management of electric vehicles in smart grids: A survey on strategies, challenges, modeling, and optimization. Energy Rep. 2022, 8, 12466–12490. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, P.; Wu, H.; Qi, X.; Yang, S.; Li, Z. Two-stage load-scheduling model for the incentive-based demand response of industrial users considering load aggregators. IET Gener. Transm. Distrib. 2018, 12, 3518–3526. [Google Scholar] [CrossRef]
- Jiang, Z.; Ai, Q.; Hao, R. Integrated Demand Response Mechanism for Industrial Energy System Based on Multi-Energy Interaction. IEEE Access 2019, 7, 66336–66346. [Google Scholar] [CrossRef]
- Chai, Y.; Xiang, Y.; Liu, J.; Gu, C.; Zhang, W.; Xu, W. Incentive-based demand response model for maximizing benefits of electricity retailers. J. Mod. Power Syst. Clean Energy 2019, 7, 1644–1650. [Google Scholar] [CrossRef] [Green Version]
- Babatunde, O.M.; Munda, J.L.; Hamam, Y. Power system flexibility: A review. Energy Rep. 2020, 6, 101–106. [Google Scholar] [CrossRef]
- Freire-Barceló, T.; Martín-Martínez, F.; Sánchez-Miralles, Á. A literature review of Explicit Demand Flexibility providing energy services. Electr. Power Syst. Res. 2022, 209, 107953. [Google Scholar] [CrossRef]
- Luo, Z.; Peng, J.; Cao, J.; Yin, R.; Zou, B.; Tan, Y.; Yan, J. Demand Flexibility of Residential Buildings: Definitions, Flexible Loads, and Quantification Methods. Engineering 2022, 16, 123–140. [Google Scholar] [CrossRef]
- Williams, B.; Bishop, D.; Docherty, P. Assessing the energy storage potential of electric hot water cylinders with stochastic model-based control. J. R. Soc. N. Z. 2023, 1–17. [Google Scholar] [CrossRef]
- Wijaya, T.K.; Vasirani, M.; Humeau, S.; Aberer, K. Cluster-based aggregate forecasting for residential electricity demand using smart meter data. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 879–887. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. Industry. Paris. 2022. Available online: https://www.iea.org/reports/industry (accessed on 23 May 2023).
- Otsuka, A. Industrial electricity consumption efficiency and energy policy in Japan. Util Policy 2023, 81, 101519. [Google Scholar] [CrossRef]
- Han, J.; Yun, S.-J. An analysis of the electricity consumption reduction potential of electric motors in the South Korean manufacturing sector. Energy Effic. 2015, 8, 1035–1047. [Google Scholar] [CrossRef] [Green Version]
- Shao, T.; Pan, X.; Li, X.; Zhou, S.; Zhang, S.; Chen, W. China’s industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling. Renew. Sustain. Energy Rev. 2022, 170, 112992. [Google Scholar] [CrossRef]
- Gold, R. Status Report on Electrification Policy: Where to Next? Curr. Sustain./Renew. Energy Rep. 2021, 8, 114–122. [Google Scholar] [CrossRef]
- Luh, S.; Budinis, S.; Giarola, S.; Schmidt, T.J.; Hawkes, A. Long-term development of the industrial sector—Case study about electrification, fuel switching, and CCS in the USA. Comput. Chem. Eng. 2020, 133, 106602. [Google Scholar] [CrossRef]
- Schüwer, D.; Schneider, C. Electrification of industrial process heat: Long-term applications, potentials and impacts. In Proceedings of the Leading the Low-Carbon Transition: ECEEE Industrial Summer Study, Berlin, Germany, 11–13 June 2018; European Council for an Energy Efficient Economy: Stockholm, Sweden, 2018; pp. 411–422. [Google Scholar]
- Nadel, S. Electrification in the Transportation, Buildings, and Industrial Sectors: A Review of Opportunities, Barriers, and Policies. Curr. Sustain. /Renew. Energy Rep. 2019, 6, 158–168. [Google Scholar] [CrossRef]
- Wei, M.; McMillan, C.A.; de la Rue du Can, S. Electrification of Industry: Potential, Challenges and Outlook. Curr. Sustain./Renew. Energy Rep. 2019, 6, 140–148. [Google Scholar] [CrossRef]
- Ministry of Business Innovation & Employment. Primary Metal and Metal Product Manufacturing. 2018. Available online: https://www.mbie.govt.nz/dmsdocument/6563-primary-metal-and-metal-product-manufacturing-factsheet (accessed on 17 May 2023).
- Finn, P.; Fitzpatrick, C. Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing. Appl. Energy 2014, 113, 11–21. [Google Scholar] [CrossRef]
- Moon, J.-Y.; Park, J. Smart production scheduling with time-dependent and machine-dependent electricity cost by considering distributed energy resources and energy storage. Int. J. Prod. Res. 2014, 52, 3922–3939. [Google Scholar] [CrossRef]
- Han, Z.; Zhao, J.; Wang, W. An optimized oxygen system scheduling with electricity cost consideration in steel industry. IEEE/CAA J. Autom. Sin. 2017, 4, 216–222. [Google Scholar] [CrossRef]
- Abeberese, A.B. Electricity Cost and Firm Performance: Evidence from India. Rev. Econ. Stat. 2017, 99, 839–852. [Google Scholar] [CrossRef] [Green Version]
- Price, A.C.; Ross, M.H. Reducing industrial electricity costs—An automative case study. Electr. J. 1989, 2, 40–51. [Google Scholar] [CrossRef]
- Moon, J.-Y.; Shin, K.; Park, J. Optimization of production scheduling with time-dependent and machine-dependent electricity cost for industrial energy efficiency. Int. J. Adv. Manuf. Technol. 2013, 68, 523–535. [Google Scholar] [CrossRef]
- Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [Google Scholar] [CrossRef]
- Helin, K.; Käki, A.; Zakeri, B.; Lahdelma, R.; Syri, S. Economic potential of industrial demand side management in pulp and paper industry. Energy 2017, 141, 1681–1694. [Google Scholar] [CrossRef]
- Harjunkoski, I.; Grossmann, I.E. A decomposition approach for the scheduling of a steel plant production. Comput. Chem. Eng. 2001, 25, 1647–1660. [Google Scholar] [CrossRef]
- Castro, P.M.; Sun, L.; Harjunkoski, I. Resource–task network formulations for industrial demand side management of a steel plant. Ind. Eng. Chem. Res. 2013, 52, 13046–13058. [Google Scholar] [CrossRef] [Green Version]
- Ministry for Primary Industries. Introduction to Food Safety Requirements for Cold and Dry Stores. Wellington. 2022. Available online: https://www.mpi.govt.nz/food-business/transport-storage-and-wharves/food-safety-cold-dry-stores-animal-material-depots/introduction-to-food-safety-requirements-for-cold-and-dry-stores/ (accessed on 23 May 2023).
- Golmohamadi, H.; Keypour, R.; Bak-Jensen, B.; Pillai, J.R. A multi-agent based optimization of residential and industrial demand response aggregators. Int. J. Electr. Power Energy Syst. 2019, 107, 472–485. [Google Scholar] [CrossRef]
- Summerbell, D.L.; Khripko, D.; Barlow, C.; Hesselbach, J. Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant. Appl. Energy 2017, 197, 100–113. [Google Scholar] [CrossRef]
- Nebel, A.; Krüger, C.; Janßen, T.; Saurat, M.; Kiefer, S.; Arnold, K. Comparison of the effects of industrial demand side management and other flexibilities on the performance of the energy system. Energies 2020, 13, 4448. [Google Scholar] [CrossRef]
- Fitsum, B.T.; Ramchandra, B.; Menegesha, M. Design Optimization and Demand Side Management of a Solar-Assisted Industrial Heating Using Agent-Based Modelling (ABM): Methodology and Case Study. In Proceedings of the 2018 3rd International Conference on Power and Renewable Energy, Berlin, Germany, 21–24 September 2018; EDP Sciences: Les Ulis, France, 2018; p. 02001. [Google Scholar]
- Boehm, R.; Franke, J. Demand-side-management by Flexible Generation of Compressed Air. Procedia CIRP 2017, 63, 195–200. [Google Scholar] [CrossRef]
- Saidur, R.; Rahim, N.A.; Hasanuzzaman, M. A review on compressed-air energy use and energy savings. Renew. Sustain. Energy Rev. 2010, 14, 1135–1153. [Google Scholar] [CrossRef]
- Hong, W.Y.; Rahmat, B.N.N.N. Energy consumption, CO2 emissions and electricity costs of lighting for commercial buildings in Southeast Asia. Sci. Rep. 2022, 12, 13805. [Google Scholar] [CrossRef]
- BRANZ. Building Energy End-Use Study (BEES); BRANZ: Porirua, New Zealand, 2012. [Google Scholar]
- Adi, T.W.; Prabowo, E.; Prasadjaningsih, O. Influence of electricity consumption of industrial and business, electricity price, inflation and interest rate on GDP and investments in Indonesia. Int. J. Energy Econ. Policy 2022, 12, 331–340. [Google Scholar] [CrossRef]
- Energy Efficiency and Conservation Authority. Energy End Use Database. 2023. Available online: https://www.eeca.govt.nz/insights/eeca-insights/energy-end-use-database-eeud/ (accessed on 23 May 2023).
- Bishop, D.; Chase, J.G. A Luminance-Based Lighting Design Method: A Framework for Lighting Design and Review of Luminance Measures. Sustainability 2023, 15, 4369. [Google Scholar] [CrossRef]
- AS/NZS 1680.1:2006; Interior and Workplace Lighting Part 1: General Principles and Recommendations. Standards Australia: Sydney, NSW, Australia; Standards New Zealand: Wellington, New Zealand, 2006. Available online: https://www.saiglobal.com/pdftemp/previews/osh/as/as1000/1600/1680.1-2006.pdf (accessed on 23 May 2023).
- Shi, Q.; Li, F.; Hu, Q.; Wang, Z. Dynamic demand control for system frequency regulation: Concept review, algorithm comparison, and future vision. Electr. Power Syst. Res. 2018, 154, 75–87. [Google Scholar] [CrossRef]
- Guelpa, E.; Verda, V. Demand response and other demand side management techniques for district heating: A review. Energy 2021, 219, 119440. [Google Scholar] [CrossRef]
- Arteconi, A.; Hewitt, N.J.; Polonara, F. State of the art of thermal storage for demand-side management. Appl. Energy 2012, 93, 371–389. [Google Scholar] [CrossRef]
- Gomes, L.; Spínola, J.; Vale, Z.; Corchado, J.M. Agent-based architecture for demand side management using real-time resources’ priorities and a deterministic optimization algorithm. J. Clean. Prod. 2019, 241, 118154. [Google Scholar] [CrossRef]
- Andrade, I.; Land, J.; Gallardo, P.; Krumdieck, S. Application of the InTIME Methodology for the Transition of Office Buildings to Low Carbon-A Case Study. Sustainability 2022, 14, 12053. [Google Scholar] [CrossRef]
- Hirsch, A.; Clark, J.; Deru, M.; Trenbath, K.; Doebber, I.; Studer, D. Pilot Testing of Commercial Refrigeration-Based Demand Response; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2015. [Google Scholar] [CrossRef] [Green Version]
- Söyrinki, S.; Heiskanen, E.; Matschoss, K. Piloting demand response in retailing: Lessons learned in real-life context. Sustainability 2018, 10, 3790. [Google Scholar] [CrossRef] [Green Version]
- Al-Hanahi, B.; Ahmad, I.; Habibi, D.; Pradhan, P.; Masoum, M.A.S. An Optimal Charging Solution for Commercial Electric Vehicles. IEEE Access 2022, 10, 46162–46175. [Google Scholar] [CrossRef]
- Baherifard, M.A.; Kazemzadeh, R.; Yazdankhah, A.S.; Marzband, M. Intelligent charging planning for electric vehicle commercial parking lots and its impact on distribution network’s imbalance indices. Sustain. Energy Grids Netw. 2022, 30, 100620. [Google Scholar] [CrossRef]
- Morstyn, T.; Crozier, C.; Deakin, M.; McCulloch, M.D. Conic optimization for electric vehicle station smart charging with battery voltage constraints. IEEE Trans. Transp. Electrif. 2020, 6, 478–487. [Google Scholar] [CrossRef]
- Moghaddam, Z.; Ahmad, I.; Habibi, D.; Phung, Q.V. Smart charging strategy for electric vehicle charging stations. IEEE Trans. Transp. Electrif. 2017, 4, 76–88. [Google Scholar] [CrossRef]
- Uddin, M.N.; Wang, Q.; Wei, H.H.; Chi, H.L.; Ni, M. Building information modeling (BIM), System dynamics (SD), and Agent-based modeling (ABM): Towards an integrated approach. Ain Shams Eng. J. 2021, 12, 4261–4274. [Google Scholar] [CrossRef]
- Malik, J.; Mahdavi, A.; Azar, E.; Putra, H.C.; Berger, C.; Andrews, C.; Hong, T. Ten questions concerning agent-based modeling of occupant behavior for energy and environmental performance of buildings. Build. Environ. 2022, 217, 109016. [Google Scholar] [CrossRef]
- Isaacs, N.; Camilleri, M.; Burrough, L.; Pollard, A.; Saville-Smith, K.; Fraser, R.; Rossouw, P.; Jowett, J. Energy use in new zealand households: Final report on the household energy end-use project (heep). BRANZ Study Rep. 2010, 221, 15–21. [Google Scholar]
- Wang, P.; Gong, G.; Wang, Y.; Li, L. Thermodynamic investigation of building integrated energy efficiency for building retrofit. Energy Build. 2014, 77, 139–148. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Wang, M.; Hu, W.; Sun, Y. Impacts of multiple factors on energy consumption of aging residential buildings based on a system dynamics model--Taking Northwest China as an example. J. Build. Eng. 2021, 44, 102595. [Google Scholar] [CrossRef]
- Lin, B.; Wang, Y. Does energy poverty really exist in China? From the perspective of residential electricity consumption. Energy Policy 2020, 143, 111557. [Google Scholar] [CrossRef]
- Ek, K.; Söderholm, P. The devil is in the details: Household electricity saving behavior and the role of information. Energy Policy 2010, 38, 1578–1587. [Google Scholar] [CrossRef]
- Nilsson, A.; Stoll, P.; Brandt, N. Assessing the impact of real-time price visualization on residential electricity consumption, costs, and carbon emissions. Resour. Conserv. Recycl. 2017, 124, 152–161. [Google Scholar] [CrossRef]
- Lanthier-Veilleux, M.; Baron, G.; Généreux, M. Respiratory Diseases in University Students Associated with Exposure to Residential Dampness or Mold. Int. J. Environ. Res. Public Health 2016, 13, 1154. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Nateghi, R. Climate sensitivity of end-use electricity consumption in the built environment: An application to the state of Florida, United States. Energy 2017, 128, 688–700. [Google Scholar] [CrossRef]
- Bartusch, C.; Wallin, F.; Odlare, M.; Vassileva, I.; Wester, L. Introducing a demand-based electricity distribution tariff in the residential sector: Demand response and customer perception. Energy Policy 2011, 39, 5008–5025. [Google Scholar] [CrossRef]
- Eskeland, G.S.; Mideksa, T.K. Electricity demand in a changing climate. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 877–897. [Google Scholar] [CrossRef]
- Genesis Energy. Electricity Pricing. 2023. Available online: https://www.genesisenergy.co.nz/for-home/products/explore-pricing/electricity (accessed on 23 May 2023).
- Flick Electric, Co. Off Peak Power Plan. 2023. Available online: https://www.flickelectric.co.nz/pricing-and-plans/offpeak/ (accessed on 23 May 2023).
- Wellington Electricity. Time of Use Pricing. 2023. Available online: https://www.welectricity.co.nz/disclosures/pricing/time-of-use-pricing/ (accessed on 23 May 2023).
- Gyamfi, S.; Krumdieck, S. Price, environment and security: Exploring multi-modal motivation in voluntary residential peak demand response. Energy Policy 2011, 39, 2993–3004. [Google Scholar] [CrossRef] [Green Version]
- Thøgersen, J.; Grønhøj, A. Electricity saving in households—A social cognitive approach. Energy Policy 2010, 38, 7732–7743. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Long, C.; Cheng, M.; Zhang, C. Performance Evaluation of Peer-to-Peer Energy Sharing Models. Energy Procedia 2017, 143, 817–822. [Google Scholar] [CrossRef]
- Mancini, F.; Basso, G.L.; De Santoli, L. Energy Use in Residential Buildings: Characterisation for Identifying Flexible Loads by Means of a Questionnaire Survey. Energies 2019, 12, 2055. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, Z.; Hong, T.; Piette, M.A. Energy flexibility of residential buildings: A systematic review of characterization and quantification methods and applications. Adv. Appl. Energy 2021, 3, 100054. [Google Scholar] [CrossRef]
- Neves, D.; Pina, A.; Silva, C.A. Demand response modeling: A comparison between tools. Appl. Energy 2015, 146, 288–297. [Google Scholar] [CrossRef]
- Khan, I.; Jack, M.W.; Stephenson, J. Identifying residential daily electricity-use profiles through time-segmented regression analysis. Energy Build. 2019, 194, 232–246. [Google Scholar] [CrossRef]
- Williams, B.; Gallardo, P.; Bishop, D.; Chase, G. Impacts of electric vehicle policy on the New Zealand energy system: A retro-analysis. Energy Rep. 2023, 9, 3861–3871. [Google Scholar] [CrossRef]
- Clement-Nyns, K.; Haesen, E.; Driesen, J. The impact of vehicle-to-grid on the distribution grid. Electr. Power Syst. Res. 2011, 81, 185–192. [Google Scholar] [CrossRef]
- Lopes, J.A.P.; Soares, F.J.; Almeida, P.M.R. Integration of electric vehicles in the electric power system. Proc. IEEE 2010, 99, 168–183. [Google Scholar] [CrossRef]
- Shinde, P.; Swarup, K.S. Optimal Electric Vehicle charging schedule for demand side management. In Proceedings of the 2016 First International Conference on Sustainable Green Buildings and Communities (SGBC), Chennai, India, 18–20 December 2016; pp. 1–6. [Google Scholar]
- Dupont, B.; Dietrich, K.; De Jonghe, C.; Ramos, A.; Belmans, R. Impact of residential demand response on power system operation: A Belgian case study. Appl. Energy 2014, 122, 1–10. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Long, C. Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework. Appl. Energy 2018, 222, 993–1022. [Google Scholar] [CrossRef]
- López, M.A.; De La Torre, S.; Martín, S.; Aguado, J.A. Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support. Int. J. Electr. Power Energy Syst. 2015, 64, 689–698. [Google Scholar] [CrossRef]
- Oskouei, M.Z.; Mohammadi-Ivatloo, B.; Abapour, M.; Anvari-Moghaddam, A.; Mehrjerdi, H. Practical implementation of residential load management system by considering vehicle-for-power transfer: Profit analysis. Sustain. Cities Soc. 2020, 60, 102144. [Google Scholar] [CrossRef]
- Lujano-Rojas, J.M.; Monteiro, C.; Dufo-López, R.; Bernal-Agustín, J.L. Optimum residential load management strategy for real time pricing (RTP) demand response programs. Energy Policy 2012, 45, 671–679. [Google Scholar] [CrossRef]
- de Hoog, J.; Thomas, D.A.; Muenzel, V.; Jayasuriya, D.C.; Alpcan, T.; Brazil, M.; Mareels, I. Electric vehicle charging and grid constraints: Comparing distributed and centralized approaches. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Ravi, S.S.; Aziz, M. Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives. Energies 2022, 15, 589. [Google Scholar] [CrossRef]
- Goel, S.; Sharma, R.; Rathore, A.K. A review on barrier and challenges of electric vehicle in India and vehicle to grid optimisation. Transp. Eng. 2021, 4, 100057. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Kester, J.; Noel, L.; de Rubens, G.Z. Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review. Renew. Sustain. Energy Rev. 2020, 131, 109963. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S. Review of power electronics in vehicle-to-grid systems. J. Energy Storage 2019, 21, 337–361. [Google Scholar] [CrossRef]
- Wang, D.; Coignard, J.; Zeng, T.; Zhang, C.; Saxena, S. Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services. J. Power Sources 2016, 332, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Uddin, K.; Dubarry, M.; Glick, M.B. The viability of vehicle-to-grid operations from a battery technology and policy perspective. Energy Policy 2018, 113, 342–347. [Google Scholar] [CrossRef]
- Ortega-Vazquez, M.A. Optimal scheduling of electric vehicle charging and vehicle-to-grid services at household level including battery degradation and price uncertainty. IET Gener. Transm. Distrib. 2014, 8, 1007–1016. [Google Scholar] [CrossRef]
- Leippi, A.; Fleschutz, M.; Murphy, M.D. A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios. Energies 2022, 15, 3227. [Google Scholar] [CrossRef]
- Ginigeme, K.; Wang, Z. Distributed Optimal Vehicle-to-Grid Approaches with Consideration of Battery Degradation Cost under Real-Time Pricing. IEEE Access 2020, 8, 5225–5235. [Google Scholar] [CrossRef]
- Qureshi, W.A.; Nair, N.-K.C.; Farid, M.M. Impact of energy storage in buildings on electricity demand side management. Energy Convers. Manag. 2011, 52, 2110–2120. [Google Scholar] [CrossRef]
- Vivian, J.; Prataviera, E.; Cunsolo, F.; Pau, M. Demand Side Management of a pool of air source heat pumps for space heating and domestic hot water production in a residential district. Energy Convers. Manag. 2020, 225, 113457. [Google Scholar] [CrossRef]
- Dehghanpour, K.; Nehrir, M.H.; Sheppard, J.W.; Kelly, N.C. Agent-based modeling of retail electrical energy markets with demand response. IEEE Trans. Smart Grid 2016, 9, 3465–3475. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Xiao, F. Price-responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm. Appl. Energy 2018, 219, 151–164. [Google Scholar] [CrossRef]
- Wahid, F.; Fayaz, M.; Aljarbouh, A.; Mir, M.; Aamir, M.; Imran. Energy consumption optimization and user comfort maximization in smart buildings using a hybrid of the firefly and genetic algorithms. Energies 2020, 13, 4363. [Google Scholar] [CrossRef]
- Ma, J.; Ma, X.; Ilic, S. HVAC-Based Cooperative Algorithms for Demand Side Management in a Microgrid. Energies 2019, 12, 4276. [Google Scholar] [CrossRef] [Green Version]
- Nazemi, S.D.; Mahani, K.; Ghofrani, A.; Amini, M.; Kose, B.E.; Jafari, M.A. Techno-Economic Analysis and Optimization of a Microgrid Considering Demand-Side Management. In Proceedings of the 2020 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 6–7 February 2020; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- da Fonseca, A.L.A.; Chvatal, K.M.S.; Fernandes, R.A.S. Thermal comfort maintenance in demand response programs: A critical review. Renew. Sustain. Energy Rev. 2021, 141, 110847. [Google Scholar] [CrossRef]
- Verrilli, F.; Gambino, G.; Srinivasan, S.; Palmieri, G.; Del Vecchio, C.; Glielmo, L. Demand Side Management for heating controls in Microgrids. IFAC-PapersOnLine 2016, 49, 611–616. [Google Scholar] [CrossRef]
- Hong, J.; Johnstone, C.; Torriti, J.; Leach, M. Discrete demand side control performance under dynamic building simulation: A heat pump application. Renew. Energy 2012, 39, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Péan, T.Q.; Ortiz, J.; Salom, J. Impact of Demand-Side Management on Thermal Comfort and Energy Costs in a Residential nZEB. Buildings 2017, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, J.; Ford, R.; Nair, N.-K.; Watson, N.; Wood, A.; Miller, A. Smart grid research in New Zealand–A review from the GREEN Grid research programme. Renew. Sustain. Energy Rev. 2018, 82, 1636–1645. [Google Scholar] [CrossRef]
- Good, N.; Karangelos, E.; Navarro-Espinosa, A.; Mancarella, P. Optimization under uncertainty of thermal storage-based flexible demand response with quantification of residential users’ discomfort. IEEE Trans. Smart Grid 2015, 6, 2333–2342. [Google Scholar] [CrossRef]
- Griffiths, E.; Whitehouse, K. ThermalThrift: Cost Effective Thermal Energy Storage for Load Shifting with Water Heaters. In Proceedings of the International Conference on Embedded Wireless Systems and Networks (EWSN), Uppsala, Sweden, 20–22 February 2017; pp. 24–35. [Google Scholar]
- Sonnekalb, T.; Lucia, S. Smart hot water control with learned human behavior for minimal energy consumption. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 572–577. [Google Scholar]
- Lin, B.; Li, S.; Xiao, Y. Optimal and learning-based demand response mechanism for electric water heater system. Energies 2017, 10, 1722. [Google Scholar] [CrossRef] [Green Version]
- Gelažanskas, L.; Gamage, K.A.A. Distributed energy storage using residential hot water heaters. Energies 2016, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Pulkkinen, J.; Louis, J.-N. Impacts of demand side management programs to domestic hot water heating load profiles in smart buildings. In Proceedings of the SIMS Conference on Simulation and Modelling SIMS 2020, Virtual, 22–24 September 2020. [Google Scholar]
- Kepplinger, P.; Huber, G.; Petrasch, J. Autonomous optimal control for demand side management with resistive domestic hot water heaters using linear optimization. Energy Build. 2015, 100, 50–55. [Google Scholar] [CrossRef]
- Kapsalis, V.; Hadellis, L. Optimal operation scheduling of electric water heaters under dynamic pricing. Sustain. Cities Soc. 2017, 31, 109–121. [Google Scholar] [CrossRef]
- Kepplinger, P.; Huber, G.; Petrasch, J. Field testing of demand side management via autonomous optimal control of a domestic hot water heater. Energy Build. 2016, 127, 730–735. [Google Scholar] [CrossRef]
- Booysen, M.J.; Engelbrecht, J.A.A.; Ritchie, M.J.; Apperley, M.; Cloete, A.H. How much energy can optimal control of domestic water heating save? Energy Sustain. Dev. 2019, 51, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Kazmi, H.; Mehmood, F.; Lodeweyckx, S.; Driesen, J. Gigawatt-hour scale savings on a budget of zero: Deep reinforcement learning based optimal control of hot water systems. Energy 2018, 144, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Gelazanskas, L.; Gamage, K.A.A. Managing renewable intermittency in smart grid: Use of residential hot water heaters as a form of energy storage. In Proceedings of the 2016 19th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, 29 May–1 June 2016; pp. 1–4. [Google Scholar]
- Jack, M.W.; Suomalainen, K.; Dew, J.J.W.; Eyers, D. A minimal simulation of the electricity demand of a domestic hot water cylinder for smart control. Appl. Energy 2018, 211, 104–112. [Google Scholar] [CrossRef]
- Iqbal, S.; Sarfraz, M.; Ayyub, M.; Tariq, M.; Chakrabortty, R.K.; Ryan, M.J.; Alamri, B. A Comprehensive Review on Residential Demand Side Management Strategies in Smart Grid Environment. Sustainability 2021, 13, 7170. [Google Scholar] [CrossRef]
- Mair, J.; Suomalainen, K.; Eyers, D.M.; Jack, M.W. Sizing domestic batteries for load smoothing and peak shaving based on real-world demand data. Energy Build. 2021, 247, 111109. [Google Scholar] [CrossRef]
- Dugan, R.C.; McDermott, T.E. Distributed generation. IEEE Ind. Appl. Mag. 2002, 8, 19–25. [Google Scholar] [CrossRef]
- Ackermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res. 2001, 57, 195–204. [Google Scholar] [CrossRef]
- Wu, Z.; Tazvinga, H.; Xia, X. Demand side management of photovoltaic-battery hybrid system. Appl. Energy 2015, 148, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.; Habib, H.U.R.; Wang, S.; Büker, M.S.; Alhems, L.M.; Al Garni, H.Z. Optimal Design and Model Predictive Control of Standalone HRES: A Real Case Study for Residential Demand Side Management. IEEE Access 2020, 8, 29767–29814. [Google Scholar] [CrossRef]
- Mulleriyawage, U.G.K.; Shen, W.X. Impact of demand side management on optimal sizing of residential battery energy storage system. Renew. Energy 2021, 172, 1250–1266. [Google Scholar] [CrossRef]
- Luthander, R.; Widén, J.; Munkhammar, J.; Lingfors, D. Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment. Energy 2016, 112, 221–231. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, X.; Meinrenken, C.J.; Ding, Y. Economic and environmental benefits of coordinating dispatch among distributed electricity storage. Appl. Energy 2018, 210, 842–855. [Google Scholar] [CrossRef]
- Setlhaolo, D.; Xia, X. Optimal scheduling of household appliances with a battery storage system and coordination. Energy Build. 2015, 94, 61–70. [Google Scholar] [CrossRef]
- Yu, D.; Wang, J.; Li, D.; Jermsittiparsert, K.; Nojavan, S. Risk-averse stochastic operation of a power system integrated with hydrogen storage system and wind generation in the presence of demand response program. Int. J. Hydrogen Energy 2019, 44, 31204–31215. [Google Scholar] [CrossRef]
- Venizelou, V.; Makrides, G.; Efthymiou, V.; Georghiou, G.E. Methodology for deploying cost-optimum price-based demand side management for residential prosumers. Renew. Energy 2020, 153, 228–240. [Google Scholar] [CrossRef]
- Ciabattoni, L.; Comodi, G.; Ferracuti, F.; Foresi, G. AI-Powered Home Electrical Appliances as Enabler of Demand-Side Flexibility. IEEE Consum. Electron. Mag. 2020, 9, 72–78. [Google Scholar] [CrossRef]
- Nasir, T.; Bukhari, S.S.H.; Raza, S.; Munir, H.M.; Abrar, M.; Muqeet, H.A.U.; Bhatti, K.L.; Ro, J.S.; Masroor, R. Recent Challenges and Methodologies in Smart Grid Demand Side Management: State-of-the-Art Literature Review. Math. Probl. Eng. 2021, 2021, 5821301. [Google Scholar] [CrossRef]
- Setlhaolo, D.; Xia, X. Combined residential demand side management strategies with coordination and economic analysis. Int. J. Electr. Power Energy Syst. 2016, 79, 150–160. [Google Scholar] [CrossRef]
- Setlhaolo, D.; Xia, X.; Zhang, J. Optimal scheduling of household appliances for demand response. Electr. Power Syst. Res. 2014, 116, 24–28. [Google Scholar] [CrossRef]
- Goulden, M.; Bedwell, B.; Rennick-Egglestone, S.; Rodden, T.; Spence, A. Smart grids, smart users? The role of the user in demand side management. Energy Res. Soc. Sci. 2014, 2, 21–29. [Google Scholar] [CrossRef]
- Shipman, R.; Gillott, M.; Naghiyev, E. SWITCH: Case Studies in the Demand Side Management of Washing Appliances. Energy Procedia 2013, 42, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Finn, P.; O’Connell, M.; Fitzpatrick, C. Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction. Appl. Energy 2013, 101, 678–685. [Google Scholar] [CrossRef]
- Taniguchi, A.; Inoue, T.; Otsuki, M.; Yamaguchi, Y.; Shimoda, Y.; Takami, A.; Hanaoka, K. Estimation of the contribution of the residential sector to summer peak demand reduction in Japan using an energy end-use simulation model. Energy Build. 2016, 112, 80–92. [Google Scholar] [CrossRef]
- Fan, H.; MacGill, I.F.; Sproul, A.B. Statistical analysis of drivers of residential peak electricity demand. Energy Build. 2017, 141, 205–217. [Google Scholar] [CrossRef]
- Laubenbacher, R.; Jarrah, A.S.; Mortveit, H.; Ravi, S.S. A mathematical formalism for agent-based modeling. arXiv 2007, arXiv:0801.0249. [Google Scholar]
- Kieu, L.-M.; Malleson, N.; Heppenstall, A. Dealing with uncertainty in agent-based models for short-term predictions. R. Soc. Open Sci. 2020, 7, 191074. [Google Scholar] [CrossRef] [Green Version]
- Lye, R.; Tan, J.P.L.; Cheong, S.A. Understanding agent-based models of financial markets: A bottom–up approach based on order parameters and phase diagrams. Phys. A Stat. Mech. Its Appl. 2012, 391, 5521–5531. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ahn, K.; Kim, C.; Ha, C. Agent-based models in financial market studies. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; p. 012022. [Google Scholar]
- Fernandes, F.; Morais, H.; Vale, Z.; Ramos, C. Dynamic load management in a smart home to participate in demand response events. Energy Build. 2014, 82, 592–606. [Google Scholar] [CrossRef] [Green Version]
- Jindal, A.; Bhambhu, B.S.; Singh, M.; Kumar, N.; Naik, K. A heuristic-based appliance scheduling scheme for smart homes. IEEE Trans. Industr. Inform. 2019, 16, 3242–3255. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.-T.; Safder, U.; Loy-Benitez, J.; Yoo, C. Optimal demand side management scheduling-based bidirectional regulation of energy distribution network for multi-residential demand response with self-produced renewable energy. Appl. Energy 2022, 322, 119425. [Google Scholar] [CrossRef]
- Rashidizadeh-Kermani, H.; Vahedipour-Dahraie, M.; Shafie-khah, M.; Catalao, J.P.S. Stochastic programming model for scheduling demand response aggregators considering uncertain market prices and demands. Int. J. Electr. Power Energy Syst. 2019, 113, 528–538. [Google Scholar] [CrossRef]
- Nikmehr, N.; Najafi-Ravadanegh, S.; Khodaei, A. Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty. Appl. Energy 2017, 198, 267–279. [Google Scholar] [CrossRef]
- Vahedipour-Dahraie, M.; Rashidizadeh-Kermani, H.; Anvari-Moghaddam, A.; Siano, P.; Catalao, J.P.S. Short-term reliability and economic evaluation of resilient microgrids under incentive-based demand response programs. Int. J. Electr. Power Energy Syst. 2022, 138, 107918. [Google Scholar] [CrossRef]
- de Marchi, S.; Page, S.E. Agent-Based Models. Annu. Rev. Political Sci. 2014, 17, 1–20. [Google Scholar] [CrossRef]
- Samanidou, E.; Zschischang, E.; Stauffer, D.; Lux, T. Agent-based models of financial markets. Rep. Prog. Phys. 2007, 70, 409. [Google Scholar] [CrossRef] [Green Version]
- Steinbacher, M.; Raddant, M.; Karimi, F.; Camacho Cuena, E.; Alfarano, S.; Iori, G.; Lux, T. Advances in the agent-based modeling of economic and social behavior. SN Bus. Econ. 2021, 1, 99. [Google Scholar] [CrossRef]
- Shinde, P.; Amelin, M. Agent-Based Models in Electricity Markets: A Literature Review. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 3026–3031. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Chen, X.; Xie, J.; Rahman, S.; Wang, J.; Hui, H.; Chen, T. Agent-based modeling and simulation for the electricity market with residential demand response. CSEE J. Power Energy Syst. 2020, 7, 368–380. [Google Scholar]
- Karfopoulos, E.; Tena, L.; Torres, A.; Salas, P.; Jorda, J.G.; Dimeas, A.; Hatziargyriou, N. A multi-agent system providing demand response services from residential consumers. Electr. Power Syst. Res. 2015, 120, 163–176. [Google Scholar] [CrossRef]
- Kladnik, B.; Gubina, A.; Artač, G.; Nagode, K.; Kockar, I. Agent-based modeling of the demand-side flexibility. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar]
- Ramchurn, S.; Vytelingum, P.; Rogers, A.; Jennings, N. Agent-based control for decentralised demand side management in the smart grid. In Proceedings of the Tenth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, 2–6 May 2011; pp. 5–12. [Google Scholar]
- Dethlefs, T.; Preisler, T.; Renz, W. Multi-agent-based distributed optimization for demand-side-management applications. In Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Warsaw, Poland, 7–10 September 2014; pp. 1489–1496. [Google Scholar]
- Zheng, M.; Meinrenken, C.J.; Lackner, K.S. Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response. Appl. Energy 2014, 126, 297–306. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Z.; Wu, X. The multiobjective based large-scale electric vehicle charging behaviours analysis. Complexity 2018, 2018, 466–481. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, D.; Amiri, N.; Marzband, M.; Abusorrah, A.; Sedraoui, K. Optimal sizing of hybrid renewable energy systems by considering power sharing and electric vehicles. Int. J. Energy Res. 2022, 46, 8288–8312. [Google Scholar] [CrossRef]
- Ramadhani, U.H.; Fachrizal, R.; Shepero, M.; Munkhammar, J.; Widén, J. Probabilistic load flow analysis of electric vehicle smart charging in unbalanced LV distribution systems with residential photovoltaic generation. Sustain. Cities Soc. 2021, 72, 103043. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, M.; Wang, J.-C. Direct rebound effect on urban residential electricity use: An empirical study in China. Renew. Sustain. Energy Rev. 2014, 30, 124–132. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, P. Measurement of the direct rebound effect of residential electricity consumption: An empirical study based on the China family panel studies. Appl. Energy 2021, 301, 117409. [Google Scholar] [CrossRef]
- Wang, Z.; Han, B.; Lu, M. Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China. Renew. Sustain. Energy Rev. 2016, 58, 852–861. [Google Scholar] [CrossRef]
- Galvin, R.; Dütschke, E.; Weiß, J. A conceptual framework for understanding rebound effects with renewable electricity: A new challenge for decarbonizing the electricity sector. Renew. Energy 2021, 176, 423–432. [Google Scholar] [CrossRef]
- Railsback, S.F.; Grimm, V. Agent-Based and Individual-Based Modeling: A Practical Introduction; Princeton University Press: Princeton, NJ, USA, 2019. [Google Scholar]
- Rai, V.; Robinson, S.A. Agent-based modeling of energy technology adoption: Empirical integration of social, behavioral, economic, and environmental factors. Environ. Model. Softw. 2015, 70, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Benenson, I.; Martens, K.; Birfir, S. PARKAGENT: An agent-based model of parking in the city. Comput. Environ. Urban Syst. 2008, 32, 431–439. [Google Scholar] [CrossRef]
- Bañgate, J.M.; Dugdale, J.; Beck, E.; Adam, C. Review of Agent Based Modelling of Social Attachment in Crisis Situations. Int. J. Inf. Syst. Crisis Response Manag. (IJISCRAM) 2019, 11, 35–64. [Google Scholar] [CrossRef]
- Hesselink, L.X.W.; Chappin, E.J.L. Adoption of energy efficient technologies by households—Barriers, policies and agent-based modelling studies. Renew. Sustain. Energy Rev. 2019, 99, 29–41. [Google Scholar] [CrossRef]
- Rai, V.; Henry, A.D. Agent-based modelling of consumer energy choices. Nat. Clim. Chang. 2016, 6, 556–562. [Google Scholar] [CrossRef]
- Quesada, F.J.M.; Tapia, E.; Llàcer, T.; Noguera, J.A. Tax compliance, rational choice, and social influence: An agent-based model. Rev. Fr. Sociol. 2014, 4, 765–804. [Google Scholar]
- Tang, R.; Wang, S.; Li, H. Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids. Appl. Energy 2019, 250, 118–130. [Google Scholar] [CrossRef]
- Mullainathan, S.; Thaler, R. Behavioral Economics; Pergamon Press: Cambridge, MA, USA, 2000. [Google Scholar] [CrossRef]
- Thaler, R.H.; Sunstein, C.R. Nudge: Improving Decisions about Healthy, Wealth, and Happiness; Penguin: London, UK, 2009. [Google Scholar]
- Wang, B.; Yuan, Z.; Liu, X.; Sun, Y.; Zhang, B.; Wang, Z. Electricity price and habits: Which would affect household electricity consumption? Energy Build. 2021, 240, 110888. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Suzuki, A.; Fuwa, Y.; Sato, T. Decision-making in electrical appliance use in the home. Energy Policy 2008, 36, 1679–1686. [Google Scholar] [CrossRef]
- Ormerod, P.; Rosewell, B. Validation and Verification of Agent-Based Models in the Social Sciences. In Epistemological Aspects of Computer Simulation in the Social Sciences; Squazzoni, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 130–140. [Google Scholar]
- Thompson, E.L.; Smith, L.A. Escape from model-land. Economics 2019, 13, 20190040. [Google Scholar] [CrossRef] [Green Version]
Industrial | Commercial | Residential | |
---|---|---|---|
Technical | Process constraints, such as manufacturing lead times [35] and requirements for steady electricity supply to equipment [26]. | Regulatory constraints, such as workplace lighting standards [108]. Customer requirements, such as order fulfillment. Preservation of products with temperature and/or humidity sensitivities, such as food products. | Physical parameters of appliances, such as tank size for hot water cylinders [74], and of buildings, such as insulation level [111]. |
Economic | Equipment costs, such as start-up/shut-down costs, and customer requirements, such as order fulfillment dates [30]. | Low contribution of electricity towards typical commercial operating costs [103]. | Consumers’ price elasticity of electricity demand [135]. Socioeconomic factors, such as access to cost-effective heating equipment and contribution of electricity to total expenses [125]. |
Behavioral | Human behavior has minimal impact on industrial DSM. | DSM with space heating/cooling loads must account for occupant comfort [110,111]. Otherwise, minimal. | Residential DSM heavily depends on behavior, such as travel schedules [152] and hot water use [181]. DR programs can influence, and be influenced by, consumer behavior. |
Industrial | Commercial | Residential |
---|---|---|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, B.; Bishop, D.; Gallardo, P.; Chase, J.G. Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations. Energies 2023, 16, 5155. https://doi.org/10.3390/en16135155
Williams B, Bishop D, Gallardo P, Chase JG. Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations. Energies. 2023; 16(13):5155. https://doi.org/10.3390/en16135155
Chicago/Turabian StyleWilliams, Baxter, Daniel Bishop, Patricio Gallardo, and J. Geoffrey Chase. 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations" Energies 16, no. 13: 5155. https://doi.org/10.3390/en16135155