Biomass Based N/O Codoped Porous Carbons with Abundant Ultramicropores for Highly Selective CO2 Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of N/O Codoped Porous Carbons (NOPCs)
2.3. Characterization
2.4. CO2 Adsorption Experiment
3. Results
3.1. Physico-Chemical Properties of NOPCs
3.2. CO2 Adsorption Performance of NOPCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jahromi, F.B.; Elhambakhsh, A.; Keshavarz, P.; Panahi, F. Insight into the application of amino acid-functionalized MIL-101 (Cr) micro fluids for high-efficiency CO2 absorption: Effect of amine number and surface area. Fuel 2023, 334, 126603. [Google Scholar] [CrossRef]
- Xin, K.; Annaland, M.V.S. Diffusivities and solubilities of carbon dioxide in deep eutectic solvents. Sep. Purif. Technol. 2023, 307, 122779. [Google Scholar] [CrossRef]
- Pazani, F.; Shariatifar, M.; Maleh, M.S.; Alebrahim, T.; Lin, H.Q. Challenge and promise of mixed matrix hollow fiber composite membranes for CO2 separations. Sep. Purif. Technol. 2023, 308, 122876. [Google Scholar] [CrossRef]
- Park, K.H.; Lee, J.W.; Lim, Y.; Seo, Y. Life cycle cost analysis of CO2 compression processes coupled with a cryogenic distillation unit for purifying high-CO2 natural gas. J. CO2 Util. 2022, 60, 102002. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Y.; Tran, T.; Lira, P.; Sternberg, S.P.E.; Davis, R.; Sun, Z.; Lai, Q.H.; Toan, S.; Luo, J.M.; et al. Mesoporous MgO enriched in Lewis base sites as effective catalysts for efficient CO2 capture. J. Environ. Manag. 2023, 332, 117398. [Google Scholar] [CrossRef]
- Cui, H.M.; Xu, J.G.; Shi, J.S.; Yan, N.F.; Zhang, C.; You, S.Y. Oxamic acid potassium salt as a novel and bifunctional activator for the preparation of N-doped carbonaceous CO2 adsorbents. J. CO2 Util. 2022, 64, 102198. [Google Scholar] [CrossRef]
- Ma, C.D.; Bai, J.L.; Demir, M.; Yu, Q.Y.; Hu, X.; Jiang, W.H.; Wang, L.L. Polyacrylonitrile-derived nitrogen enriched porous carbon fiber with high CO2 capture performance. Sep. Purif. Technol. 2022, 303, 122299. [Google Scholar] [CrossRef]
- Cavallo, M.; Dosa, M.; Porcaro, N.G.; Bonino, F.; Piumetti, M.; Crocella, V. Shaped natural and synthetic zeolites for CO2 capture in a wide temperature range. J. CO2 Util. 2023, 67, 102335. [Google Scholar] [CrossRef]
- Song, K.S.; Fritz, P.W.; Coskun, A. Porous organic polymers for CO2 capture, separation and conversion. Chem. Soc. Rev. 2022, 51, 9831. [Google Scholar] [CrossRef]
- Al-Absi, A.A.; Mohamedali, M.; Domin, A.; Benneker, A.M.; Mahinpey, N. Development of in situ polymerized amines into mesoporous silica for direct air CO2 capture. Chem. Eng. J. 2022, 447, 137465. [Google Scholar] [CrossRef]
- Sun, H.F.; Zhang, Q.G.; Hagio, T.; Ryoichi, I.; Kong, L.; Li, L. Facile synthesis of amine-functionalized three-dimensional graphene composites for CO2 capture. Surf. Interfaces 2022, 33, 102256. [Google Scholar] [CrossRef]
- Zhu, W.F.; Wang, L.Z.; Cao, H.H.; Guo, R.L.; Wang, C.F. Introducing defect-engineering 2D layered MOF nanosheets into Pebax matrix for CO2/CH4 separation. J. Membr. Sci. 2023, 669, 121305. [Google Scholar] [CrossRef]
- Ding, M.L.; Robinson, W.F.; Jiang, H.L.; Yaghi, O.M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828. [Google Scholar] [CrossRef]
- Yang, L.X.; Yang, H.; Wu, H.; Zhang, L.L.; Ma, H.Z.; Liu, Y.T.; Wu, Y.Z.; Ren, Y.X.; Wu, X.Y.; Jiang, Z.Y. COF membranes with uniform and exchangeable facilitated transport carriers for efficient carbon capture. J. Mater. Chem. A 2021, 9, 12636. [Google Scholar] [CrossRef]
- Yuan, X.F.; Xiao, J.F.; Yılmaz, M.; Zhang, T.C.; Yuan, S.J. N, P Co-doped porous biochar derived from cornstalk for high performance CO2 adsorption and electrochemical energy storage. Sep. Purif. Technol. 2022, 299, 121719. [Google Scholar] [CrossRef]
- Lu, T.Y.; Ma, C.D.; Demir, M.; Yu, Q.Y.; Aghamohammadi, P.; Wang, L.L.; Hu, X. One-pot synthesis of potassium benzoate-derived porous carbon for CO2 capture and supercapacitor application. Sep. Purif. Technol. 2022, 301, 122053. [Google Scholar] [CrossRef]
- Petrovic, B.; Gorbounov, M.; Soltani, S.M. Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous Mesoporous Mater. 2021, 312, 110751. [Google Scholar] [CrossRef]
- Hakami, O. Urea-doped hierarchical porous carbons derived from sucrose precursor for highly efficient CO2 adsorption and separation. Surf. Interfaces 2023, 37, 102668. [Google Scholar] [CrossRef]
- Shen, Y.F. Preparation of renewable porous carbons for CO2 capture—A review. Fuel Process. Technol. 2022, 236, 107437. [Google Scholar] [CrossRef]
- Liu, B.G.; Shi, R.; Ma, X.C.; Chen, R.F.; Zhou, K.; Xu, X.; Sheng, P.; Zeng, Z.; Li, L.Q. High yield nitrogen-doped carbon monolith with rich ultramicropores prepared by in-situ activation for high performance of selective CO2 capture. Carbon 2021, 181, 270–279. [Google Scholar] [CrossRef]
- Guo, Z.; Lu, X.; Xin, Z. N, S, O co-doped porous carbons derived from bio-based polybenzoxazine for efficient CO2 capture. Colloid Surf. A 2022, 646, 128845. [Google Scholar] [CrossRef]
- Zhou, Y.B.; Tan, P.; He, Z.Q.; Zhang, C.; Fang, Q.Y.; Chen, G. CO2 adsorption performance of nitrogen-doped porous carbon derived from licorice residue by hydrothermal treatment. Fuel 2022, 311, 122507. [Google Scholar] [CrossRef]
- Cui, H.J.; Jiao, M.G.; Chen, Y.N.; Guo, Y.B.; Yang, L.P.; Xie, Z.J.; Zhou, Z.; Guo, S.J. Molten-salt-assisted synthesis of 3D holey N-doped graphene as bifunctional electrocatalysts for rechargeable Zn-Air batteries. Small Methods 2018, 2, 1800144. [Google Scholar] [CrossRef]
- Caglayan, B.S.; Aksoylu, A.E. CO2 adsorption on chemically modified activated carbon. J. Hazard. Mater. 2013, 252–253, 19–28. [Google Scholar] [CrossRef]
- Li, C.F.; Zhao, J.W.; Xie, L.J.; Wang, Y.; Tang, H.B.; Zheng, L.R.; Li, G.R. N coupling with S-coordinated Ru nanoclusters for highly efficient hydrogen evolution in alkaline media. J. Mater. Chem. A 2021, 9, 12659–12669. [Google Scholar] [CrossRef]
- Wang, Y.C.; Shao, Y.; Wang, H.; Yuan, J.Y. Advanced heteroatom-doped porous carbon membranes assisted by poly(ionic liquid) design and engineering. Acc. Mater. Res. 2020, 1, 16–29. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.K.; Li, Q.H.; Wang, Y.L.; Ma, J. Guanidine-embedded poly (ionic liquid) as a versatile precursor for self-templated synthesis of nitrogen-doped carbons: Tailoring the microstructure for enhanced CO2 capture. Fuel 2022, 329, 125357. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, J.F.; Wang, H.Z.; Zhang, T.C.; Yuan, S.J. Binary doping of nitrogen and phosphorus into porous carbon: A novel di-functional material for enhancing CO2 capture and super-capacitance. J. Mater. Sci. Technol. 2022, 99, 73–81. [Google Scholar] [CrossRef]
- Yuan, J.C.; Wang, Y.; Tang, M.F.; Hao, X.D.; Liu, J.; Zhang, G.J.; Zhang, Y.F. Preparation of N, O co-doped carbon nanotubes and activated carbon composites with hierarchical porous structure for CO2 adsorption by coal pyrolysis. Fuel 2023, 333, 126465. [Google Scholar] [CrossRef]
- Rehman, A.; Nazir, G.; Rhee, K.Y.; Park, S.J. A rational design of cellulose-based heteroatom-doped porous carbons: Promising contenders for CO2 adsorption and separation. Chem. Eng. J. 2021, 420, 130421. [Google Scholar] [CrossRef]
- Shi, J.S.; Cui, H.M.; Xu, J.G.; Yan, N.F.; Zhang, C.; You, S.Y. Synthesis of nitrogen and sulfur co-doped carbons with chemical blowing method for CO2 adsorption. Fuel 2021, 305, 121505. [Google Scholar] [CrossRef]
- Ma, X.C.; Yang, Y.H.; Wu, Q.D.; Liu, B.G.; Li, D.P.; Chen, R.F.; Wang, C.H.; Li, H.L.; Zeng, Z.; Li, L.Q. Underlying mechanism of CO2 uptake onto biomass-based porous carbons: Do adsorbents capture CO2 chiefly through narrow micropores? Fuel 2020, 282, 118727. [Google Scholar] [CrossRef]
- Prasankumar, T.; Salpekar, D.; Bhattacharyya, S.; Manoharan, K.; Yadav, R.M.; Mata, M.A.C.; Miller, K.A.; Vajtai, R.; Jose, S.; Roy, S.; et al. Biomass derived hierarchical porous carbon for supercapacitor application and dilute stream CO2 capture. Carbon 2022, 199, 249–257. [Google Scholar] [CrossRef]
- Dilokekunakul, W.; Teerachawanwong, P.; Klomkliang, N.; Supasitmongkol, S.; Chaemchuen, S. Effects of nitrogen and oxygen functional groups and pore width of activated carbon on carbon dioxide capture: Temperature dependence. Chem. Eng. J. 2020, 389, 124413. [Google Scholar] [CrossRef]
- Ma, X.C.; Su, C.Q.; Liu, B.G.; Wu, Q.D.; Zhou, K.; Zeng, Z.; Li, L.Q. Heteroatom-doped porous carbons exhibit superior CO2 capture and CO2/N2 selectivity: Understanding the contribution of functional groups and pore structure. Sep. Purif. Technol. 2021, 259, 118065. [Google Scholar] [CrossRef]
- Li, Q.; Lu, T.Y.; Wang, L.L.; Pang, R.X.; Shao, J.W.; Liu, L.L.; Hu, X. Biomass based N-doped porous carbons as efficient CO2 adsorbents and high-performance supercapacitor electrodes. Sep. Purif. Technol. 2021, 275, 119204. [Google Scholar] [CrossRef]
- Ma, C.D.; Lu, T.Y.; Shao, J.W.; Huang, J.M.; Hu, X.; Wang, L.L. Biomass derived nitrogen and sulfur co-doped porous carbons for efficient CO2 adsorption. Sep. Purif. Technol. 2022, 281, 119899. [Google Scholar] [CrossRef]
- Mallesh, D.; Anbarasan, J.; Kumar, P.M.; Upendar, K.; Chandrashekar, P.; Rao, B.V.S.K.; Lingaiah, N. Synthesis, characterization of carbon adsorbents derived from waste biomass and its application to CO2 capture. Appl. Surf. Sci. 2020, 530, 147226. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhao, R.; Li, Y.Q.; Zhu, X.X.; Zhang, B.; Lang, X.Y.; Zhao, L.J.; Jin, B.; Zhu, Y.F.; Jiang, Q. Potassium-ion batteries with novel N, O enriched corn silk-derived carbon as anode exhibiting excellent rate performance. J. Power Sources 2021, 481, 228644. [Google Scholar] [CrossRef]
- Ruan, W.; Wang, Y.; Liu, C.R.; Xu, D.W.; Hu, P.; Ye, Y.Y.; Wang, D.C.; Liu, Y.Q.; Zheng, Z.F.; Wang, D. One-step fabrication of N-doped activated carbon by NH3 activation coupled with air oxidation for supercapacitor and CO2 capture applications. J. Ana. Appl. Pyrol. 2022, 168, 105710. [Google Scholar] [CrossRef]
- Xiao, J.F.; Yuan, X.F.; Zhang, T.C.; Ouyang, L.K.; Yuan, S.J. Nitrogen-doped porous carbon for excellent CO2 capture: A novel method for preparation and performance evaluation. Sep. Purif. Technol. 2022, 298, 121602. [Google Scholar] [CrossRef]
- Jin, Z.H.; Jiang, X.; Dai, Z.D.; Xie, L.L.; Wang, W.; Shen, L. Continuous synthesis of nanodroplet-templated, N-doped microporous carbon spheres in microfluidic system for CO2 capture. ACS Appl. Mater. Interfaces 2020, 12, 52571–52580. [Google Scholar] [CrossRef]
- Wu, D.W.; Liu, J.; Yang, Y.J.; Zheng, Y. Nitrogen/oxygen co-doped porous carbon derived from biomass for low-pressure CO2 capture. Ind. Eng. Chem. Res. 2020, 59, 14055–14063. [Google Scholar] [CrossRef]
- Xin, S.S.; Huo, S.Y.; Zhang, C.L.; Ma, X.M.; Liu, W.J.; Xin, Y.J.; Gao, M.C. Coupling nitrogen/oxygen self-doped biomass porous carbon cathode catalyst with CuFeO2/biochar particle catalyst for the heterogeneous visible-light driven photo-electro-Fenton degradation of tetracycline. Appl. Catal. B 2022, 305, 121024. [Google Scholar] [CrossRef]
- Guo, J.R.; Xu, X.T.; Hill, J.P.; Wang, L.P.; Dang, J.J.; Kang, Y.Q.; Li, Y.L.; Guan, W.S.; Yamauchi, Y. Graphene-carbon 2D heterostructures with hierarchically-porous P, N-doped layered architecture for capacitive deionization. Chem. Sci. 2021, 12, 10334–10340. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, M.; Tran, C.V.; In, J.B. Nitrogen and phosphorous co-doped laser-induced graphene: A high-performance electrode material for supercapacitor applications. Appl. Surf. Sci. 2022, 576, 151714. [Google Scholar] [CrossRef]
- Ren, G.Y.; Li, Y.N.; Chen, Q.S.; Qian, Y.; Zheng, J.G.; Zhu, Y.A.; Teng, C. Sepia-derived N, P co-doped porous carbon spheres as oxygen reduction reaction electrocatalyst and supercapacitor. ACS Sustain. Chem. Eng. 2018, 6, 16032–16038. [Google Scholar] [CrossRef]
- Zhu, C.W.; Yan, J.J. Fabricating of N/O-codoping porous carbon interpenetrating networks for high energy aqueous supercapacitor. J. Energy Storage 2022, 52, 105047. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wang, M.H.; Wang, Z.W.; Wang, S.M.; Fu, J.W. Tunable-quaternary (N, S, O, P)-doped porous carbon microspheres with ultramicropores for CO2 capture. Appl. Surf. Sci. 2020, 507, 145130. [Google Scholar] [CrossRef]
- Li, D.N.; Yang, J.Z.; Zhao, Y.; Yuan, H.R.; Chen, Y. Ultra-highly porous carbon from wasted soybean residue with tailored porosity and doped structure as renewable multi-purpose absorbent for efficient CO2, toluene and water vapor capture. J. Clean. Prod. 2022, 337, 130283. [Google Scholar] [CrossRef]
- Cui, H.M.; Xu, J.G.; Shi, J.S.; Yan, N.F.; Liu, Y.W.; Zhang, S.W. Zinc nitrate as an activation agent for the synthesis of nitrogen-doped porous carbon and its application in CO2 adsorption. Energy Fuels 2020, 34, 6069–6076. [Google Scholar] [CrossRef]
- Botomé, M.L.; Poletto, P.; Junges, J.; Perondi, D.; Dettmer, A.; Godinho, M. Preparation and characterization of a metal-rich activated carbon from CCA-treated wood for CO2 capture. Chem. Eng. J. 2017, 321, 614–621. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, J.F.; Wang, H.Z.; Zhang, T.C.; Yuan, S.J. N-doped porous carbon derived from solvent-free synthesis of cross-linked triazine polymers for simultaneously achieving CO2 capture and supercapacitors. Chem. Eur. J. 2021, 27, 7908–7914. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.Y.; Jia, J.Z.; Li, J.; Liu, C.K. Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation. Chem. Eng. J. 2017, 323, 557–564. [Google Scholar] [CrossRef]
- Shao, L.S.; Sang, Y.F.; Liu, N.; Liu, J.; Zhan, P.; Huang, J.H.; Chen, J.N. Selectable microporous carbons derived from poplar wood by three preparation routes for CO2 capture. ACS Omega 2020, 5, 17450–17462. [Google Scholar] [CrossRef]
- Wang, Z.; Goyal, N.; Liu, L.Y.; Tsang, D.C.W.; Shang, J.; Liu, W.J.; Li, G. N-doped porous carbon derived from polypyrrole for CO2 capture from humid flue gases. Chem. Eng. J. 2020, 396, 125376. [Google Scholar] [CrossRef]
- Krishna, R.; Baten, J.M.V. Elucidation of selectivity reversals for binary mixture adsorption in microporous adsorbents. ACS Omega 2020, 5, 9031–9040. [Google Scholar] [CrossRef] [Green Version]
Sample | SBET (m2 g−1) | Vt a (cm3 g−1) | Vm b (cm3 g−1) | V1 c (cm3 g−1) | V0.7 d (cm3 g−1) |
---|---|---|---|---|---|
NOPC0 | 0.47 | 8.9 × 10−4 | - | - | - |
NOPC1 | 850.16 | 0.82 | 0.3668 | 0.1795 | 0.1194 |
NOPC3 | 1269.79 | 1.63 | 0.3618 | 0.1169 | 0.0762 |
NOPC9 | 1096.95 | 1.42 | 0.2899 | 0.0885 | 0.0604 |
Sample | N Species (%) | O Species (%) | |||||
---|---|---|---|---|---|---|---|
Pyridinic N (%) | Pyrrolic N (%) | Graphitic N (%) | Oxidized N (%) | C=O (%) | C−OH (%) | C−O−C (%) | |
NOPC0 | 27.26 | 41.34 | 22.07 | 9.34 | 14.97 | 64.77 | 20.26 |
NOPC1 | 25.55 | 41.21 | 24.98 | 8.27 | 15.24 | 79.53 | 5.23 |
NOPC3 | 29.37 | 38.01 | 19.54 | 13.08 | 20.3 | 75.38 | 4.32 |
NOPC9 | 32.21 | 34.31 | 18.49 | 15 | 16.18 | 75.92 | 7.89 |
Sample | CO2 Uptake (mmol g−1) | N2 Uptake (mmol g−1) | CO2/N2 Selectivity (298 K) | ||
---|---|---|---|---|---|
273 K | 298 K | 298 K | IAST (1 bar) | Henry’s Law | |
NOPC1 | 3.15 | 1.95 | 0.196 | 16.9 | 15.6 |
NOPC3 | 2.63 | 1.55 | 0.223 | 8.8 | 10.2 |
NOPC9 | 2.17 | 1.27 | 0.145 | 12.2 | 16.0 |
Sample | Activation | SBET (m2 g−1) | CO2 Uptake (mmol g−1) (298 K, 1 Bar) | IAST Selectivity | Ref. |
---|---|---|---|---|---|
A-TDP-12 | KOH, 700 °C | 1332 | 1.52 | 6 | [28] |
C0800 | 800 °C | 431 | 2.4 | 33.7 | [31] |
C2800 | hydroquinonesulfonic acid potassium salt, 800 °C | - | 1.9 | 12.5 | [31] |
AC-TBG | KOH, 800 °C | 971 | 3.2 | - | [33] |
AC-UK | KOH, 650 °C | 532 | 2.63 | - | [34] |
SRC-3K-500 | KOH, 500 °C | 743 | 2.78 | 6.7 | [50] |
Z0800 | Zn(NO3)2, 800 °C | 569 | 2.5 | 25.0 | [51] |
1:2/900/2 | H3PO4, 800 °C | 773 | 1.88 | - | [52] |
A-TCLP-700-1 | KOH, 700 °C | 1353 | 2.39 | 19 | [53] |
NOPC1 | Na2CO3, 500 °C | 850.16 | 1.95 | 16.9 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Sun, Y.; Ren, H.; Wang, B.; Tong, X.; Wang, X.; Niu, Y.; Wu, J. Biomass Based N/O Codoped Porous Carbons with Abundant Ultramicropores for Highly Selective CO2 Adsorption. Energies 2023, 16, 5222. https://doi.org/10.3390/en16135222
Guo C, Sun Y, Ren H, Wang B, Tong X, Wang X, Niu Y, Wu J. Biomass Based N/O Codoped Porous Carbons with Abundant Ultramicropores for Highly Selective CO2 Adsorption. Energies. 2023; 16(13):5222. https://doi.org/10.3390/en16135222
Chicago/Turabian StyleGuo, Congxiu, Ya Sun, Hongyan Ren, Bing Wang, Xili Tong, Xuhui Wang, Yu Niu, and Jiao Wu. 2023. "Biomass Based N/O Codoped Porous Carbons with Abundant Ultramicropores for Highly Selective CO2 Adsorption" Energies 16, no. 13: 5222. https://doi.org/10.3390/en16135222
APA StyleGuo, C., Sun, Y., Ren, H., Wang, B., Tong, X., Wang, X., Niu, Y., & Wu, J. (2023). Biomass Based N/O Codoped Porous Carbons with Abundant Ultramicropores for Highly Selective CO2 Adsorption. Energies, 16(13), 5222. https://doi.org/10.3390/en16135222