Characterization of Wind Resources of the East Coast of Maranhão, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorological Instrumentation
2.2. Study Region and Field Campaigns
2.3. ERA5 Atmospheric Reanalysis
2.4. Wind Profile and Atmospheric Stability
2.5. Wind Shear Exponent
2.6. Weibull Probability Distribution
3. Results
3.1. Meteorological Conditions
3.1.1. Reanalysis vs. Observations
3.1.2. Winds and Precipitation Fields
3.1.3. Climatology of Winds and Precipitation
3.2. Wind Variability and Statistics
3.2.1. Time Series at Hub Height
3.2.2. Speed and Directional Statistics
3.2.3. Mean Vertical Profiles
3.2.4. Diurnal Variability of Speeds
3.2.5. Diurnal Hodographs
3.3. Micrometeorology and Profile Characterization
3.3.1. Roughness Length and Friction Velocity
3.3.2. Buoyancy Heat Fluxes
3.3.3. Obukhov Length and Stability Classification
3.3.4. Shear Exponent Diurnal and Directional Variability
3.4. Resource Spatial and Temporal Variability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALC | Alcântara Launch Center |
CE | Ceará state |
CF | Capacity factor |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ERA5 | ECMWF fifth generation of atmospheric reanalysis |
FC1 to FC6 | Field campaigns 1 to 6 (see Table 2) |
ITCZ | Intertropical Convergence Zone. |
LIDAR | Light Detection and Ranging |
MA | Maranhão state |
P1 to P5 | Observation points 1 to 5 (see Table 2 and Figure 1b) |
PB | Paraíba state |
PE | Pernambuco state |
PI | Piauí state |
RN | Rio Grande do Norte state |
SAMS | South American summer monsoon |
SASH | South Atlantic Subtropical High pressure |
SODAR | Sound Detection and Ranging |
References
- Watson, S. Quantifying the variability of wind energy. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Kempton, W.; Pimenta, F.M.; Veron, D.E.; Colle, B.A. Electric power from offshore wind via synoptic-scale interconnection. Proc. Natl. Acad. Sci. USA 2010, 107, 7240–7245. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, F.; Assireu, A. Simulating reservoir storage for a wind-hydro hydrid system. Renew. Energy 2015, 76, 757–767. [Google Scholar] [CrossRef]
- Engeland, K.; Borga, M.; Creutin, J.D.; François, B.; Ramos, M.H.; Vidal, J.P. Space-time variability of climate variables and intermittent renewable electricity production—A review. Renew. Sustain. Energy Rev. 2017, 79, 600–617. [Google Scholar] [CrossRef]
- Fernandes, I.; Pimenta, F.M.; Saavedra, O.R.; Assireu, A.T. Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation. Energies 2022, 15, 7182. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained. Theory, Design and Application; Wiley: West Sussex, UK, 2009; p. 689. [Google Scholar]
- Wharton, S.; Lundquist, J.K. Atmospheric stability affects wind turbine power collection. Environ. Res. Lett. 2012, 7, 014005. [Google Scholar] [CrossRef]
- Dimitrov, N.; Natarajan, A.; Kelly, M. Model of wind shear conditional on turbulence and its impact on wind turbine loads. Wind Energy 2015, 18, 1917–1931. [Google Scholar] [CrossRef]
- Slot, R.M.; Sørensen, J.D.; Svenningsen, L.; Moser, W.; Thøgersen, M.L. Effective turbulence and its implications in wind turbine fatigue assessment. Wind Energy 2019, 22, 1699–1715. [Google Scholar] [CrossRef]
- Pimenta, F.M.; Silva, A.R.; Assireu, A.T.; Almeida, V.D.S.E.; Saavedra, O.R. Brazil offshore wind resources and atmospheric surface layer stability. Energies 2019, 12, 4195. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.R.; Pimenta, F.M.; Assireu, A.T.; Spyrides, M.H.C. Complementarity of Brazil’s hydro and offshore wind power. Renew. Sustain. Energy Rev. 2016, 56, 413–427. [Google Scholar] [CrossRef]
- Souza, D.C.; Oyama, M.D. Breeze potential along the Brazilian northern and northeastern coast. J. Aerosp. Technol. Manag. 2017, 9, 368–378. [Google Scholar] [CrossRef]
- Planchon, O.; Dubreuil, V.; Gouery, P. A method of identifying and locating sea breeze fronts in north-eastern Brazil by remote sensing. Meteorol. Appl. 2006, 13, 225–234. [Google Scholar] [CrossRef]
- Medeiros, L.E.; Fisch, G.; Iriart, P.; Costa, F.D.; Oliveira, D.W.; Schuch, D. Padrões De Vento a Nível De Superfície Para Região Da Costa Norte Do Brasil. Ciência Nat. 2016, 38, 383. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, L.E.; Fisch, G.; Acevedo, O.C.; Costa, F.D.; Iriart, P.G.; Anabor, V.; Schuch, D. Low-Level Atmospheric Flow at the Central North Coast of Brazil. Bound. Layer Meteorol. 2021, 180, 289–317. [Google Scholar] [CrossRef]
- Marciotto, E.R.; Fisch, G. Investigation of Approaching Ocean Flow and its Interaction with Land Internal Boundary Layer. Am. J. Environ. Eng. 2013, 3, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, L.E.; Magnago, R.d.O.; Fisch, G.; Marciotto, E.R. Observational study of the surface layer at an ocean-land transition region. J. Aerosp. Technol. Manag. 2013, 5, 449–458. [Google Scholar] [CrossRef]
- Couto, V.M.; Fisch, G. Análise espacial dos ventos no Centro de Lançamento de Alcântara, Maranhão. Ciência Nat. 2018, 40, 57. [Google Scholar] [CrossRef]
- Ramos, D.N.d.S.; Fisch, G.; Fernandez, J.P.R. Perfil do vento e estabilidade atmosférica próxima da superfície no Centro de Lançamento de Alcântara. Ciência Nat. 2018, 40, 14. [Google Scholar] [CrossRef]
- Sakagami, Y.; Santos, P.A.A.; Haas, R.; Passos, J.C.; Taves, F.F. Logarithmic Wind Profile: A Stability Wind Shear Term. arXiv 2014, arXiv:1405.5158. [Google Scholar]
- Santos, P.; Sakagami, Y.; Haas, R.; Passos, J.C.; Taves, F. Lidar measurements validation under coastal condition. Opt. Pura Apl. 2015, 48, 193–198. [Google Scholar] [CrossRef]
- Sakagami, Y.; Radünz, W.C.; Santos, P.; Haas, R.; Passos, J.C.; Taves, F.F. Power curve performance of coastal turbines subject to low turbulence intensity offshore winds. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 1–17. [Google Scholar] [CrossRef]
- Melo, A.B.C.; Cavalcanti, I.F.; Souza, P.P. Zona de Convergência Intertropical do Atlântico. In Tempo e Clima no Brasil; Cavalcanti, I.F.A., Ferreira, N.J., Silva, M.G.A.J., Dias, M.A.F.S., Eds.; Oficina de Textos: São Paulo, Brazil, 2009; Chapter 2; pp. 25–41. [Google Scholar]
- Stull, R. General circulation. In Practical Meteorology: An Algebra-Based Survey of Atmospheric Science; Stull, R., Ed.; The University of British Columbia: Vancouver, BC, Canada, 2017; pp. 196–210. [Google Scholar]
- Sun, X.; Cook, K.H.; Vizy, E.K. The South Atlantic subtropical high: Climatology and interannual variability. J. Clim. 2017, 30, 3279–3296. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Silva, B.A.; Pinheiro, R.F.; da Rocha, R.P. The South Atlantic Subtropical Anticyclone: Present and Future Climate. Front. Earth Sci. 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Waliser, D.E.; Gautier, C. A Satellite-derived Climatology of the ITCZ. J. Clim. 1993, 6, 2162–2174. [Google Scholar] [CrossRef]
- Rosário, N.; Nobre, P.; Melo, A.B.C. Zona de Convergência Intertropical do Atlântico: Um Estudo Comparativo entre Simulações do MGCA CPTEC/COLA, Observações e Reanálises do NCEP. Rev. Climanálise 2003, 2, 10. [Google Scholar]
- Sakagami, Y.; Santos, P.A.; Haas, R.; Passos, J.C.; Taves, F.F. A simple method to estimate atmospheric stability using LIDAR wind profiler. In Proceedings of the EWEA OFFSHORE 2015, Copenhagen, Denmark, 10–12 March 2015. [Google Scholar]
- Campos, R.M.; Palmeira, R.M.J.; Pereira, H.P.P.; Azevedo, L.C. Mid-to-Long Range Wind Forecast in Brazil Using Numerical Modeling and Neural Networks. Wind 2022, 2, 221–245. [Google Scholar] [CrossRef]
- ABEEólica. Infovento 29; Technical Report; Associação Brasileira de Energia Eólica e Novas Tecnologias: São Paulo, Brazil, 2023. [Google Scholar]
- Assireu, A.T.; Pimenta, F.M.; de Freitas, R.M.; Saavedra, O.R.; Neto, F.L.; Torres Júnior, A.R.; Oliveira, C.B.; Lopes, D.C.; de Lima, S.L.; Veras, R.B.; et al. EOSOLAR Project: Assessment of Wind Resources of a Coastal Equatorial Region of Brazil—Overview and Preliminary Results. Energies 2022, 15, 2319. [Google Scholar] [CrossRef]
- Torres Junior, A.R.; Saraiva, N.P.; Assireu, A.T.; Neto, F.L.; Pimenta, F.M.; de Freitas, R.M.; Saavedra, O.R.; Oliveira, C.B.; Lopes, D.C.; de Lima, S.L.; et al. Performance Evaluation of LIDAR and SODAR Wind Profilers on the Brazilian Equatorial Margin. Sustainability 2022, 14, 14654. [Google Scholar] [CrossRef]
- Barthelmie, R.J. The effects of atmospheric stability on coastal wind climates. Meteorol. Appl. 1999, 6, 39–47. [Google Scholar] [CrossRef]
- Sathe, A.; Gryning, S.E.; Peña, A. Comparison of the atmospheric stability and wind profiles at two wind farm sites over a long marine fetch in the North Sea. Wind Energy 2011, 14, 767–780. [Google Scholar] [CrossRef]
- Wharton, S.; Lundquist, J.K. Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm. Wind Energy 2012, 15, 525–546. [Google Scholar] [CrossRef]
- Archer, C.L.; Colle, B.A.; Veron, D.L.; Veron, F.; Sienkiewicz, M.J. On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast. J. Geophys. Res. 2016, 121, 8869–8885. [Google Scholar] [CrossRef]
- Garvine, R.W.; Kempton, W. Assessing the wind field over the continental shelf as a resource for electric power. J. Mar. Res. 2008, 66, 751–773. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Comparison of potential power production at on- and offshore sites. Wind Energy 2001, 4, 173–181. [Google Scholar] [CrossRef]
- Arya, P.S. Introduction to Micrometeorology, 2nd ed.; Academic Press: San Diego, CA, USA, 2001; Volume 79, p. 420. [Google Scholar]
- Leosphere. Windcube User Guide; Technical Report August; Vaisala Company: Saclay, France, 2019. [Google Scholar]
- Scintec. Scintec Flat Array Sodar Theory Manual. SFAS, MFAS, XFAS including RASS RAE2 and windRAS; Technical Report; Scintec: Rottenburg, Germany, 2017. [Google Scholar]
- Mauder, M.; Cuntz, M.; Drüe, C.; Graf, A.; Rebmann, C.; Schmid, H.P.; Schmidt, M.; Steinbrecher, R. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. For. Meteorol. 2013, 169, 122–135. [Google Scholar] [CrossRef]
- ANEEL. Sistema de informações geográficas do setor elétrico—SIGEL; ANEEL: Brasilia, Brazil, 2023.
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. Ecmwf Newsl. 2019, 159, 17–24. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Ramon, J.; Lledó, L.; Torralba, V.; Soret, A.; Doblas-Reyes, F.J. What global reanalysis best represents near-surface winds? Q. J. R. Meteorol. Soc. 2019, 145, 3236–3251. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, L.M.; Krishnamurthy, R.; Gorton, A.M.; Shaw, W.J.; Newsom, R.K. Validation of reanalysis-based offshore wind resource characterization using lidar buoy observations. Mar. Technol. Soc. J. 2020, 54, 44–61. [Google Scholar] [CrossRef]
- Gualtieri, G. Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review. Renew. Sustain. Energy Rev. 2022, 167, 112741. [Google Scholar] [CrossRef]
- Fernandes, I.G.; Pimenta, F.M.; Saavedra, O.R.; Silva, A.R. Offshore validation of ERA5 reanalysis with hub height wind observations of Brazil. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Conference—Latin America, ISGT Latin America, Lima, Peru, 15–17 September 2021. [Google Scholar] [CrossRef]
- Foken, T. 50 years of the Monin-Obukhov similarity theory. Bound. Layer Meteorol. 2006, 119, 431–447. [Google Scholar] [CrossRef]
- Foken, T. Micrometeorology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–362. [Google Scholar] [CrossRef]
- Golzio, A.; Bollati, I.M.; Ferrarese, S. An assessment of coordinate rotation methods in sonic anemometer measurements of turbulent fluxes over complex mountainous terrain. Atmosphere 2019, 10, 324. [Google Scholar] [CrossRef] [Green Version]
- Kaimal, J.C.; Gaynor, J.E. Another look at sonic thermometry. Bound. Layer Meteorol. 1991, 56, 401–410. [Google Scholar] [CrossRef]
- Stull, R. An Introduction to Boundary Layer Meteorology; Atmospheric and Oceanographic Sciences Library; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Garratt, J.R. The Atmospheric Boundary Layer; Cambridge: New York, NY, USA, 1994; p. 334. [Google Scholar]
- Holtslag, A.A.M.; De Bruin, H.A.R. Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteorol. Climatol. 1988, 27, 689–704. [Google Scholar] [CrossRef]
- Capps, S.B.; Zender, C.S. Global ocean wind power sensitivity to surface layer stability. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Golbazi, M.; Archer, C.L. Methods to estimate surface roughness length for offshore wind energy. Adv. Meteorol. 2019, 2019, 5695481. [Google Scholar] [CrossRef] [Green Version]
- Sisterson, D.L.; Hicks, B.B.; Coulter, R.L.; Wesely, M.L. Difficulties in using power laws for wind energy assessment. Sol. Energy 1983, 31, 201–204. [Google Scholar] [CrossRef]
- Archer, C.L.; Jacobson, M.Z. Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Stevens, M.J.; Smulders, P.T. Estimation of the Parameters of the Weibull Wind Speed Distribution for Wind Energy Utilization Purposes. Wind Eng. 1979, 3, 132–145. [Google Scholar]
- Seguro, J.V.; Lambert, T.W. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J. Wind. Eng. Ind. Aerodyn. 2000, 85, 75–84. [Google Scholar] [CrossRef]
- Abbs, D.J.; Physick, W.L. Sea breeze observations and modelling: A review. Aust. Meteorol. Mag. 1992, 41, 7–19. [Google Scholar]
- Gille, S.T.; Llewellyn Smith, S.G.; Statom, N.M. Global observations of the land breeze. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Stull, R. The Atmospheric Boundary Layer. In Atmospheric Science: An Introductory Survey, 2nd ed.; Wallace, J.M., Hobbs, P.V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2006; pp. 375–417. [Google Scholar] [CrossRef]
- Haurwitz, B. Comments on the sea breeze circulation. J. Meteorol. 1947, 4, 1–8. [Google Scholar] [CrossRef]
- Dexter, R.V. The Sea-Breeze Hodograph at Halifax. Bull. Am. Meteorol. Soc. 1958, 39, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Van Wijk, A.J.; Beljaars, A.C.; Holtslag, A.A.; Turkenburg, W.C. Evaluation of stability corrections in wind speed profiles over the North Sea. J. Wind. Eng. Ind. Aerodyn. 1990, 33, 551–566. [Google Scholar] [CrossRef]
- Motta, M.; Barthelmie, R.J.; Pvølund. The influence of non-logarithmic wind speed profiles on potential power output at danish offshore sites. Wind Energy 2005, 8, 219–236. [Google Scholar] [CrossRef]
- Sathe, A.; Bierbooms, W. Influence of different wind profiles due to varying atmospheric stability on the fatigue life of wind turbines. J. Phys. Conf. Ser. 2007, 75, 012056. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Cañadillas, B.; Neumann, T.; Van Beeck, J. Turbulent fluxes, stability and shear in the offshore environment: Mesoscale modelling and field observations at FINO1. J. Renew. Sustain. Energy 2012, 4, 063136. [Google Scholar] [CrossRef]
- Argyle, P.; Watson, S.J. Assessing the dependence of surface layer atmospheric stability on measurement height at offshore locations. J. Wind. Eng. Ind. Aerodyn. 2014, 131, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Radünz, W.C.; Sakagami, Y.; Haas, R.; Petry, A.P.; Passos, J.C.; Miqueletti, M.; Dias, E. Influence of atmospheric stability on wind farm performance in complex terrain. Appl. Energy 2021, 282, 116149. [Google Scholar] [CrossRef]
- Gryning, S.E.; Batchvarova, E.; Brümmer, B.; Jørgensen, H.; Larsen, S. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound. Layer Meteorol. 2007, 124, 251–268. [Google Scholar] [CrossRef]
- Beiter, P.; Rand, J.T.; Seel, J.; Lantz, E.; Gilman, P.; Wiser, R. Expert perspectives on the wind plant of the future. Wind Energy 2022, 25, 1363–1378. [Google Scholar] [CrossRef]
- Utida, G.; Cruz, F.W.; Etourneau, J.; Bouloubassi, I.; Schefuß, E.; Vuille, M.; Novello, V.F.; Prado, L.F.; Sifeddine, A.; Klein, V.; et al. Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. Sci. Rep. 2019, 9, 1698. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Lau, K.M. Does a monsoon climate exist over South America? J. Clim. 1998, 11, 1020–1040. [Google Scholar] [CrossRef]
- Gan, M.; Rodrigues, L.R.; Rao, V.B. Monção na América do Sul. In Tempo e Clima no Brasil; Cavalcanti, I.F.A., Ferreira, N.J., Silva, M.G.A.J., Dias, M.A.F.S., Eds.; Oficina de Textos: São Paulo, Brazil, 2009; Chapter 19; pp. 297–316. [Google Scholar]
EOSOLAR Equipment | Auxiliary Instruments | Variables | Measurement’s Heights (AGL) | Sampling Frequency/ Time Resolution |
---|---|---|---|---|
SODAR Model: MFAS/Scintec. | – | Wind profiler: speed, direction and turbulent intensity. | 39 levels: 20 to 400 m every 10 m. | 4 s/10 min |
LIDAR Model: Windcube V2/Leosphere. | Surface Comet PTH T3311-L station (pressure, temperature and humidity). | Wind profiler: speed, direction and turbulent intensity. | 20 levels: 40 to 200 m every 10 m. 220 to 260 m every 20 m | 5 s/10 min |
Micrometeorological tower 1 | Gill WindSonic 75 1405-PK-100 2D anemometer, RM Young 81,000 3D anemometer, Thermohygrometer HygroVUE10, Barometer Setra 278, Pluviometer TE525-L. | Wind speed and direction, atmospheric pressure, precipitation, temperature and relative humidity. | 3.5 m (sonic 3D) 5, 7.5, 10 m (sonic 2D) | 20 Hz/10 min |
Micrometeorological tower 2 | Gill WindSonic 75 1405-PK-100 2D anemometer, RM Young 81,000 3D anemometer, Thermohygrometer HygroVUE10, Barometer Setra 278, Pluviometer TE525-L. | Wind speed and direction, atmospheric pressure, precipitation, temperature and relative humidity. | 3.5 m (sonic 3D) 5, 7.5, 10 m (sonic 2D) | 20 Hz/10 min |
Field Campaign | Begin | End | Days | Equipment Location | Precipitation |
---|---|---|---|---|---|
FC1 | 14 September 2021 | 8 November 2021 | 55 | SODAR-microtower P0 LIDAR-microtower P1 | 47.7 mm |
FC2 | 9 November 2021 | 13 December 2021 | 34 | SODAR-microtower P1 LIDAR-microtower P0 | 160.6 mm |
FC3 | 15 December 2021 | 27 January 2022 | 43 | SODAR-microtower P1 LIDAR-microtower P2 | 170.4 mm |
FC4 | 28 January 2022 (6 March 2022 ★) | 18 April 2022 | 80 (43 ★) | SODAR-microtower P1 LIDAR-microtower P3 | 728.6 mm |
FC5 | 20 April 2022 | 13 June 2022 | 54 | SODAR-microtower P1 LIDAR-microtower P4 | 573.5 mm |
FC6 | 15 June 2022 | 27 July 2022 | 42 | SODAR-microtower P1 LIDAR-microtower P5 | 74.9 mm |
Time Resolution | R | RMSE | BIAS |
---|---|---|---|
1 h | 0.68 | 1.85 | −0.09 |
6 h | 0.77 | 1.46 | −0.09 |
12 h | 0.81 | 1.26 | −0.09 |
24 h | 0.88 | 0.94 | −0.09 |
FC1 | FC4 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LIDAR P1 | SODAR P0 | LIDAR P3 | SODAR P1 | ||||||||||||||
height | mean | std | CF | Perc | mean | std | CF | Perc | height | mean | std | CF | Perc | mean | std | CF | Perc |
100 m | 9.28 | 1.67 | 0.64 | 95.3 | 9.76 | 1.84 | 0.70 | 81.2 | 100 m | 5.21 | 2.06 | 0.16 | 96.4 | 5.41 | 2.17 | 0.18 | 61.2 |
130 m | 9.51 | 1.70 | 0.67 | 95.3 | 9.51 | 1.73 | 0.67 | 62.0 | 130 m | 5.46 | 2.07 | 0.18 | 96.1 | 5.74 | 2.21 | 0.21 | 57.7 |
150 m | 9.64 | 1.72 | 0.69 | 95.3 | - | - | - | 49.1 | 150 m | 5.61 | 2.07 | 0.19 | 95.8 | 5.92 | 2.24 | 0.23 | 55.2 |
200 m | 9.88 | 1.76 | 0.72 | 95.3 | - | - | - | 24.6 | 200 m | 5.92 | 2.06 | 0.22 | 94.6 | - | - | - | 48.5 |
260 m | 10.10 | 1.81 | 0.74 | 95.3 | - | - | - | 9.9 | 260 m | 6.22 | 2.06 | 0.25 | 91.7 | - | - | - | 39.4 |
FC2 | FC5 | ||||||||||||||||
LIDAR P0 | SODAR P1 | LIDAR P4 | SODAR P1 | ||||||||||||||
height | mean | std | CF | Perc | mean | std | CF | Perc | height | mean | std | CF | Perc | mean | std | CF | Perc |
100 m | 9.63 | 2.01 | 0.69 | 98.2 | 9.07 | 1.78 | 0.62 | 94.8 | 100 m | 4.77 | 1.89 | 0.12 | 82.3 | 5.47 | 2.10 | 0.18 | 92.9 |
130 m | 9.73 | 1.95 | 0.70 | 98.2 | 9.39 | 1.76 | 0.66 | 94.7 | 130 m | 5.22 | 1.93 | 0.16 | 79.2 | 5.87 | 2.17 | 0.22 | 91.4 |
150 m | 9.79 | 1.91 | 0.71 | 98.2 | 9.55 | 1.74 | 0.68 | 94.3 | 150 m | 5.49 | 1.95 | 0.18 | 77.2 | 6.12 | 2.20 | 0.25 | 89.8 |
200 m | 9.94 | 1.83 | 0.73 | 98.2 | 9.81 | 1.68 | 0.72 | 89.4 | 200 m | 6.10 | 2.00 | 0.23 | 71.8 | 6.64 | 2.37 | 0.31 | 82.4 |
260 m | 10.10 | 1.78 | 0.75 | 98.2 | 9.89 | 1.50 | 0.73 | 71.2 | 260 m | 6.64 | 2.05 | 0.29 | 65.9 | 6.98 | 2.45 | 0.35 | 69.2 |
FC3 | FC6 | ||||||||||||||||
LIDAR P2 | SODAR P1 | LIDAR P5 | SODAR P1 | ||||||||||||||
height | mean | std | CF | Perc | mean | std | CF | Perc | height | mean | std | CF | Perc | mean | std | CF | Perc |
100 m | 7.61 | 2.60 | 0.43 | 99.3 | 7.75 | 2.49 | 0.45 | 98.3 | 100 m | 4.68 | 1.58 | 0.10 | 80.2 | 5.91 | 1.74 | 0.21 | 88.5 |
130 m | 7.84 | 2.59 | 0.45 | 99.3 | 8.08 | 2.49 | 0.49 | 97.9 | 130 m | 5.12 | 1.61 | 0.13 | 79.8 | 6.38 | 1.76 | 0.25 | 87.1 |
150 m | 7.97 | 2.57 | 0.47 | 99.3 | 8.23 | 2.47 | 0.50 | 96.9 | 150 m | 5.36 | 1.65 | 0.15 | 79.6 | 6.68 | 1.81 | 0.29 | 83.9 |
200 m | 8.26 | 2.54 | 0.50 | 99.2 | 8.50 | 2.41 | 0.54 | 88.6 | 200 m | 5.79 | 1.78 | 0.20 | 79.0 | 7.36 | 2.07 | 0.38 | 68.6 |
260 m | 8.54 | 2.51 | 0.53 | 98.6 | 8.56 | 2.29 | 0.55 | 71.2 | 260 m | 6.13 | 1.96 | 0.23 | 75.7 | - | - | - | 45.6 |
Field Campaign | c | k | Skew | U < 3 | U ≥ 10 | U ≥ 13 | U > 25 |
---|---|---|---|---|---|---|---|
FC1 | 9.97 | 6.21 | −0.19 | 0.03% | 33.55% | 1.06% | 0.00% |
FC2 | 9.77 | 5.92 | −0.59 | 0.58% | 31.06% | 0.43% | 0.00% |
FC3 | 8.61 | 3.51 | −0.23 | 3.76% | 19.30% | 0.91% | 0.00% |
FC4 | 7.27 | 2.97 | 0.04 | 7.81% | 5.17% | 0.07% | 0.02% |
FC5 | 6.14 | 2.46 | 1.27 | 13.59% | 0.96% | 0.12% | 0.11% |
FC6 | 6.54 | 3.75 | −0.03 | 5.30% | 1.22% | 0.00% | 0.00% |
all | 8.12 | 3.09 | −0.02 | 5.56% | 14.50% | 0.44% | 0.02% |
Neutral (mm) | Stab (mm) | |||
---|---|---|---|---|
Station | mode | median | mode | median |
P0 | 0.95 | 1.38 | 0.95 | 1.19 |
P1 | 15.33 | 13.76 | 15.33 | 13.56 |
P2 | 11.26 | 11.07 | 15.33 | 12.83 |
P3 | 15.33 | 14.33 | 15.33 | 15.15 |
P4 | 52.68 | 53.28 | 52.68 | 43.65 |
P5 | 335.56 | 145.26 | 246.46 | 255.25 |
References | Neutral | Convective | Strongly Convective | Strongly Stable | Stable | Neutral |
---|---|---|---|---|---|---|
Van Wijik et al. (1990) [69,70,71,72,73] | −1000 | −1000 −200 | −200 0 | 0 200 | 200 1000 | 1000 |
Gryning et al. (2007) [35,75] | −200 | −200 −100 | −100 −50 | 10 50 | 50 200 | 200 |
Warthon and Lundquist (2012) [36,74] | −600 | −600 −50 | −50 0 | 0 100 | 100 600 | 600 |
Archer et al. (2016) [37] | −500 | −500 −100 | −100 −5 | 5 100 | 100 500 | 500 |
Sakagami et al. (2015) [29] | −200 | −200 −50 | −50 0 | 0 50 | 50 200 | 200 |
this study | −200 | −200 −40 | −40 0 | 0 40 | 40 200 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimenta, F.M.; Saavedra, O.R.; Oliveira, D.Q.; Assireu, A.T.; Torres Júnior, A.R.; de Freitas, R.M.; Neto, F.L.A.; Lopes, D.C.P.; Oliveira, C.B.M.; de Lima, S.L.; et al. Characterization of Wind Resources of the East Coast of Maranhão, Brazil. Energies 2023, 16, 5555. https://doi.org/10.3390/en16145555
Pimenta FM, Saavedra OR, Oliveira DQ, Assireu AT, Torres Júnior AR, de Freitas RM, Neto FLA, Lopes DCP, Oliveira CBM, de Lima SL, et al. Characterization of Wind Resources of the East Coast of Maranhão, Brazil. Energies. 2023; 16(14):5555. https://doi.org/10.3390/en16145555
Chicago/Turabian StylePimenta, Felipe M., Osvaldo R. Saavedra, Denisson Q. Oliveira, Arcilan T. Assireu, Audálio R. Torres Júnior, Ramon M. de Freitas, Francisco L. Albuquerque Neto, Denivaldo C. P. Lopes, Clóvis B. M. Oliveira, Shigeaki L. de Lima, and et al. 2023. "Characterization of Wind Resources of the East Coast of Maranhão, Brazil" Energies 16, no. 14: 5555. https://doi.org/10.3390/en16145555
APA StylePimenta, F. M., Saavedra, O. R., Oliveira, D. Q., Assireu, A. T., Torres Júnior, A. R., de Freitas, R. M., Neto, F. L. A., Lopes, D. C. P., Oliveira, C. B. M., de Lima, S. L., Neto, J. C. d. O., & Veras, R. B. S. (2023). Characterization of Wind Resources of the East Coast of Maranhão, Brazil. Energies, 16(14), 5555. https://doi.org/10.3390/en16145555