Structural Analysis and Lightweight Optimization of a Buoyant Rotor-Type Permanent Magnet Generator for a Direct-Drive Wind Turbine
Abstract
:1. Introduction
- (1)
- It benefits from a bearingless drive, eliminating wear and fractures in the rotor bearing.
- (2)
- Joint couplings between blades and the rotor effectively prevent the transmission of vibrations and impulsive forces from the blades to the generator.
- (3)
- It experiences smaller deformations caused by the bending vibrations of the tower.
- (4)
- The rotor’s lightweight nature enables a more efficient gap control.
2. Lightweight Structural Design of a BRPM Generator
2.1. Design Problem Definition and Load Cases
Principal Factors | Values |
---|---|
Rated power | 10 MW |
Rated wind speed | 12 m/s |
Rated rotational speed | 8.6 rpm |
Maximum rotational speed | 8.6 rpm |
Cut in wind speed | 3.2 m/s |
Cut off wind speed | 25 m/s |
Airgap size | 8.9 mm |
2.2. Structural Optimization of a Stator
2.3. Structural Optimization of a Rotor
3. Structural Performance Comparison between BRPM and Conventional Generators
3.1. Deformation of the Rotor by Blade Vibration
3.2. Deformation of the Rotor and the Stator by Tower Vibration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bensalah, A.; Barakat, G.; Amara, Y. Electrical generators for large wind turbine: Trends and challenges. Energies 2022, 15, 6700. [Google Scholar] [CrossRef]
- Bošnjaaković, M.; Katinić, M.; Santa, R.; Marić, D. Wind turbine technology trends. Appl. Sci. 2022, 12, 8653. [Google Scholar] [CrossRef]
- Agrebi, H.Z.; Benhadj, N.; Chaieb, M.; Sher, F.; Amami, R.; Neji, R.; Mansfield, N. Integrated optimal design of permanent magnet synchronous generator for smart wind turbine using genetic algorithm. Energies 2021, 14, 4642. [Google Scholar] [CrossRef]
- Park, H.J.; Kang, H.L.; Ahn, D.G.; Han, S.H. Optimal shape design of direct-drive permanent magnet generator for 1kW-class wind turbines. Appl. Sci. 2023, 13, 5856. [Google Scholar] [CrossRef]
- Tartt, K.; Amiri, A.K.; McDonald, A.; Jaen-Sola, P. Structural optimisation of offshore direct-drive wind turbine generators including static and dynamic analyses. J. Phys. Conf. Ser. 2018, 012040. [Google Scholar] [CrossRef]
- Zavvos, A.; McDonald, A.S.; Mueller, M. Optimisation tools for large permanent magnet generators for direct drive wind turbines. IET Renew. Power Gener. 2013, 7, 163–171. [Google Scholar] [CrossRef]
- Zavvos, A.; McDonald, A.S.; Mueller, M. Electromagnetic and mechanical optimization of direct-drive generators for large wind turbines. In Proceedings of the 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), Brighton, UK, 19–21 April 2010. [Google Scholar]
- McDonald, A.S. Structural Analysis of Low Speed, High Torque Electrical Generators for Direct Drive Renewable Energy Converters. Ph.D. Thesis, University of Edinburgh, Edinburgh, Scotland, 2008. [Google Scholar]
- Grauers, A.L. Design of Direct-Driven Permanent-Magnet Generators for Wind Turbines. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 1996. [Google Scholar]
- Jaen-Sola, P.; McDonald, A.S.; Oterkus, E. Design of direct-drive wind turbine electrical generator structures using topology optimization techniques. J. Phys. Conf. Ser. 2020, 1618, 052009. [Google Scholar] [CrossRef]
- Jaen-Sola, P.; Oterkus, E.; McDonald, A.S. Parametric lightweight design of a direct-drive wind turbine electrical generator supporting structure for minimizing dynamic response. Ships Offshore Struct. 2021, 16, 266–274. [Google Scholar] [CrossRef]
- Kirschneck, M. Mastering Electro-Mechanical Dynamics of Large off-Shore Direct-Drive Wind Turbine Generators. Ph.D. Thesis, Technical University of Delft, Delft, The Netherlands, 2016. [Google Scholar]
- Hayes, A.; Sethuraman, L.; Fingersh, L.J. Structural mass saving potential of a 5MW direct drive generator designed for additive manufacturing. In Proceedings of the International Conference on Future Technologies for Wind Energy, Boulder, CO, USA, 24–26 October 2017. [Google Scholar]
- Hayes, A.; Sethuraman, L.; Dykes, K.; Fingersh, L.J. Structural optimization of a direct-drive wind turbine generator inspired by additive manufacturing. Procedia Manuf. 2018, 26, 740–752. [Google Scholar] [CrossRef]
- Jaen-Sola, P.; McDonald, A.S.; Oterkus, E. Lightweight design of direct-drive wind turbine electrical generators: A comparison between steel and composite material structures. Ocean. Eng. 2019, 181, 330–341. [Google Scholar] [CrossRef]
- Bergua, R.; Jové, J.; Echarte, J. Pure torque drivetrain design: A proven solution for increasing the wind turbine reliability. In Proceedings of the Brazil Windpower 2014 Conference and Exhibition, Rio de Janeiro, Brazil, 26–28 August 2014. [Google Scholar]
- Guo, Y.; Bergua, R.; van Dam, J.; Jové, J.; Campbell, J. Improving wind turbine drivetrain designs to minimize the impacts of non-torque loads. Wind. Energy 2015, 18, 2199–2222. [Google Scholar] [CrossRef]
- Shrestha, G.; Polinder, H.; Bang, D.; Ferreira, J.A. Structural flexibility: A solution for weight reduction of large direct-drive wind-turbine generators. IEEE Trans. Energy Convers. 2010, 25, 732–740. [Google Scholar] [CrossRef]
- Bang, D.J. Design of Transverse Flux Permanent Magnet Machines for Large Direct-Drive Wind Turbines. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2010. [Google Scholar]
- Bang, D.J.; Polinder, H.; Shrestha, G.; Ferreira, J.A. Design of a lightweight transverse flux permanent magnet machine for direct-drive wind turbines. In Proceedings of the IEEE Industry Applications Society Annual Meeting 2008, Edmonton, AB, Canada, 5–9 October 2008. [Google Scholar]
- Altair Engineering Inc. Altair Optistruct User Guide; Altair Engineering Inc.: Troy, MI, USA, 2021. [Google Scholar]
- Bendsøe, M.P.; Sigmund, O. Topology Optimization: Theory, Method and Applications; Springer-Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 2003. [Google Scholar]
- Wang, G.G.; Shan, S. Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 2006, 129, 370–380. [Google Scholar] [CrossRef]
- Bak, C.; Bitsche, R.; Yde, A.; Kim, T.; Hansen, M.H.; Zahle, F.; Gaunaa, M.; Blasques, J.; Døssing, M.; Heinen, J.J.W.; et al. Light rotor: The 10-MW reference wind turbine. In Proceedings of the 2012 EWEA Conference, Copenhagen, Denmark, 16–19 April 2012. [Google Scholar]
- Tricklebank, A.H.; Magee, B.; Halberstadt, P.H. Concrete Towers for Onshore and Offshore Wind Farms: Conceptual Design Studies; The Concrete Centre: London, UK, 2007. [Google Scholar]
Parameter | Value (mm) | Optimization | |
---|---|---|---|
Stator | 3757.3 | - | |
1365.4 | - | ||
1978.1 | - | ||
20 | - | ||
20 | - | ||
15 | - | ||
20 | - | ||
Rib | Design domain | Topology optimization | |
10 | - | ||
Rotor | 3846.1 | - | |
1187.8 | - | ||
1595.9 | - | ||
Design variable | Thickness optimization | ||
Design variable | Thickness optimization |
Total Mass (Tons) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
15.6 | 7.3 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 6.2 | 19.3 | 0.087 |
Stator Parameter | Dimension (mm) | Rotor Parameter | Dimension (mm) |
---|---|---|---|
688 | 385 | ||
335 | 1970 | ||
38 | 3621 | ||
126 | 434 | ||
69 |
Stator Parameter | Dimension (mm) | Rotor Parameter | Dimension (mm) |
---|---|---|---|
3757.3 | 3846.1 | ||
5122.7 | 5033.9 | ||
1365.4 | 1187.8 | ||
1978.1 | 1596.0 | ||
1600 | 7.3 | ||
1500 | 2.7 | ||
550 | 6.2 | ||
550 | 15.6 |
Maximum Displacement (mm) | Mass (Tons) | |||||
---|---|---|---|---|---|---|
Magnetic Force | Tower Vibration | Rotor | Stator | Total | ||
BRPM | Rotor | 0.078 | 0.12 | 19.3 | 141.4 | 160.7 |
Stator | 0.340 | |||||
Spoke arm-type generator | Rotor | 0.200 | 0.12 | 97.5 | 228.1 | 325.6 |
Stator | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.-H.; Bang, D.-j.; Jang, G.-W. Structural Analysis and Lightweight Optimization of a Buoyant Rotor-Type Permanent Magnet Generator for a Direct-Drive Wind Turbine. Energies 2023, 16, 5634. https://doi.org/10.3390/en16155634
Hwang J-H, Bang D-j, Jang G-W. Structural Analysis and Lightweight Optimization of a Buoyant Rotor-Type Permanent Magnet Generator for a Direct-Drive Wind Turbine. Energies. 2023; 16(15):5634. https://doi.org/10.3390/en16155634
Chicago/Turabian StyleHwang, Joon-Ha, Deok-je Bang, and Gang-Won Jang. 2023. "Structural Analysis and Lightweight Optimization of a Buoyant Rotor-Type Permanent Magnet Generator for a Direct-Drive Wind Turbine" Energies 16, no. 15: 5634. https://doi.org/10.3390/en16155634