Experimental Investigation of the Frequency Response of an LC-Filter and Power Transformer for Grid Connection
Abstract
:1. Introduction
2. L-, LC-, and LCL-Filters
3. Non-Ideal Power Transformer Model
- An ideal transformer with a turns ratio .
- The primary- and secondary-side leakage inductance, and .
- The primary- and secondary-side copper resistance of the windings, and .
- The core losses, , which incorporate the losses due to hysteresis and eddy currents in the core.
- The magnetizing inductance, , which models the magnetization of the core material.
4. LC-Filter and Power Transformer Model
5. Method
5.1. Simulations in LTspice
5.2. The Filter and Power Transformer Parameters
5.3. Experimental Setup of the LC-Filter and Power Transformer for One Phase
6. Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Renewables 2021—Analysis and Forecast to 2026; Technical Report; International Energy Agency (IEA): Paris, France, 2021. [Google Scholar]
- Blaabjerg, F.; Ma, K. Wind Energy Systems. Proc. IEEE 2017, 105, 2116–2131. [Google Scholar] [CrossRef]
- Teodorescu, R.; Rodriguez, P.; Liserre, M. Grid Converters for Photovoltaic and Wind Power Systems, 3rd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011. [Google Scholar]
- Lundin, S.; Forslund, J.; Carpman, N.; Grabbe, M. The Söderfors Project: Experimental Hydrokinetic Power Station Deployment and First Results. In Proceedings of the 10th European Wave and Tidal Energy Conference (EWTEC), Aalborg, Denmark, 2–5 September 2013. [Google Scholar]
- Apelfröjd, S.; Ekström, R.; Thomas, K.; Leijon, M. A back-to-back 2L-3L grid integration of a marine current energy converter. Energies 2015, 8, 808–820. [Google Scholar] [CrossRef] [Green Version]
- Forslund, J.; Thomas, K. First Experimental Results of a Grid Connected Vertical Axis Marine Current Turbine using a Multilevel Power Converter. In Proceedings of the 4th Asian Wave and Tidal Energy Conference (AWTEC), Taipei, Taiwan, 9–13 September 2018. [Google Scholar]
- Beres, R.; Wang, X.; Blaabjerg, F.; Bak, C.L.; Liserre, M. A Review of Passive Filters for Grid-Connected Voltage Source Converters; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 2208–2215. [Google Scholar] [CrossRef]
- Han, Y.; Yang, M.; Li, H.; Yang, P.; Xu, L.; Coelho, E.A.A.; Guerrero, J.M. Modeling and stability analysis of LCL-type grid-connected inverters: A comprehensive overview. IEEE Access 2019, 7, 114975–115001. [Google Scholar] [CrossRef]
- Büyük, M.; Tan, A.; Tümay, M.; Bayindir, K.Ç. Topologies, generalized designs, passive and active damping methods of switching ripple filters for voltage source inverter: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 62, 46–69. [Google Scholar] [CrossRef]
- Liserre, M.; Blaabjerg, F.; Dell’aquila, A. Step-by-step design procedure for a grid-connected three-phase PWM voltage source converter. Int. J. Electron. 2004, 91, 445–460. [Google Scholar] [CrossRef]
- Liserre, M.; Blaabjerg, F.; Hansen, S. Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans. Ind. Appl. 2005, 41, 1281–1291. [Google Scholar] [CrossRef]
- Jalili, K.; Bernet, S. Design of LCL Filters of Active-Front-End Two-Level Voltage-Source Converters. IEEE Trans. Ind. Electron. 2009, 56, 1674–1689. [Google Scholar] [CrossRef]
- Rockhill, A.A.; Liserre, M.; Teodorescu, R.; Rodriguez, P. Grid-Filter Design for a Multimegawatt Medium-Voltage Voltage-Source Inverter. IEEE Trans. Ind. Electron. 2011, 58, 1205–1217. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, R.N.; Singh, A.; Hanamoto, T. Design and control of LCL filter interfaced grid connected solar photovoltaic (SPV) system using power balance theory. Int. J. Electr. Power Energy Syst. 2015, 69, 264–272. [Google Scholar] [CrossRef]
- Reznik, A.; Simões, M.G.; Al-Durra, A.; Muyeen, S.M. LCL Filter Design and Performance Analysis for Grid-Interconnected Systems. IEEE Trans. Ind. Appl. 2014, 50, 1225–1232. [Google Scholar] [CrossRef]
- Jayalath, S.; Hanif, M. An LCL-Filter Design with Optimum Total Inductance and Capacitance. IEEE Trans. Power Electron. 2018, 33, 6687–6698. [Google Scholar] [CrossRef]
- Gurrola-Corral, C.; Segundo, J.; Esparza, M.; Cruz, R. Optimal LCL-filter design method for grid-connected renewable energy sources. Int. J. Electr. Power Energy Syst. 2020, 120, 105998. [Google Scholar] [CrossRef]
- Dannehl, J.; Wessels, C.; Fuchs, F.W. Limitations of Voltage-Oriented PI Current Control of Grid-Connected PWM Rectifiers with LCL Filters. IEEE Trans. Ind. Electron. 2009, 56, 380–388. [Google Scholar] [CrossRef]
- Zhang, C.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M. Resonance Damping Techniques for Grid-Connected Voltage Source Converters with LCL Filters—A Review; IEEE Computer Society: Washington, DC, USA, 2014; pp. 169–176. [Google Scholar] [CrossRef] [Green Version]
- Gomes, C.C.; Cupertino, A.F.; Pereira, H.A. Damping techniques for grid-connected voltage source converters based on LCL filter: An overview. Renew. Sustain. Energy Rev. 2018, 81, 116–135. [Google Scholar] [CrossRef]
- Hanif, M.; Khadkikar, V.; Xiao, W.; Kirtley, J.L. Two degrees of freedom active damping technique for LCL filter-based grid connected PV Systems. IEEE Trans. Ind. Electron. 2014, 61, 2795–2803. [Google Scholar] [CrossRef]
- Eldeeb, H.; Massoud, A.; Abdel-Khalik, A.S.; Ahmed, S. A sensorless Kalman filter-based active damping technique for grid-tied VSI with LCL filter. Int. J. Electr. Power Energy Syst. 2017, 93, 146–155. [Google Scholar] [CrossRef]
- Valdivia, V.; Pleite, J.; Zumel, P.; González, C.; Lázaro, A. Three Phase LCL Filter and Transformer with Integrated Magnetics for Grid Connected Converters. In Proceedings of the 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008. [Google Scholar]
- Valdivia, V.; Pleite, J.; Zumel, P.; González, C. Improving the design of integrated magnetics for power electronics systems. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008. [Google Scholar]
- Venkatramanan, D.; John, V. Integrated higher-order pulse-width modulation filter-transformer structure for single-phase static compensator. IET Power Electron. 2013, 6, 67–77. [Google Scholar] [CrossRef]
- Pleite, J.; Valdivia, V.; Zumel, P.; Gonzalez, C. Transformer and Series Inductance Integration for Harmonic Filtering in PWM Inverters Based in a Simple Design Procedure. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 4–7 June 2007; pp. 1201–1206. [Google Scholar] [CrossRef]
- Khan, D.; Hu, P.; Habib, S.; Waseem, M.; Lin, Z.; Ahmed, E.M. A resonant damping control and analysis for LCL-type grid-connected inverter. Energy Rep. 2022, 8, 911–928. [Google Scholar] [CrossRef]
- Peña-Alzola, R.; Liserre, M.; Blaabjerg, F.; Sebastián, R.; Dannehl, J.; Fuchs, F.W. Analysis of the passive damping losses in LCL-filter-based grid converters. IEEE Trans. Power Electron. 2013, 28, 2642–2646. [Google Scholar] [CrossRef] [Green Version]
- Paul, C.R. Introduction to Electromagnetic Compatibility, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
Parameter | Value |
---|---|
LC-filter measured values | |
Inductance, | 2.4 mH |
Resistance of inductor, | 66 m |
Capacitance, | 10 F |
Transformer measured values | |
Series equivalent resistance | 1.4 |
Series equivalent inductance | 1.8 mH |
Core resistance, | 8225 |
Magnetizing inductance, | 9.22 H |
Transformer calculated values | |
Primary side series resistance, | 0.7 |
Primary side leakage inductance, | 0.9 mH |
Secondary side series resistance, | 0.23 |
Secondary side leakage inductance, | 0.3 mH |
Frequency Range | Step Size |
---|---|
1 Hz to 10 Hz | 1 Hz |
10 Hz to 100 Hz | 10 Hz |
100 Hz to 2100 Hz | 100 Hz |
2100 Hz to 2400 Hz | 20 Hz |
2400 Hz to 3000 Hz | 50 Hz |
3000 Hz to 4000 Hz | 500 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fjellstedt, C.; Forslund, J.; Thomas, K. Experimental Investigation of the Frequency Response of an LC-Filter and Power Transformer for Grid Connection. Energies 2023, 16, 5784. https://doi.org/10.3390/en16155784
Fjellstedt C, Forslund J, Thomas K. Experimental Investigation of the Frequency Response of an LC-Filter and Power Transformer for Grid Connection. Energies. 2023; 16(15):5784. https://doi.org/10.3390/en16155784
Chicago/Turabian StyleFjellstedt, Christoffer, Johan Forslund, and Karin Thomas. 2023. "Experimental Investigation of the Frequency Response of an LC-Filter and Power Transformer for Grid Connection" Energies 16, no. 15: 5784. https://doi.org/10.3390/en16155784
APA StyleFjellstedt, C., Forslund, J., & Thomas, K. (2023). Experimental Investigation of the Frequency Response of an LC-Filter and Power Transformer for Grid Connection. Energies, 16(15), 5784. https://doi.org/10.3390/en16155784