Indian Scenario of Biomass Availability and Its Bioenergy-Conversion Potential
Abstract
:1. Introduction
2. Biomass Availability in India
2.1. Agricultural-Based Biomass
Model for Sustainable Use of Agricultural Biomass
2.2. Municipal-Waste-Based Biomass
2.3. Forest-Based Biomass
2.4. Industry-Based Biomass
2.5. Aquatic Biomass
3. Bioenergy Conversion Process for Biomass
3.1. Thermal Conversion Technologies
3.1.1. Combustion
3.1.2. Torrefaction and Pyrolysis
3.1.3. Gasification
3.2. Bioconversion Technologies
3.2.1. Fermentation
3.2.2. Anaerobic Digestion
3.3. Chemical Conversion Technologies
4. Current Status of Biomass-Based Power Generation and Biofuels in India
Parameter | Quantity | References |
---|---|---|
Annual power generation potential from surplus biomass | 28,000 MW | [79] |
Annual bagasse-based co-generation potential | 14,000 MW | [79] |
Annual CBG production potential | 62 MMT from various sources as mentioned below:
| [70,80,81] |
Annual bioethanol production potential from agricultural residues | From sugarcane (1 G):
| [79] |
From rice (2G)—322,254 t | ||
From maize (2G)—142,109 t |
5. Integrated Biorefinery Concept for Tomorrow
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA Global Energy Review: CO2 Emissions in 2021. 2022. Available online: https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 (accessed on 3 July 2023).
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Vujic, B.; Pekez, J.; Mihajlovic, V.; Radovanovic, L.; Marceta, U.; Palinkas, I. Public Perception and Awareness on Climate Changes and the Importance of Renewable Energy Sources. Appl. Eng. Lett. J. Eng. Appl. Sci. 2020, 5, 68–74. [Google Scholar] [CrossRef]
- Ghosh, U.; Das, D.; Banerjee, D.; Karmakar, S.; Das, J. Biomass Energy Potential in India: A Review. Int. J. Eng. Res. Technol. Nceter 2021, 9, 42–45. [Google Scholar]
- Energy Alternatives India. Report, India Biomass Energy. 2022. Available online: https://www.eai.in/ref/ae/bio/bio.html (accessed on 16 June 2023).
- Niti Aayog, 2022, Urban Wastewater Scenario in India. Government of India. Available online: https://www.niti.gov.in/sites/default/files/2022-09/Waste-Water-A4_20092022.pdf (accessed on 14 March 2023).
- Pal, M.S.; Bhatia, M. Current status, topographical constraints, and implementation strategy of municipal solid waste in India: A review. Arab. J. Geosci. 2022, 15, 1176. [Google Scholar] [CrossRef]
- Department of Agriculture & Farmers Welfare. 2022. Available online: https://agricoop.nic.in/Documents/annual_report_english_2022_23.pdf (accessed on 2 May 2023).
- Chauhan, K.; Singh, V.P. Prospect of biomass to bioenergy in India: An overview. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Pant, D.; Misra, S.; Nizami, A.-S.; Rehan, M.; van Leeuwen, R.; Tabacchioni, S.; Goel, R.; Sarma, P.; Bakker, R.; Sharma, N.; et al. Towards the development of a biobased economy in Europe and India. Crit. Rev. Biotechnol. 2019, 39, 779–799. [Google Scholar] [CrossRef]
- Singh, A.D.; Gajera, B.; Sarma, A. Appraising the availability of biomass residues in India and their bioenergy potential. Waste Manag. 2022, 152, 38–47. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2021, 206, 112285. [Google Scholar] [CrossRef]
- Bijarchiyan, M.; Sahebi, H.; Mirzamohammadi, S. A sustainable biomass network design model for bioenergy production by anaerobic digestion technology: Using agricultural residues and livestock manure. Energy Sustain. Soc. 2020, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Škrbić, S.; Ašonja, A.; Prodanović, R.; Ristić, V.; Stevanović, G.; Vulić, M.; Janković, Z.; Radosavac, A.; Igić, S. Analysis of Plant-Production-Obtained Biomass in Function of Sustainable Energy. Sustainability 2020, 12, 5486. [Google Scholar] [CrossRef]
- Milićcević, A.R.; Belošsević, S.V.; Tomanović, I.D.; Crnomarković, N.Đ.; Tucaković, D.R. Development of mathematical model for co-firing pulverized coal and biomass in experimental furnace. Therm. Sci. 2018, 22, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Milićević, A.; Belošević, S.; Crnomarković, N.; Tomanović, I.; Stojanović, A.; Tucaković, D.; Deng, L.; Che, D. Numerical study of co-firing lignite and agricultural biomass in utility boiler under variable operation conditions. Int. J. Heat Mass Transf. 2021, 181, 121728. [Google Scholar] [CrossRef]
- Pavlenko, N.; Searle, S. The Potential for Advanced Biofuels in India: Assessing the Availability of Feedstocks and Deployable Technologies; International Council on Clean Transportation (ICCT): Washington, DC, USA, 2019. [Google Scholar]
- Central Pollution Control Board (CPCB) Delhi—Annual Report 2020-21. Available online: https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMTQwM18xNjU1MzU0NzkxX21lZGlhcGhvdG8xNjQ3MS5wZGY (accessed on 19 May 2023).
- Negi, H.; Agrawal, R.; Verma, A.; Goel, R. Municipal Solid Waste to Bioenergy: Current Status, Opportunities, and Challenges in Indian Context. In New and Future Developments in Microbial Biotechnology and Bioengineering; Singh, J.S., Singh, D.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 191–203. ISBN 9780444641915. [Google Scholar] [CrossRef]
- Mammides, C. The European union’s conservation efforts are taxonomically biased. Biodivers. Conserv. 2019, 28, 1291–1296. [Google Scholar] [CrossRef]
- Central Pollution Control Board (CPCB). National Inventory of Sewage Treatment Plants; Pollution Control Board, Ministry of Environment Forest and Climate Change: New Delhi, India, 2021; Available online: https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMTIyOF8xNjE1MTk2MzIyX21lZGlhcGhvdG85NTY0LnBkZg (accessed on 19 May 2023).
- PIB: Press Information Bureau. 2023. Available online: https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1910103 (accessed on 15 March 2023).
- India State of Forest Report; Ministry of Environment, Forest and Climate Change, Government of India: New Delhi, India. 2021. Available online: https://fsi.nic.in/isfr-2021/chapter-9.pdf (accessed on 14 March 2023).
- National Bamboo Mission; Department of Agriculture & Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Government of India: New Delhi, India. 2023. Available online: https://nbm.nic.in/ (accessed on 14 March 2023).
- Nath, A.J.; Sileshi, G.W.; Das, A.K. Bamboo based family forests offer opportunities for biomass production and carbon farming in North East India. Land Use Policy 2018, 75, 191–200. [Google Scholar] [CrossRef]
- Sahoo, U.K.; Nath, A.J.; Lalnunpuii, K. Biomass estimation models, biomass storage and ecosystem carbon stock in sweet orange orchards: Implications for land use management. Acta Ecol. Sin. 2021, 41, 57–63. [Google Scholar] [CrossRef]
- SAHYOG. SAHYOG (FP7, DBT-Project) Database, Deliverable 2.1–EU-FP7. 2013. Available online: www.sahyog-biomass-database.eu (accessed on 6 June 2023).
- Konde, K.S.; Nagarajan, S.; Kumar, V.; Patil, S.V.; Ranade, V.V. Sugarcane bagasse based biorefineries in India: Potential and challenges. Sustain. Energy Fuels 2020, 5, 52–78. [Google Scholar] [CrossRef]
- Solomon, S.; Swapna, M. Indian Sugar Industry: Towards Self-reliance for Sustainability. Sugar Tech. 2022, 24, 630–650. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Badawi, M.; Mohanakrishna, G.; Aminabhavi, T.M. Valorization of micro-algae biomass for the development of green biorefinery: Perspectives on techno-economic analysis and the way towards sustainability. Chem. Eng. J. 2022, 453, 139754. [Google Scholar] [CrossRef]
- Bassoli, S.C.; da Fonseca, Y.A.; Wandurraga, H.J.L.; Baeta, B.E.L.; Amaral, M.d.S. Research progress, trends, and future prospects on hydrothermal liquefaction of algae for biocrude production: A bibliometric analysis. Biomass Convers. Biorefinery 2023, 10, 1–16. [Google Scholar] [CrossRef]
- Benedetti, M.; Vecchi, V.; Barera, S.; Dall’Osto, L. Biomass from microalgae: The potential of domestication towards sustainable biofactories. Microb. Cell Fact. 2018, 17, 173. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, S.; Gupta, P.K.; Gupta, S.K. Comprehensive evaluation of high-rate algal ponds: Wastewater treatment and biomass production. In Application of Microalgae in Wastewater Treatment; Gupta, S.K., Bux, F., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 2, pp. 531–548. ISBN 978-3-030-13909-4. [Google Scholar]
- Down To Earth. 2022. Available online: https://www.downtoearth.org.in/blog/renewable-energy/will-algae-biofuels-become-viable--85096 (accessed on 20 July 2023).
- Verma, V.; Singh, Y.; Rai, J. Biogas production from plant biomass used for phytoremediation of industrial wastes. Bioresour. Technol. 2007, 98, 1664–1669. [Google Scholar] [CrossRef]
- Mathew, A.K.; Bhui, I.; Banerjee, S.N.; Goswami, R.; Chakraborty, A.K.; Shome, A.; Balachandran, S.; Chaudhury, S. Biogas production from locally available aquatic weeds of Santiniketan through anaerobic digestion. Clean Technol. Environ. Policy 2015, 17, 1681–1688. [Google Scholar] [CrossRef]
- Shah, F.A.; Mahmood, Q.; Rashid, N.; Pervez, A.; Iqbal, A.; Shah, M.M. Anaerobic Digestion of Water Hyacinth, Giant Reed, Maize and Poultry Waste for Biogas Generation. EC Agric. 2015, 2, 277–284. [Google Scholar]
- Bray, D.G.; Nahar, G.; Grasham, O.; Dalvi, V.; Rajput, S.; Dupont, V.; Camargo-Valero, M.A.; Ross, A.B. The Cultivation of Water Hyacinth in India as a Feedstock for Anaerobic Digestion: Development of a Predictive Model for Scaling Integrated Systems. Energies 2022, 15, 9599. [Google Scholar] [CrossRef]
- Grover, P.D. Biomass: Thermo Chemical Characterization for Gasification; IIT Delhi: New Delhi, India, 1989. [Google Scholar]
- Mohan, D.; Pittman, C.U., Jr.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Demirbas, A. Producing Bio-oil from Olive Cake by Fast Pyrolysis. Energy Sources Part A Recover. Util. Environ. Eff. 2007, 30, 38–44. [Google Scholar] [CrossRef]
- Takkellapati, S.; Li, T.; Gonzalez, M.A. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol. Environ. Policy 2018, 20, 1615–1630. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Bohidar, H.B.; Nisbet, D.R.; Pfeffer, F.M.; Rifai, A.; Williams, R.; Agrawal, R. Waste to high-value products: The performance and potential of carboxymethylcellulose hydrogels via the circular economy. Cellulose 2023, 30, 2713–2730. [Google Scholar] [CrossRef]
- Sanchez, D.L.; Kammen, D.M. A commercialization strategy for carbon-negative energy. Nat. Energy 2016, 1, 15002. [Google Scholar] [CrossRef]
- MNRE. Biogas Programme (Phase-I) for FY 2021-22 to 2025-26. 2022. Available online: https://biogas.mnre.gov.in/about-the-programmes (accessed on 14 March 2023).
- Singh, J.; Gu, S. Biomass conversion to energy in India—A critique. Renew. Sustain. Energy Rev. 2010, 14, 1367–1378. [Google Scholar] [CrossRef]
- MNRE. Evaluation Study for Assessment of Biomass Power and Bagasse Cogeneration Potential in India; Administrative Staff College of India (ASCI), Centre for Energy Studies (CES): Hyderabad, India, 2021.
- Abdulyekeen, K.A.; Umar, A.A.; Patah, M.F.A.; Daud, W.M.A.W. Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass. Renew. Sustain. Energy Rev. 2021, 150, 111436. [Google Scholar] [CrossRef]
- Eseyin, A.E.; Steele, P.H.; Pittman, C.U., Jr. Current Trends in the Production and Applications of Torrefied Wood/Biomass—A Review. BioResources 2015, 10, 8812–8858. [Google Scholar] [CrossRef]
- Barskov, S.; Zappi, M.; Buchireddy, P.; Dufreche, S.; Guillory, J.; Gang, D.; Hernandez, R.; Bajpai, R.; Baudier, J.; Cooper, R.; et al. Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renew. Energy 2019, 142, 624–642. [Google Scholar] [CrossRef]
- Construction world.in. NTPC Asks Indian Startups to Produce Torrefied Biomass Pellets. 2022. Available online: https://www.constructionworld.in/energy-infrastructure/power-and-renewable-energy/ntpc-asks-indian-startups-to-produce-torrefied-biomass-pellets/33950 (accessed on 2 May 2023).
- IB: Press Information Bureau. Power Secretary Reviews Status of Biomass Utilization in Thermal Power Plants in the Country: SAMARTH (Sustainable Agrarian Mission on Use of Agro Residue in Thermal Power Plants). 2022. Available online: https://pib.gov.in/PressReleasePage.aspx?PRID=1790832 (accessed on 10 May 2023).
- Dhakate, S.R.; Pathak, A.K.; Jain, P.; Singh, M.; Singh, B.P.; Subhedar, K.M.; Sharda, S.S.; Seth, R.K. Rice Straw Biomass to High Energy Yield Biocoal by Torrefaction:Indian Perspective. Curr. Sci. 2019, 116, 831–838. Available online: https://www.jstor.org/stable/27137943 (accessed on 6 May 2023). [CrossRef]
- Torrefaction. Nu Green. Available online: https://nugreenenergy.in/torrefaction.php (accessed on 6 May 2023).
- Katyal, S. Effect of Carbonization Temperature on Combustion Reactivity of Bagasse Char. Energy Sources Part A Recover. Util. Environ. Eff. 2007, 29, 1477–1485. [Google Scholar] [CrossRef]
- Ganesh, A.; Banerjee, R. Biomass pyrolysis for power generation—A potential technology. Renew. Energy 2001, 22, 9–14. [Google Scholar] [CrossRef]
- Dupont, C.; Boissonnet, G.; Seiler, J.-M.; Gauthier, P.; Schweich, D. Study about the kinetic processes of biomass steam gasification. Fuel 2007, 86, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Narnaware, S.L.; Panwar, N.L. Biomass Gasification for Climate Change Mitigation and Policy Framework in India: A Review. Bioresour. Technol. Rep. 2022, 17, 100892. [Google Scholar] [CrossRef]
- India Biomass Gasification Market: Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023–2028, Report ID: SR112023A4478. Available online: https://www.imarcgroup.com/india-biomass-gasification-market (accessed on 6 May 2023).
- Annual Report 2022–2023. Ministry of New and Renewable Energy, Government of India. Available online: https://www.mnre.gov.in/ (accessed on 6 May 2023).
- USAID. Biomass Gasification in India. Available online: https://www.usaid.gov/energy/mini-grids/case-studies/india-biomass (accessed on 6 May 2023).
- NuGreen Energy Pvt. Ltd. Waste to Energy Solutions, Gasification Global Clean Energy Award 2019. Available online: https://nugreenenergy.in/about-us.php (accessed on 6 May 2023).
- Saini, J.K.; Saini, R.; Tewari, L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech 2014, 5, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, R.; Bhadana, B.; Chauhan, P.S.; Adsul, M.; Kumar, R.; Gupta, R.P.; Satlewal, A. Understanding the effects of low enzyme dosage and high solid loading on the enzyme inhibition and strategies to improve hydrolysis yields of pilot scale pretreated rice straw. Fuel 2022, 327, 125114. [Google Scholar] [CrossRef]
- Zhou, Y.; Searle, S.; Anup, S. Techno-economic Analysis of Cellulosic Ethanol, in India Using Agricultural Residues, ICCT White Paper. 2021. Available online: http://www.indiaenvironmentportal.org.in/files/file/cellulosic%20ethanol%20analysis%20india.pdf (accessed on 20 July 2023).
- Hans, M.; Lugani, Y.; Chandel, A.K.; Rai, R.; Kumar, S. Production of first- and second-generation ethanol for use in alcohol-based hand sanitizers and disinfectants in India. Biomass Convers. Biorefin. 2021, 27, 1–18. [Google Scholar] [CrossRef]
- Tan, Z.; Lagerkvist, A. Phosphorus recovery from the biomass ash: A review. Renew. Sustain. Energy Rev. 2011, 15, 3588–3602. [Google Scholar] [CrossRef]
- Goldemberg, J.; Johansson, T.B.; Reddy, A.K.; Williams, R.H. A global clean cooking fuel initiative. Energy Sustain. Dev. 2004, 8, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Chanakya, H.; Reddy, B.; Modak, J. Biomethanation of herbaceous biomass residues using 3-zone plug flow like digesters—A case study from India. Renew. Energy 2009, 34, 416–420. [Google Scholar] [CrossRef]
- IOCL. Compressed Bio Gas (CBG). The Fuel of the Future. Available online: https://www.iocl.com/download/White_Paper_EOI_1.pdf (accessed on 10 May 2023).
- Murugesan, A.; Umarani, C.; Chinnusamy, T.; Krishnan, M.; Subramanian, R.; Neduzchezhain, N. Production and analysis of bio-diesel from non-edible oils—A review. Renew. Sustain. Energy Rev. 2009, 13, 825–834. [Google Scholar] [CrossRef]
- Krawczyk, T. Biodiesel-alternative fuel makes inroads but hurdles remain. Inform 1996, 7, 801–815. [Google Scholar]
- Medipally, S.R.; Yusoff, F.M.; Banerjee, S.; Shariff, M. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production. BioMed Res. Int. 2015, 2015, 519513. [Google Scholar] [CrossRef]
- Bušić, A.; Marđetko, N.; Kundas, S.; Morzak, G.; Belskaya, H.; Ivančić, S.M.; Komes, D.; Novak, S.; Šantek, B. Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review. Food Technol. Biotechnol. 2018, 56, 289–311. [Google Scholar] [CrossRef]
- Rodolfi, L.; Chini Zittelli, G.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar] [CrossRef]
- Salam, K.A.; Velasquez-Orta, S.B.; Harvey, A.P. A sustainable integrated in-situ transesterification of microalgae for biodiesel production and associated co-product-a review. Renew. Sustain. Energy Rev. 2016, 65, 1179–1198. [Google Scholar] [CrossRef]
- Akubude, V.C.; Nwaigwe, K.N.; Dintwa, E. Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Mater. Sci. Energy Technol. 2019, 2, 216–225. [Google Scholar] [CrossRef]
- PIB: Press Information Bureau. 2022. Available online: https://www.pib.gov.in/PressReleasePage.aspx?PRID=1861671 (accessed on 4 May 2023).
- PwC India. 2023. Available online: https://www.pwc.in/assets/pdfs/fuelling-indias-future-with-bioenergy.pdf (accessed on 4 May 2023).
- Mustafi, N.N.; Agarwal, A. Biogas for Transport Sector: Current Status, Barriers, and Path Forward for Large-Scale Adaptation. In Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines, Energy, Environment, and Sustainability; Singh, A., Sharma, Y., Mustafi, N., Agarwal, A., Eds.; Springer Nature: Singapore, 2020; pp. 229–271. [Google Scholar] [CrossRef]
- Yadav, K.; Sircar, A. Fundamentals and developments of compressed biogas in city gas distribution network in India: A review. Pet. Res. 2022, 7, 409–418. [Google Scholar] [CrossRef]
- Lee, R.A.; Lavoie, J.-M. From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 2013, 3, 6–11. [Google Scholar] [CrossRef]
- Velmurugan, A.; Warrier, A.R. Production of biodiesel from waste cooking oil using mesoporous MgO-SnO2 nanocomposite. J. Eng. Appl. Sci. 2022, 69, 92. [Google Scholar] [CrossRef]
- Down To Earth. 2023. Available online: https://www.downtoearth.org.in/news/energy/india-s-sustainable-jet-fuel-may-get-internationally-certified-in-2023-88994 (accessed on 2 May 2023).
- The Indian Express. SpiceJet Flies India’s First Biofuel Flight, from Dehradun to Delhi. 2018. Available online: https://indianexpress.com/article/business/aviation/spicejet-operates-indias-first-biofuel-powered-flight-5326913/ (accessed on 2 May 2023).
- The Hindu. IAF to fly AN-32 on Blended Biodiesel for 200 Hours. 2022. Available online: https://www.thehindu.com/news/national/iaf-to-fly-an-32-aircraft-on-blended-biodiesel-for-200-hours/article65899650.ece (accessed on 2 May 2023).
- IEA Country Report. IEA Bioenergy. 2021. Available online: https://www.ieabioenergy.com/ (accessed on 5 May 2023).
- Martín, M.; Taifouris, M.; Galán, G. Lignocellulosic biorefineries: A multiscale approach for resource exploitation. Bioresour. Technol. 2023, 385, 129397. [Google Scholar] [CrossRef]
- Demirbas, A. Biorefineries: Current activities and future developments. Energy Convers. Manag. 2009, 50, 2782–2801. [Google Scholar] [CrossRef]
- IEA. Bioenergy Task42-Biorefinery: Biorefining in a Circular Economy. Available online: www.iea-bioenergy.task42-biorefineries.com (accessed on 5 June 2023).
Crops | Area (Mha) | Production (Million Tons) | Yield (kg/ha) |
---|---|---|---|
Rice | 4.51 | 122.27 | 27.13 |
Wheat | 31.62 | 109.52 | 3464 |
Nutri/Coarse cereals | 23.83 | 51.15 | 2146 |
Pulses | 28.83 | 25.72 | 892 |
Foodgrains | 129.34 | 308.65 | 2386 |
Oilseeds | 28.79 | 36.10 | 1254 |
Sugarcane | 4.86 | 399.25 | 82,205 |
Cotton | 13.01 | 35.38 | 462 |
Jute and mesta | 0.67 | 9.56 | 2595 |
Type of MSW Plant | Estimated Capacity (t/Day) |
---|---|
Compost Plants | 30,700 |
Biomethanation Plants | 15,100 |
Material Recovery Facility (MRF)/Refused-Derived Fuel (RDF) Plants | 45,200 |
Waste-to-Electricity (WtE) (RDF-based) Plants | 9700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negi, H.; Suyal, D.C.; Soni, R.; Giri, K.; Goel, R. Indian Scenario of Biomass Availability and Its Bioenergy-Conversion Potential. Energies 2023, 16, 5805. https://doi.org/10.3390/en16155805
Negi H, Suyal DC, Soni R, Giri K, Goel R. Indian Scenario of Biomass Availability and Its Bioenergy-Conversion Potential. Energies. 2023; 16(15):5805. https://doi.org/10.3390/en16155805
Chicago/Turabian StyleNegi, Harshita, Deep Chandra Suyal, Ravindra Soni, Krishna Giri, and Reeta Goel. 2023. "Indian Scenario of Biomass Availability and Its Bioenergy-Conversion Potential" Energies 16, no. 15: 5805. https://doi.org/10.3390/en16155805
APA StyleNegi, H., Suyal, D. C., Soni, R., Giri, K., & Goel, R. (2023). Indian Scenario of Biomass Availability and Its Bioenergy-Conversion Potential. Energies, 16(15), 5805. https://doi.org/10.3390/en16155805