Vacuum Insulation Panel: Evaluation of Declared Thermal Conductivity Value and Implications for Building Energy
Abstract
:1. Introduction
2. Methods
2.1. Definition of Thermal Conductivity Indexes for VIPs
2.2. Experimental Assessment of VIP Properties and Aging Procedures
2.3. Reference Building Description
2.4. Building Modeling, Operations, and Schedules
3. Results
3.1. Thermal Characterization of VIPs
3.2. Building Energy Consumption Evaluations
4. Limitations, Reflections, and Future Perspectives
4.1. Motivation and Challenges
4.2. Future Research Opportunities
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baetens, R.; Jelle, B.P.; Thue, J.V.; Tenpierik, M.J.; Grynning, S.; Uvsløkk, S.; Gustavsen, A. Vacuum insulation panels for building applications: A review and beyond. Energy Build. 2010, 42, 147–172. [Google Scholar] [CrossRef] [Green Version]
- Boafo, F.E.; Chen, Z.; Li, C.; Li, B.; Xu, T. Structure of vacuum insulation panel in building system. Energy Build. 2014, 85, 644–653. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Mourad, A.-H.; Hittini, W.; Hassan, M.; Hameedi, S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Brunner, S.; Wakili, K.G.; Stahl, T.; Binder, B. Vacuum insulation panels for building applications—Continuous challenges and developments. Energy Build. 2014, 85, 592–596. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Yang, Z.; Hu, J.; Yang, Y.; Chang, L.; Lee, L.J.; Xu, T. Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material. Energy 2015, 93, 945–954. [Google Scholar] [CrossRef]
- Quenard, D.; Sallée, H.; d’Heres, C.G.-S.M. From VIP’s to building facades: Three levels of thermal bridges. In Proceedings of the 7th International Vacuum Insulation Symposium, Duebendorf, Switzerland, 28–29 September 2005. [Google Scholar]
- Lorenzati, A.; Fantucci, S.; Capozzoli, A.; Perino, M. The effect of different materials joint in Vacuum Insulation Panels. Energy Procedia 2014, 62, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Boafo, F.E.; Kim, J.-H.; Ahn, J.-G.; Kim, S.-M.; Kim, J.-T. Slim curtain wall spandrel integrated with vacuum insulation panel: A state-of-the-art review and future opportunities. J. Build. Eng. 2021, 42, 102445. [Google Scholar] [CrossRef]
- Wakili, K.G.; Bundi, R.; Binder, B. Effective thermal conductivity of vacuum insulation panels. Build. Res. Inf. 2004, 32, 293–299. [Google Scholar] [CrossRef]
- Simmler, H.; Brunner, S. Vacuum insulation panels for building application: Basic properties, aging mechanisms and service life. Energy Build. 2005, 37, 1122–1131. [Google Scholar] [CrossRef]
- Simmler, H.; Brunner, S.; Heinemann, U.; Schwab, H.; Kumaran, K.; Mukhopadhyaya, P.; Quénard, D.; Sallée, H.; Noller, K.; Kücükpinar-Niarchos, E.; et al. IEA/ECBCS Annex 39 (Subtask A). In Vacuum Insulation Panels: Study on VIP-Components and Panels for Service Life Prediction of VIP in Building Applications; IEA/ECBS Annex 39: Paris, France, 2005. [Google Scholar]
- Brunner, S.; Wakili, K.G. Hints for an additional aging factor regarding the thermal performance of vacuum insulation panels with pyrogenic silica core. Vacuum 2014, 100, 4–6. [Google Scholar] [CrossRef]
- ISO/DIS 16478; Thermal Insulation Products for Buildiings—Vacuum Insulation Panels (VIP)—Products Specification. ISO: Geneva, Switzerland, 2018.
- Brunner, S.; Stahl, T.; Wakili, K.G. Double layered vacuum insulation panels. In Proceedings of the 3rd Building Enclosure Science and Technology (BEST3) Conference, Atlanta, GA, USA, 2–4 April 2012. [Google Scholar]
- Lorenzati, A.; Fantucci, S.; Capozzoli, A.; Perino, M. Experimental and numerical investigation of thermal bridging effects of jointed Vacuum Insula-tion Panels. Energy Build. 2016, 111, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Boafo, F.E.; Kim, J.-H.; Kim, J.-T. Numerical study of slim curtain wall spandrel with integrated vacuum insulation panel: Concept, performance evaluation and challenges. Energy Build. 2019, 183, 139–150. [Google Scholar] [CrossRef]
- Boafo, F.E.; Kim, J.-H.; Ahn, J.-G.; Kim, S.-M.; Kim, J.-T.; Zhang, L. Study on thermal characteristics and electrical performance of a hybrid building integrated photovoltaic (BIPV) system combined with vacuum insulation panel (VIP). Energy Build. 2022, 277, 112574. [Google Scholar] [CrossRef]
- Batard, A.; Duforestel, T.; Flandin, L.; Yrieix, B. Modelling of long-term hygro-thermal behaviour of vacuum insulation panels. Energy Build. 2018, 173, 252–267. [Google Scholar] [CrossRef]
- Park, S.; Choi, B.-H.; Lim, J.-H.; Song, S.-Y. Evaluation of Mechanically and Adhesively Fixed External Insulation Systems Using Vacuum Insulation Panels for High-Rise Apartment Buildings. Energies 2014, 7, 5764–5786. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-M.; Kim, J.-T. Effect of thermal bridge on the insulation performance of VIP applied walls. In Proceedings of the 6th ZEMCH International Conference, Melbourne, Australia, 28 January–5 February 2018. [Google Scholar]
- BS EN 13162; Thermal Insulation Products for Buildings—Factory Made Mineral Wool (MW) Products—Specification. BSI: London, UK, 2013.
- BS EN 13163; Thermal Insulation Products for Buildings—Factory Made Expanded Polystyrene (EPS) Products—Specification. BSI: London, UK, 2012.
- BS EN 13164; Thermal Insulation Products for Buildings—Factory Made Extruded Polystyrene Foam (XPS) Products—Specification. BSI: London, UK, 2012.
- BS EN 13165; Thermal Insulation Products for Buildings—Factory Made Rigid Polyurethane Foam (PU)—Specification. BSI: London, UK, 2012.
- BS EN 13166; Thermal Insulation Products for Buildings—Factory Made Phenolic Foam (PF)—Specification. BSI: London, UK, 2012.
- BS EN 13167; Thermal Insulation Products for Buildings—Factory Made Cellular Glass (CG) Products—Specification. BSI: London, UK, 2012.
- Wu, W.P.; Chen, Z.F.; Zhou, J.M.; Cheng, X.Y. Thermal Properties of Vacuum Insulation Panels with Glass Fiber. Adv. Mater. Res. 2012, 446, 3753–3756. [Google Scholar] [CrossRef]
- NETZSCH. Heat Flow Meter 436 Series. Available online: https://analyzing-testing.netzsch.com/_Resources/Persistent/7/4/b/2/74b2ff23165fad3f0d0659d00b2dc095ae3eb5cb/2008_Brochure_HFM_436_E_0608.pdf (accessed on 1 August 2023).
- Adl-Zarrabi, B.; Quénard, D.; Yrieix, B.; Johansson, P.; Heinemann, U.; Sprengard, C.; Mukhopadhyaya, P.; Brunner, S.; Galliano, R.; Lorenzati, A.; et al. IEA EBC Annex 65 Long Term Performance of Super-Insulating Materials in Building Components and Systems, Subtask III—Practical Applications Retrofitting at the Building Scale, Final Report. 2020. Available online: https://www.iea-ebc.org/projects/project?AnnexID=65 (accessed on 30 January 2023).
- ISO 10292; Glass in Building—Calculation of Steady State U Values (Thermal Transmittance) of Multiple Glazing. ISO: Geneva, Switzerland, 1994.
- DesignBuilder Software. Available online: https://designbuilder.co.uk/certification (accessed on 6 July 2023).
- US Department of Energy, EnergyPlus Input Output Reference—The Encyclopedic Reference to EnergyPlus Input and Output, EnergyPlus Documentation. 2013, p. 1836. Available online: https://bigladdersoftware.com/epx/docs/9-4/input-output-reference/ (accessed on 2 August 2023).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
Reference | Method | Description of VIP Modeling Technique |
---|---|---|
Lorenzati et al. [15] | Numerical simulations using Physibel BISCO software | VIP envelope was simplified into a simple, equivalent, homogenous layer |
Ghazi Wakili et al. [9] | Numerical simulations using Physibel TRISCO software | VIP envelope was simplified into a simple, equivalent, homogenous layer |
Boafo et al. [16,17] | Numerical simulations using Physibel BISCO software | VIP component was modeled with the effective thermal conductivity value |
Batard et al. [18] | Numerical simulations using Physibel Dymola software | VIP component was modeled with the effective thermal conductivity value |
Park et al. [19] | Numerical simulations using Physibel TRISCO software | VIP component was modeled with the effective thermal conductivity value |
Kim et al. [20] | Numerical simulations using Physibel BISCO software | VIP component was modeled with the effective thermal conductivity value |
Case # | Description of Thermal Conductivity Indexes | Thermal Bridge | 90%/90% Reliability | Aging Effect |
---|---|---|---|---|
1 | Mean center-of-panel thermal conductivity (), W/(mK) | No | No | No |
2 | Thermal conductivity based on 90% percentile values with 90% reliability (), W/(mK) | No | Yes | No |
3 | Mean center-of-panel thermal conductivity, plus thermal bridge (), W/(mK) | Yes | No | No |
4 | Thermal conductivity based on 90% percentile values with 90% reliability, plus thermal bridge (bridge), W/(mK) | Yes | Yes | No |
5 | Mean center-of-panel thermal conductivity, plus aging (aged), W/(mK) | No | No | Yes |
6 | Thermal conductivity based on 90% percentile values with 90% reliability, plus aging (,aged), W/(mK) | No | Yes | Yes |
7 | Mean center-of-panel thermal conductivity, plus aging and thermal bridge effects (,bridge,aged), W/(mK) | Yes | No | Yes |
8 | Thermal conductivity based on 90% percentile values with 90% reliability, plus thermal bridge, and aging effects (,bridge,aged), W/(mK) | Yes | Yes | Yes |
Equipment Type (Model) | Specifications |
---|---|
Heat flow meter to estimate center-of-panel thermal conductivity (Netzsch 436) | Temperature range: −30 °C to +90 °C Accuracy: ±1% to 3% Repeatability: 0.5% Maximum specimen size: 0.3 m × 0.3 m × 0.1 m |
Heat flow meter for thermal bridge evaluation (EKO HC-074) | Temperature range: −15 °C to +80 °C Accuracy: >1% Repeatability: 0.2% Maximum specimen size: 0.6 m × 0.6 m × 0.2 m |
Temperature and humidity climatic chamber for accelerated aging (JEIO TECH TH-G-1000) | Temperature range: 15 °C to 90 °C Temperature fluctuation: ±0.3 °C at 40 °C/75% RH Humidity range: 25% RH to 95% RH Humidity fluctuation: ±1% RH at 75% RH/40 °C |
Layer | Material | Thickness (m) | Thermal Conductivity W/(mK) | Density kg/m3 | Specific Heat J/(kgK) |
---|---|---|---|---|---|
Reference wall | |||||
Innermost layer | OSB | 0.011 | 0.13 | 650 | 1700 |
Layer 2 | VIP | 0.02 | 0.0042 | 800 | 200 |
Layer 3 | Cellulose insulation | 0.08 | 0.04 | 48 | 1381 |
Layer 4 | OSB | 0.011 | 0.13 | 650 | 1700 |
Layer 5 | Air gap * | 0.010 | - | - | - |
Layer 6 | EPS | 0.035 | 0.04 | 15 | 1400 |
Layer 7 | OSB | 0.011 | 0.13 | 650 | 1700 |
Outermost layer | Wood finishing | 0.011 | 0.12 | 510 | 1380 |
Reference roof | |||||
Innermost layer | Gypsum plastering | 0.019 | 0.40 | 1000 | 1000 |
Layer 2 | Cellulose insulation | 0.235 | 0.04 | 48 | 1381 |
Layer 3 | Waterproof | 0.005 | 0.17 | 1050 | 1000 |
Layer 4 | OSB | 0.011 | 0.13 | 650 | 1700 |
Layer 5 | Roofing felt | 0.015 | 0.19 | 960 | 1000 |
Outermost layer | Asphalt shingles | 0.01 | 0.70 | 2100 | 1000 |
Zone | Occupancy Density People/100 m2 | Electric Plug Load Intensity W/m2 | Light Density W/m2 |
---|---|---|---|
Bedroom | 0.0229 | 3.58 | 15 |
Living room | 0.0188 | 3.90 | 15 |
Kitchen | 0.0237 | 30.28 | 15 |
Dining area | 0.0169 | 3.06 | 15 |
Bath/WC | 0.0243 | 1.61 | 15 |
Stairs | 0.0155 | 1.57 | 15 |
Hallway/circulation | 0.0155 | 1.57 | 15 |
Case # | Description of Thermal Conductivity Indexes | Data |
---|---|---|
1 | Mean center-of-panel thermal conductivity (), W/(mK) | 0.00417 |
2 | Thermal conductivity based on 90% percentile values with 90% reliability (), W/(mK) | 0.00427 |
3 | Mean center-of-panel thermal conductivity, plus thermal bridge (,bridge), W/(mK) | 0.00630 |
4 | Thermal conductivity based on 90% percentile values with 90% reliability, plus thermal bridge (,bridge), W/(mK) | 0.00641 |
5 | Mean center-of-panel thermal conductivity, plus aging (, aged), W/(mK) | 0.00499 |
6 | Thermal conductivity based on 90% percentile values with 90% reliability, plus aging (,aged), W/(mK) | 0.00515 |
7 | Mean center-of-panel thermal conductivity, plus aging and thermal bridge effects (,bridge,aged), W/(mK) | 0.00713 |
8 | Thermal conductivity based on 90% percentile values with 90% reliability, plus thermal bridge and aging effects (,bridge,aged), W/(mK) | 0.00728 |
Case # | Thermal Conductivity Indexes | U-Value of Wall |
---|---|---|
1 | Mean center-of-panel thermal conductivity ()—0.00417 W/(mK) | 0.120 W/(m2K) |
2 | Thermal conductivity based on 90% percentile values with 90% reliability ()—0.00427 W/(mK) | 0.122 W/(m2K) |
3 | Mean center-of-panel thermal conductivity, plus thermal bridge (,bridge)—0.00630 W/(mK) | 0.149 W/(m2K) |
4 | Thermal conductivity based on 90% percentile values with 90% reliability, plus thermal bridge (,bridge)—0.00641 W/(mK) | 0.150 W/(m2K) |
5 | Mean center-of-panel thermal conductivity, plus aging (,aged)—0.00499 W/(mK) | 0.132 W/(m2K) |
6 | Thermal conductivity based on 90% percentile values with 90% reliability, plus aging (,aged)—0.00515 W/(mK) | 0.135 W/(m2K) |
7 | Mean center-of-panel thermal conductivity, plus aging and thermal bridge effects (,bridge,aged)—0.00713 W/(mK) | 0.158 W/(m2K) |
8 | Thermal conductivity based on 90% percentile values with 90% reliability, plus thermal bridge, and aging effects (,bridge,aged)—0.00728 W/(mK) | 0.159 W/(m2K) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boafo, F.E.; Kim, J.-H.; Ahn, J.-G.; Kim, S.-M.; Kim, J.-T. Vacuum Insulation Panel: Evaluation of Declared Thermal Conductivity Value and Implications for Building Energy. Energies 2023, 16, 5841. https://doi.org/10.3390/en16155841
Boafo FE, Kim J-H, Ahn J-G, Kim S-M, Kim J-T. Vacuum Insulation Panel: Evaluation of Declared Thermal Conductivity Value and Implications for Building Energy. Energies. 2023; 16(15):5841. https://doi.org/10.3390/en16155841
Chicago/Turabian StyleBoafo, Fred Edmond, Jin-Hee Kim, Jong-Gwon Ahn, Sang-Myung Kim, and Jun-Tae Kim. 2023. "Vacuum Insulation Panel: Evaluation of Declared Thermal Conductivity Value and Implications for Building Energy" Energies 16, no. 15: 5841. https://doi.org/10.3390/en16155841
APA StyleBoafo, F. E., Kim, J.-H., Ahn, J.-G., Kim, S.-M., & Kim, J.-T. (2023). Vacuum Insulation Panel: Evaluation of Declared Thermal Conductivity Value and Implications for Building Energy. Energies, 16(15), 5841. https://doi.org/10.3390/en16155841