A Self-Healing Strategy for Modern Distribution Networks
Abstract
:1. Introduction
2. Protection System Coordination
2.1. Protection and Control Scheme
2.2. Problem Formulation
3. Protection System Optimization
3.1. Genetic Algorithm
3.2. Initial Solution
4. Numerical Results and Discussion
4.1. Optimized Parameters
4.2. Protection System Coordination
4.3. Case 1: Fault between R2 and R3
4.4. Case 2: Fault between R5 and RTS
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muqeet, H.A.; Liaqat, R.; Jamil, M.; Khan, A.A. A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment. Energies 2023, 16, 472. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.; Lu, X.; Chen, C.; Zhao, S. Networked Microgrids for Grid Resilience, Robustness, and Efficiency: A Review. IEEE Trans. Smart Grid 2021, 12, 18–32. [Google Scholar] [CrossRef]
- Khan, M.W.; Wang, J.; Ma, M.; Xiong, L.; Li, P.; Wu, F. Optimal energy management and control aspects of distributed microgrid using multi-agent systems. Sustain. Cities Soc. 2019, 44, 855–870. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Chen, C.; Tan, Y.; Cao, Y.; Zhang, M.; Peng, Y.; Chen, S. A Full Decentralized Multi-Agent Service Restoration for Distribution Network with DGs. IEEE Trans. Smart Grid 2020, 11, 1100–1111. [Google Scholar] [CrossRef]
- Torres, B.S.; Ferreira, L.R.; Aoki, A.R. Distributed intelligent system for self-healing in smart grids. IEEE Trans. Power Deliv. 2018, 33, 2394–2403. [Google Scholar] [CrossRef]
- Zhao, H.; Lu, Z.; He, L.; Guo, X.; Li, X.; Xiao, H. Two-stage multi-fault emergency rush repair and restoration robust strategy in distribution networks. Electr. Power Syst. Res. 2020, 184, 106335. [Google Scholar] [CrossRef]
- Leite, J.B.; Mantovani, J.R.S. Development of a Self-Healing Strategy with Multiagent Systems for Distribution Networks. IEEE Trans. Smart Grid 2017, 8, 2198–2206. [Google Scholar] [CrossRef] [Green Version]
- Atteya, A.I.; Zonkoly, A.M.E.; Ashour, H.A. Optimal relay coordination of an adaptive protection scheme using modified PSO algorithm. In Proceedings of the 2017 19th International Middle-East Power Systems Conference, MEPCON 2017—Proceedings, Cairo, Egypt, 19–21 December 2017; Volume 2018, pp. 689–694. [Google Scholar] [CrossRef]
- Arefifar, S.A.; Alam, M.S.; Hamadi, A. A Review on Self-healing in Modern Power Distribution Systems. J. Mod. Power Syst. Clean Energy 2023, 1–16. [Google Scholar]
- Standard C37.112; Standard for Inverse—Time Characteristics Equations for Overcurrent Relays. IEEE: New York, NY, USA, 2018.
- Standard 60255-151; Measuring Relays and Protection Equipment—Part 151: Functional Requirements for Over/Under Current Protection. IEC: Dublin, Ireland, 2009.
- Malik, H.; Iqbal, A.; Joshi, P.; Agrawal, S.; Bakhsh, F.I. (Eds.) Metaheuristic and Evolutionary Computation: Algorithms and Applications; Springer: Singapore, 2021; Volume 916. [Google Scholar] [CrossRef]
- Kramer, O. Genetic Algorithms; Springer: Berlin/Heidelberg, Germany, 2017; pp. 11–19. [Google Scholar] [CrossRef]
- Marcolino, M.H.; Leite, J.B.; Mantovani, J.R.S. Optimal Coordination of Overcurrent Directional and Distance Relays in Meshed Networks Using Genetic Algorithm. IEEE Lat. Am. Trans. 2015, 13, 2975–2982. [Google Scholar] [CrossRef] [Green Version]
- Reiz, C.; Leite, J.B. Optimal Coordination of Protection Devices in Distribution Networks with Distributed Energy Resources and Microgrids. IEEE Access 2022, 10, 99584–99594. [Google Scholar] [CrossRef]
- Laboratory of Electrical Power System Planning—LAPSEE, “Distribution Test System—363 Buses”. 2015. Available online: http://www.feis.unesp.br/Home/departamentos/engenhariaeletrica/lapsee807/home/distribution_network_363_lines.rar (accessed on 27 March 2023).
- Kezunovic, M.; Ren, J.; Lotfifard, S. Design, Modeling and Evaluation of Protective Relays for Power Systems; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
TCC | |||
---|---|---|---|
IEC NI | 0.02 | 0.14 | 0.0 |
IEC VI | 1 | 13.5 | 0.0 |
IEC EI | 2 | 80 | 0.0 |
IEC LI | 1 | 120 | 0.0 |
IEC SI | 0.04 | 0.05 | 0.0 |
IEEE NI | 0.02 | 0.0104 | 0.0226 |
IEEE VI | 2.00 | 5.95 | 0.18 |
IEEE EI | 2.00 | 3.88 | 0.0963 |
IEEE LI | 2.00 | 5.64 | 0.02434 |
IEEE SI | 0.02 | 0.00342 | 0.00262 |
Fault | Phase | Ground | Location | Fault Start | Fault Resistance | Ground Resistance | ||
---|---|---|---|---|---|---|---|---|
A | B | C | ||||||
Two-phase | ✓ | ✓ | 30,630 | s | 0.001 Ω | - | ||
Single-phase | ✓ | ✓ | 30,698 | s | 0.001 Ω | 0.001 Ω |
Parameter | Value | Parameter | Value |
---|---|---|---|
500 | 1500 | ||
1.20 | 0.02 s | ||
1.30, 1.50 | 1.00 s | ||
0.10 | 0.10 | ||
2.00 | 0.30 | ||
1 | 10 | ||
0.90 | 0.01 | ||
0.50 | 0.30 s | ||
0.15 | 0.02 s |
Relay | |||||||
---|---|---|---|---|---|---|---|
R1 (DF) | 921.02 | 1.306 | IEC VI | 0.067 | 0.669 | 0.300 | 0.10 |
R2 (DF) | 921.02 | 0.720 | IEC VI | 0.369 | 0.830 | 0.300 | 0.08 |
R3 (DF) | 886.99 | 0.478 | IEC VI | 0.530 | 0.554 | 0.300 | 0.06 |
R4 (DF) | 744.90 | 1.229 | IEEE VI | 0.254 | 0.320 | 0.300 | 0.04 |
R5 (DF) | 597.52 | 0.274 | IEEE SI | 0.020 | - | - | 0.02 |
R3 (RF) | 33.91 | 0.593 | IEEE SI | 0.020 | - | - | 0.02 |
R4 (RF) | 178.52 | 1.733 | IEEE VI | 0.315 | 0.320 | 0.300 | 0.04 |
R5 (RF) | 328.69 | 1.450 | IEC VI | 0.482 | 0.615 | 0.300 | 0.06 |
RTS (RF) | 948.39 | 0.809 | IEC VI | 0.641 | 0.785 | 0.301 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reiz, C.; Pereira, C.E.M.; Leite, J.B. A Self-Healing Strategy for Modern Distribution Networks. Energies 2023, 16, 5890. https://doi.org/10.3390/en16165890
Reiz C, Pereira CEM, Leite JB. A Self-Healing Strategy for Modern Distribution Networks. Energies. 2023; 16(16):5890. https://doi.org/10.3390/en16165890
Chicago/Turabian StyleReiz, Cleberton, Caio E. M. Pereira, and Jonatas B. Leite. 2023. "A Self-Healing Strategy for Modern Distribution Networks" Energies 16, no. 16: 5890. https://doi.org/10.3390/en16165890
APA StyleReiz, C., Pereira, C. E. M., & Leite, J. B. (2023). A Self-Healing Strategy for Modern Distribution Networks. Energies, 16(16), 5890. https://doi.org/10.3390/en16165890