Asymmetric Risk Connectedness between Crude Oil and Agricultural Commodity Futures in China before and after the COVID-19 Pandemic: Evidence from High-Frequency Data
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Measuring Realized Variance and Semi-Variance
3.2. Measuring Volatility Spillover
3.3. Measuring the Asymmetric Effect
4. Data and Preliminary Analysis
5. Empirical Results
5.1. Risk Connectedness at the Total Level
5.1.1. Full Sample Static Analysis
5.1.2. Rolling Sample Dynamic Analysis
5.2. Asymmetric Risk Connectedness
5.2.1. Full Sample Static Analysis
5.2.2. Rolling Sample Dynamic Analysis
5.3. Robustness Checks
6. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baffes, J. Oil spills on other commodities. Resour. Policy 2007, 32, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.D. Understanding Crude Oil Prices. Energy J. 2009, 30, 179–206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Qu, X. The effect of global oil price shocks on China’s agricultural commodities. Energy Econ. 2015, 51, 354–364. [Google Scholar] [CrossRef]
- Lv, F.; Yang, C.; Fang, L. Do the crude oil futures of the Shanghai International Energy Exchange improve asset allocation of Chinese petrochemical-related stocks? Int. Rev. Financ. Anal. 2020, 71, 101537. [Google Scholar] [CrossRef]
- Yang, C.; Lv, F.; Fang, L.; Shang, X. The pricing efficiency of crude oil futures in the Shanghai International Exchange. Financ. Res. Lett. 2020, 36, 101329. [Google Scholar] [CrossRef]
- Tyner, W.E. The integration of energy and agricultural markets. Agric. Econ. 2010, 41, 193–201. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A.; Mohd-Shahwahid, H. Determinants of technical efficiency in the bioenergy industry in the EU28 region. Renew. Sustain. Energy Rev. 2017, 78, 1331–1349. [Google Scholar] [CrossRef]
- Ji, Q.; Fan, Y. How does oil price volatility affect non-energy commodity markets? Appl. Energy 2012, 89, 273–280. [Google Scholar] [CrossRef]
- Sun, Y.; Mirza, N.; Qadeer, A.; Hsueh, H.-P. Connectedness between oil and agricultural commodity prices during tranquil and volatile period. Is crude oil a victim indeed? Resour. Policy 2021, 72, 102131. [Google Scholar] [CrossRef]
- Umar, Z.; Jareño, F.; Escribano, A. Agricultural commodity markets and oil prices: An analysis of the dynamic return and volatility connectedness. Resour. Policy 2021, 73, 102147. [Google Scholar] [CrossRef]
- Cao, Y.; Cheng, S. Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices. Resour. Policy 2021, 74, 102364. [Google Scholar] [CrossRef] [PubMed]
- Hung, N.T. Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak. Resour. Policy 2021, 73, 102236. [Google Scholar] [CrossRef]
- Zhu, B.; Lin, R.; Deng, Y.; Chen, P.; Chevallier, J. Intersectoral systemic risk spillovers between energy and agriculture under the financial and COVID-19 crises. Econ. Model. 2021, 105, 105651. [Google Scholar] [CrossRef]
- Serra, T. Volatility spillovers between food and energy markets: A semiparametric approach. Energy Econ. 2011, 33, 1155–1164. [Google Scholar] [CrossRef] [Green Version]
- Nazlioglu, S.; Erdem, C.; Soytas, U. Volatility spillover between oil and agricultural commodity markets. Energy Econ. 2013, 36, 658–665. [Google Scholar] [CrossRef]
- Shahzad, S.J.H.; Hernandez, J.A.; Al-Yahyaee, K.H.; Jammazi, R. Asymmetric risk spillovers between oil and agricultural commodities. Energy Policy 2018, 118, 182–198. [Google Scholar] [CrossRef]
- Kang, S.H.; Tiwari, A.K.; Albulescu, C.T.; Yoon, S.-M. Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1. Energy Econ. 2019, 84, 104543. [Google Scholar] [CrossRef]
- Han, L.; Jin, J.; Wu, L.; Zeng, H. The volatility linkage between energy and agricultural futures markets with external shocks. Int. Rev. Financ. Anal. 2020, 68, 101317. [Google Scholar] [CrossRef]
- Kaltalioglu, M.; Soytas, U. Volatility Spillover from Oil to Food and Agricultural Raw Material Markets. Mod. Econ. 2011, 2, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, B.L.; Schulz, F. Volatility linkages between energy and agricultural commodity prices. Energy Econ. 2016, 54, 190–203. [Google Scholar] [CrossRef] [Green Version]
- Awartani, B.; Aktham, M.; Cherif, G. The connectedness between crude oil and financial markets: Evidence from implied volatility indices. J. Commod. Mark. 2016, 4, 56–69. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Hesary, F.; Rasoulinezhad, E.; Yoshino, N. Energy and Food Security: Linkages through Price Volatility. Energy Policy 2019, 128, 796–806. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Andersen, T.G.; Bollerslev, T.; Diebold, F.X.; Labys, P. Modeling and Forecasting Realized Volatility. Econometrica 2003, 71, 579–625. [Google Scholar] [CrossRef] [Green Version]
- Andersen, T.G.; Bollerslev, T. Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts. Int. Econ. Rev. 1998, 39, 885. [Google Scholar] [CrossRef] [Green Version]
- Barndorff-Nielsen, O.E.; Kinnebrock, S.; Shephard, N. Measuring downside risk: Realised semivariance. In Volatility and Time Series Econometrics: Essays in Honor of Robert Engle; University of Oxford: Oxford, UK, 2010. [Google Scholar]
- Li, W. COVID-19 and asymmetric volatility spillovers across global stock markets. N. Am. J. Econ. Financ. 2021, 58, 101474. [Google Scholar] [CrossRef]
- Maitra, D.; Guhathakurta, K.; Kang, S.H. The good, the bad and the ugly relation between oil and commodities: An analysis of asymmetric volatility connectedness and portfolio implications. Energy Econ. 2021, 94, 105061. [Google Scholar] [CrossRef]
- Qu, F.; Chen, Y.; Zheng, B. Is new energy driven by crude oil, high-tech sector or low-carbon notion? New evidence from high-frequency data. Energy 2021, 230, 120770. [Google Scholar] [CrossRef]
- Baruník, J.; Kočenda, E.; Vácha, L. Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers. J. Financ. Mark. 2016, 27, 55–78. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Qu, F. Dynamic asymmetric spillovers and volatility interdependence on China’s stock market. Phys. A Stat. Mech. Its Appl. 2019, 523, 825–838. [Google Scholar] [CrossRef]
- BenSaïda, A. Good and bad volatility spillovers: An asymmetric connectedness. J. Financ. Mark. 2019, 43, 78–95. [Google Scholar] [CrossRef]
- Andersen, T.G.; Todorov, V. Realized Volatility and Multipower Variation. In Encyclopedia of Quantitative Finance; John Wiley & Sons, Ltd.: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Bollerslev, T.; Zhou, H. Volatility puzzles: A simple framework for gauging return-volatility regressions. J. Econom. 2006, 131, 123–150. [Google Scholar] [CrossRef]
- Klein, T. Trends and contagion in WTI and Brent crude oil spot and futures markets—The role of OPEC in the last decade. Energy Econ. 2018, 75, 636–646. [Google Scholar] [CrossRef] [Green Version]
- Hau, L.; Zhu, H.; Huang, R.; Ma, X. Heterogeneous dependence between crude oil price volatility and China’s agriculture commodity futures: Evidence from quantile-on-quantile regression. Energy 2020, 213, 118781. [Google Scholar] [CrossRef]
- Luo, J.; Ji, Q. High-frequency volatility connectedness between the US crude oil market and China’s agricultural commodity markets. Energy Econ. 2018, 76, 424–438. [Google Scholar] [CrossRef]
- Hung, N.T.; Vo, X.V. Directional spillover effects and time-frequency nexus between oil, gold and stock markets: Evidence from pre and during COVID-19 outbreak. Int. Rev. Financ. Anal. 2021, 76, 101730. [Google Scholar] [CrossRef]
- Mensi, W.; Shafiullah, M.; Vo, X.V.; Kang, S.H. Volatility spillovers between strategic commodity futures and stock markets and portfolio implications: Evidence from developed and emerging economies. Resour. Policy 2021, 71, 102002. [Google Scholar] [CrossRef]
- Jebabli, I.; Arouri, M.; Teulon, F. On the effects of world stock market and oil price shocks on food prices: An empirical investigation based on TVP-VAR models with stochastic volatility. Energy Econ. 2014, 45, 66–98. [Google Scholar] [CrossRef]
- Su, C.W.; Wang, X.-Q.; Tao, R.; Oana-Ramona, L. Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context. Energy 2019, 172, 691–701. [Google Scholar] [CrossRef]
- Dahl, R.E.; Oglend, A.; Yahya, M. Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture. J. Commod. Mark. 2020, 20, 100111. [Google Scholar] [CrossRef]
- Gong, X.; Liu, Y.; Wang, X. Dynamic volatility spillovers across oil and natural gas futures markets based on a time-varying spillover method. Int. Rev. Financ. Anal. 2021, 76, 101790. [Google Scholar] [CrossRef]
- Lovcha, Y.; Perez-Laborda, A. Dynamic frequency connectedness between oil and natural gas volatilities. Econ. Model. 2020, 84, 181–189. [Google Scholar] [CrossRef]
Mean | Std. Dev | Min | Max | Skewness | Kurtosis | ADF | ||
---|---|---|---|---|---|---|---|---|
wheat | 2.675 | 15.820 | 0 | 194.278 | 10.792 | 125.773 | −17.335 *** | |
corn | 0.514 | 1.424 | 0.117 | 19.546 | 10.880 | 130.255 | −17.898 *** | |
soybean | 1.255 | 6.721 | 0.106 | 102.823 | 13.232 | 185.965 | −17.754 *** | |
bean pulp | 1.426 | 4.016 | 0.131 | 65.659 | 13.364 | 208.454 | −17.427 *** | |
cotton | 1.519 | 3.070 | 0.072 | 36.543 | 7.225 | 68.066 | −16.656 *** | |
INE | 3.617 | 5.763 | 0.306 | 85.669 | 9.791 | 132.081 | −15.272 *** | |
WTI | 4.021 | 3.255 | 0.116 | 24.689 | 2.621 | 12.503 | −8.879 *** | |
INE | 1.875 | 5.070 | 0.186 | 83.894 | 13.698 | 217.654 | −17.237 *** | |
WTI | 1.903 | 1.563 | 0.095 | 11.375 | 2.781 | 13.706 | −8.840 *** | |
INE | 1.742 | 2.111 | 0.097 | 16.319 | 3.633 | 19.742 | −15.152 *** | |
WTI | 2.117 | 2.002 | 0.021 | 17.937 | 3.515 | 21.243 | −11.324 *** |
Mean | Std. Dev | Min | Max | Skewness | Kurtosis | ADF | ||
---|---|---|---|---|---|---|---|---|
wheat | 1.405 | 3.811 | 0 | 54.774 | 10.317 | 130.187 | −17.110 *** | |
corn | 0.844 | 0.899 | 0.098 | 9.303 | 4.791 | 36.137 | −16.517 *** | |
soybean | 2.269 | 3.971 | 0.302 | 50.601 | 9.703 | 109.952 | −17.991 *** | |
bean pulp | 1.703 | 2.256 | 0.076 | 23.876 | 5.924 | 49.791 | −15.323 *** | |
cotton | 2.1 | 3.463 | 0.156 | 39.346 | 6.146 | 52.87 | −18.657 *** | |
INE | 8.518 | 13.398 | 0.398 | 114.429 | 3.954 | 22.46 | −12.670 *** | |
WTI | 37.881 | 291.937 | 0.647 | 5216.742 | 16.547 | 291.675 | −15.419 *** | |
INE | 4.103 | 8.770 | 0 | 100.803 | 6.379 | 56.188 | −15.576 *** | |
WTI | 19.866 | 134.168 | 0.413 | 2224.013 | 13.998 | 219.928 | −14.474 *** | |
INE | 4.415 | 9.629 | 0.108 | 89.381 | 5.297 | 35.428 | −12.973 *** | |
WTI | 18.015 | 163.333 | 0.178 | 2992.728 | 17.761 | 323.619 | −16.478 *** |
WTI | INE | Wheat | Corn | Soybean | Bean Pulp | Cotton | From Index | |
---|---|---|---|---|---|---|---|---|
Panel A: Pre-outbreak period of the COVID-19 pandemic from 8 October 2018 to 30 January 2020 | ||||||||
WTI | 68.14 | 6.43 | 7.14 | 4.75 | 1.25 | 12.00 | 0.29 | 4.55 |
INE | 13.14 | 56.08 | 26.87 | 0.75 | 0.27 | 2.41 | 0.49 | 6.27 |
wheat | 0.37 | 0.19 | 99.01 | 0.16 | 0.02 | 0.15 | 0.11 | 0.14 |
corn | 3.78 | 0.55 | 0.20 | 91.04 | 0.12 | 1.27 | 3.04 | 1.28 |
soybean | 3.51 | 0.71 | 0.27 | 19.75 | 70.83 | 0.75 | 4.18 | 4.17 |
bean pulp | 15.28 | 2.12 | 0.47 | 0.85 | 0.38 | 80.07 | 0.83 | 2.85 |
cotton | 0.78 | 0.63 | 1.10 | 12.16 | 2.80 | 1.00 | 81.53 | 2.64 |
To index | 5.27 | 1.52 | 5.15 | 5.49 | 0.69 | 2.51 | 1.28 | Total: 21.90 |
WTI | INE | wheat | corn | soybean | bean pulp | cotton | From index | |
Panel B: Post-outbreak period of the COVID-19 pandemic from 31 January 2020 to 30 June 2021 | ||||||||
WTI | 91.98 | 5.34 | 0.06 | 1.34 | 0.46 | 0.31 | 0.50 | 1.15 |
INE | 9.76 | 77.97 | 1.07 | 3.95 | 0.16 | 1.58 | 5.52 | 3.15 |
wheat | 0.04 | 0.21 | 98.19 | 0.41 | 0.23 | 0.52 | 0.41 | 0.26 |
corn | 0.68 | 2.95 | 0.41 | 84.70 | 0.71 | 9.55 | 0.99 | 2.19 |
soybean | 0.16 | 0.13 | 0.17 | 0.43 | 96.79 | 0.46 | 1.85 | 0.46 |
bean pulp | 0.20 | 0.74 | 0.05 | 10.07 | 0.49 | 86.10 | 2.36 | 1.99 |
cotton | 2.47 | 6.03 | 1.47 | 2.31 | 1.02 | 2.97 | 83.74 | 2.32 |
To index | 1.90 | 2.20 | 0.46 | 2.64 | 0.44 | 2.20 | 1.66 | Total: 11.50 |
Panel A: Static Asymmetric Volatility Spillover from | ||||||||
WTI | INE | wheat | corn | soybean | bean pulp | cotton | From index | |
WTI | 69.68 | 1.98 | 3.10 | 4.98 | 1.70 | 16.66 | 1.91 | 4.33 |
INE | 6.29 | 56.72 | 34.61 | 0.32 | 0.09 | 1.33 | 0.64 | 6.18 |
wheat | 0.47 | 0.14 | 98.93 | 0.15 | 0.03 | 0.17 | 0.11 | 0.15 |
corn | 2.32 | 0.29 | 0.19 | 92.49 | 0.16 | 1.33 | 3.23 | 1.07 |
soybean | 2.06 | 0.13 | 0.17 | 19.66 | 72.53 | 0.78 | 4.67 | 3.92 |
bean pulp | 12.76 | 1.03 | 0.66 | 0.80 | 0.31 | 83.58 | 0.86 | 2.35 |
cotton | 1.21 | 0.69 | 1.12 | 12.11 | 2.88 | 0.95 | 81.04 | 2.71 |
To index | 3.59 | 0.61 | 5.69 | 5.43 | 0.74 | 3.03 | 1.63 | Total: 20.72 |
Panel B: Static asymmetric volatility spillover from | ||||||||
WTI | INE | wheat | corn | soybean | bean pulp | cotton | From index | |
WTI | 65.76 | 10.80 | 10.84 | 4.24 | 0.64 | 7.30 | 0.42 | 4.89 |
INE | 20.74 | 63.09 | 8.53 | 1.68 | 1.09 | 4.16 | 0.70 | 5.27 |
wheat | 0.23 | 0.57 | 98.76 | 0.15 | 0.02 | 0.15 | 0.12 | 0.18 |
corn | 3.47 | 0.46 | 0.21 | 91.35 | 0.11 | 1.37 | 3.02 | 1.24 |
soybean | 2.89 | 0.89 | 0.43 | 19.98 | 71.29 | 0.64 | 3.89 | 4.10 |
bean pulp | 10.48 | 5.69 | 0.29 | 0.82 | 0.49 | 81.36 | 0.86 | 2.66 |
cotton | 1.31 | 0.26 | 1.22 | 12.17 | 2.86 | 1.05 | 81.14 | 2.69 |
To index | 5.59 | 2.67 | 3.08 | 5.58 | 0.74 | 2.09 | 1.29 | Total: 21.04 |
Panel C: The index of | ||||||||
From index | −12.15 | 15.90 | −18.18 | −14.72 | −4.49 | −12.38 | 0.74 | - |
To index | −43.57 | −125.61 | 59.52 | −2.72 | 0 | 36.72 | 23.29 | Total: −1.53 |
Panel A: Static Asymmetric Volatility Spillover from | ||||||||
WTI | INE | wheat | corn | soybean | bean pulp | cotton | From index | |
WTI | 95.73 | 0.31 | 0.05 | 1.33 | 0.33 | 0.36 | 1.89 | 0.61 |
INE | 6.07 | 89.62 | 0.11 | 0.94 | 0.52 | 0.84 | 1.90 | 1.48 |
wheat | 0.07 | 0.20 | 98.10 | 0.49 | 0.22 | 0.51 | 0.40 | 0.27 |
corn | 0.94 | 0.82 | 0.37 | 86.65 | 0.64 | 9.47 | 1.11 | 1.91 |
soybean | 0.50 | 0.07 | 0.15 | 0.43 | 96.63 | 0.45 | 1.77 | 0.48 |
bean pulp | 0.31 | 0.62 | 0.05 | 9.74 | 0.46 | 86.36 | 2.45 | 1.95 |
cotton | 4.70 | 2.52 | 1.42 | 2.04 | 1.07 | 3.08 | 85.17 | 2.12 |
To index | 1.80 | 0.65 | 0.31 | 2.14 | 0.46 | 2.10 | 1.36 | Total: 8.82 |
Panel B: Static asymmetric volatility spillover from | ||||||||
WTI | INE | wheat | corn | soybean | bean pulp | cotton | From index | |
WTI | 88.01 | 8.75 | 0.28 | 1.85 | 0.56 | 0.35 | 0.19 | 1.71 |
INE | 12.81 | 73.66 | 2.59 | 4.36 | 0.06 | 1.40 | 5.13 | 3.76 |
wheat | 0.08 | 0.24 | 98.17 | 0.41 | 0.22 | 0.52 | 0.36 | 0.26 |
corn | 1.03 | 4.09 | 0.59 | 83.14 | 0.73 | 9.44 | 0.98 | 2.41 |
soybean | 0.13 | 0.29 | 0.16 | 0.46 | 96.65 | 0.47 | 1.85 | 0.48 |
bean pulp | 0.27 | 0.29 | 0.06 | 10.18 | 0.50 | 86.49 | 2.21 | 1.93 |
cotton | 1.23 | 5.04 | 1.45 | 3.02 | 1.04 | 2.76 | 85.47 | 2.08 |
To index | 2.22 | 2.67 | 0.73 | 2.90 | 0.44 | 2.14 | 1.53 | Total: 12.63 |
Panel C: The index of | ||||||||
From index | −94.83 | −87.02 | 3.77 | −23.15 | 0.00 | 1.03 | 1.90 | - |
To index | −20.90 | −121.69 | −80.77 | −30.16 | 4.44 | −1.89 | −11.76 | Total: −35.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; She, W.; Qu, F.; He, C. Asymmetric Risk Connectedness between Crude Oil and Agricultural Commodity Futures in China before and after the COVID-19 Pandemic: Evidence from High-Frequency Data. Energies 2023, 16, 5898. https://doi.org/10.3390/en16165898
Zhang D, She W, Qu F, He C. Asymmetric Risk Connectedness between Crude Oil and Agricultural Commodity Futures in China before and after the COVID-19 Pandemic: Evidence from High-Frequency Data. Energies. 2023; 16(16):5898. https://doi.org/10.3390/en16165898
Chicago/Turabian StyleZhang, Deyuan, Wensen She, Fang Qu, and Chunyan He. 2023. "Asymmetric Risk Connectedness between Crude Oil and Agricultural Commodity Futures in China before and after the COVID-19 Pandemic: Evidence from High-Frequency Data" Energies 16, no. 16: 5898. https://doi.org/10.3390/en16165898
APA StyleZhang, D., She, W., Qu, F., & He, C. (2023). Asymmetric Risk Connectedness between Crude Oil and Agricultural Commodity Futures in China before and after the COVID-19 Pandemic: Evidence from High-Frequency Data. Energies, 16(16), 5898. https://doi.org/10.3390/en16165898