An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia
Abstract
:1. Introduction
2. Status of Bioenergy Production
2.1. Sustainability of Biomass Resources
2.1.1. Economic Overview
2.1.2. Social Overview
2.1.3. Environmental Overview
2.1.4. Political Overview
2.2. Importance of Residual Biomass Transformation Technologies
2.2.1. Bioenergy Production by Thermal Methods
2.2.2. Bioenergy Production by Biochemical/Chemical Methods
3. Potential Opportunities in Biomass Conversion from Biological Methods
3.1. Potential Biomass Feedstocks in Colombia
3.2. Adoption of Traditional Bioenergy Technologies
3.2.1. Conventional Anaerobic Digesters in Emerging Countries
3.2.2. Alternative Energy Sources from Biogas
3.3. Socio-Economic and Environmental Benefits
4. Challenges and Barriers for Biogas Production in Colombia
4.1. Centralized Residual Biomass Biorefineries
4.2. Techno-Economic Biodigester Implementation Approach
4.2.1. Construction, Operation, and Maintenance
4.2.2. Investment
4.2.3. Limited Experience with Biogas Projects Funders
4.3. Social Acceptance and Technology Adoption
4.4. Research, Development, and Innovation Knowledge Gaps
5. Conclusions and Recommendations
- The deployment of biogas facilities in Colombia with regard to addressing social acceptance, technological advancements, and environmental challenges.
- Conducting further studies to develop more efficient and cost-effective processes for biomass collection, transportation, and processing.
- Carrying out research to identify and evaluate the most suitable waste management strategies for different regions in Colombia.
- Using research findings to inform policymakers and investors about effective and sustainable ways to promote biogas production in Colombia.
- Conducting additional studies on the socio-economic impacts of biogas production to understand its potential benefits and drawbacks for local communities.
- Aiming research efforts at promoting the sustainable deployment of biogas in Colombia, aligning with the country’s broader goals of sustainable development (SDG), and combating climate change.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Majeed, M.T.; Luni, T.; Tahir, T. Growing Green through Biomass Energy Consumption: The Role of Natural Resource and Globalization in a World Economy. Environ. Sci. Pollut. Res. 2022, 29, 33657–33673. [Google Scholar] [CrossRef] [PubMed]
- Pandyaswargo, A.H.; Wibowo, A.D.; Onoda, H. Socio-Techno-Economic Assessment to Design an Appropriate Renewable Energy System for Remote Agricultural Communities in Developing Countries. Sustain. Prod. Consum. 2022, 31, 492–511. [Google Scholar] [CrossRef]
- Escalante Hernández, H.; Orduz Prada, J.; Zapata Lesmes, H.J.; Cardona Ruiz, M.C.; Duarte Ortega, M. Atlas del Potencial Energético de la Biomasa Residual en Colombia; Unidad de Planeación Minero Energética: Bogotá, Colombia, 2010; ISBN 9789588504599. [Google Scholar]
- Unidad de Planeación Minero Energética. UPME Colombia Ley 1715 de 2014. In Normatividad-UPME; Unidad de Planeación Minero Energética: Bogotá, Colombia, 2014; Volume 13. [Google Scholar]
- Rincón-Velásquez, N.Y.; Castiblanco-Rozo, C. Políticas y Normas Sobre Energías Renovables para el Desarrollo de Biogás en Colombia. Una Revisión. Gestión Ambiente 2021, 24, 98868. [Google Scholar] [CrossRef]
- Garfí, M.; Castro, L.; Montero, N.; Escalante, H.; Ferrer, I. Evaluating Environmental Benefits of Low-Cost Biogas Digesters in Small-Scale Farms in Colombia: A Life Cycle Assessment. Bioresour. Technol. 2019, 274, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Mendieta, O.; Castro, L.; Vera, E.; Rodríguez, J.; Escalante, H. Toward the Adoption of Anaerobic Digestion Technology through Low-Cost Biodigesters: A Case Study of Non-Centrifugal Cane Sugar Producers in Colombia. Water 2021, 13, 2566. [Google Scholar] [CrossRef]
- Luna-Del Risco, M.; Vásquez, A.J.; Zea Fernández, J.S.; Marín, E.; González, C.A.; Vargas, A.C.; Mejías Brizuela, N.Y. Biogas Production from the Specialized Dairy Farming and Porcine Subsectors in Antioquia, Colombia: Theoretical and Technical-Energy Potential Approach. Agron. Res. 2022, 20, 281–301. [Google Scholar] [CrossRef]
- Durán Contreras, M.; Sequeda Barros, R.; Zapata, J.; Vanegas Chamorro, M.; Albis Arrieta, A. A Look to the Biogas Generation from Organic Wastes in Colombia. Int. J. Energy Econ. Policy 2020, 10, 248–254. [Google Scholar] [CrossRef]
- Tavera-Ruiz, C.; Martí-Herrero, J.; Mendieta, O.; Jaimes-Estévez, J.; Gauthier-Maradei, P.; Azimov, U.; Escalante, H.; Castro, L. Current Understanding and Perspectives on Anaerobic Digestion in Developing Countries: Colombia Case Study. Renew. Sustain. Energy Rev. 2023, 173, 113097. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.A.; Venturini, M.; Poganietz, W.R.; Finkenrath, M.; Kirsten, T.; Acevedo, H.; Spina, P.R. Development of a Technology Roadmap for Bioenergy Exploitation Including Biofuels, Waste-to-Energy and Power Generation & CHP. Appl. Energy 2016, 180, 338–352. [Google Scholar] [CrossRef]
- Garfí, M.; Martí-Herrero, J.; Garwood, A.; Ferrer, I. Household Anaerobic Digesters for Biogas Production in Latin America: A Review. Renew. Sustain. Energy Rev. 2016, 60, 599–614. [Google Scholar] [CrossRef] [Green Version]
- Jiménez Vásquez, A.F. Atlas Del Potencial Técnico-Energético Aprovechable Por Digestión Anaerobia de La Biomasa Residual Pecuaria Para Los Subsectores Porcícola y Ganadería de Leche Especializada En El Departamento de Antioquia. 2021. Available online: https://repository.udem.edu.co/bitstream/handle/11407/6604/T_MIU_504.pdf?sequence=1&isAllowed=y (accessed on 19 January 2023).
- Duarah, P.; Haldar, D.; Patel, A.K.; Dong, C.D.; Singhania, R.R.; Purkait, M.K. A Review on Global Perspectives of Sustainable Development in Bioenergy Generation. Bioresour. Technol. 2022, 348, 126791. [Google Scholar] [CrossRef]
- Angulo-Mosquera, L.S.; Alvarado-Alvarado, A.A.; Rivas-Arrieta, M.J.; Cattaneo, C.R.; Rene, E.R.; García-Depraect, O. Production of Solid Biofuels from Organic Waste in Developing Countries: A Review from Sustainability and Economic Feasibility Perspectives. Sci. Total Environ. 2021, 795, 148816. [Google Scholar] [CrossRef]
- Cremonez, P.A.; Feroldi, M.; Feiden, A.; Gustavo Teleken, J.; José Gris, D.; Dieter, J.; De Rossi, E.; Antonelli, J. Current Scenario and Prospects of Use of Liquid Biofuels in South America. Renew. Sustain. Energy Rev. 2015, 43, 352–362. [Google Scholar] [CrossRef]
- Ullah, K.; Kumar Sharma, V.; Dhingra, S.; Braccio, G.; Ahmad, M.; Sofia, S. Assessing the Lignocellulosic Biomass Resources Potential in Developing Countries: A Critical Review. Renew. Sustain. Energy Rev. 2015, 51, 682–698. [Google Scholar] [CrossRef]
- China Statistics Press. Technology Industry. In China Statistical Yearbooks Database; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- Theuerl, S.; Herrmann, C.; Heiermann, M.; Grundmann, P.; Landwehr, N.; Kreidenweis, U.; Prochnow, A. The Future Agricultural Biogas Plant in Germany: A Vision. Energies 2019, 12, 396. [Google Scholar] [CrossRef] [Green Version]
- Niskanen, J.; Magnusson, D. Understanding Upscaling and Stagnation of Farm-Based Biogas Production in Sweden through Transitional and Farming Logics. J. Clean. Prod. 2021, 279, 123235. [Google Scholar] [CrossRef]
- Canabarro, N.I.; Silva-Ortiz, P.; Nogueira, L.A.H.; Cantarella, H.; Maciel-Filho, R.; Souza, G.M. Sustainability Assessment of Ethanol and Biodiesel Production in Argentina, Brazil, Colombia, and Guatemala. Renew. Sustain. Energy Rev. 2023, 171, 113019. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Sengupta, S.; Gupta, A.; Kumar, S.S.; Vijay, V.; Kumar, V.; Kumar Vijay, V.; Pant, D. Valorization of Agricultural Waste for Biogas Based Circular Economy in India: A Research Outlook. Bioresour. Technol. 2020, 304, 123036. [Google Scholar] [CrossRef]
- Tamburini, E.; Gaglio, M.; Castaldelli, G.; Fano, E.A. Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy. Sustainability 2020, 12, 3260. [Google Scholar] [CrossRef] [Green Version]
- Calvin, K.; Cowie, A.; Berndes, G.; Arneth, A.; Cherubini, F.; Portugal-Pereira, J.; Grassi, G.; House, J.; Johnson, F.X.; Popp, A.; et al. Bioenergy for Climate Change Mitigation: Scale and Sustainability. GCB Bioenergy 2021, 13, 1346–1371. [Google Scholar] [CrossRef]
- Foong, S.Y.; Chan, Y.H.; Loy, A.C.M.; How, B.S.; Tamothran, A.M.; Yip, A.J.K.; Liew, R.K.; Peng, W.; Alstrup, A.K.; Lam, S.S.; et al. The Nexus between Biofuels and Pesticides in Agroforestry: Pathways toward United Nations Sustainable Development Goals. Environ. Res. 2022, 214, 113751. [Google Scholar] [CrossRef] [PubMed]
- Puzzolo, E.; Pope, D.; Stanistreet, D.; Rehfuess, E.A.; Bruce, N.G. Clean Fuels for Resource-Poor Settings: A Systematic Review of Barriers and Enablers to Adoption and Sustained Use. Environ. Res. 2016, 146, 218–234. [Google Scholar] [CrossRef] [PubMed]
- Hafid, H.S.; Omar, F.N.; Abdul Rahman, N.; Wakisaka, M. Innovative Conversion of Food Waste into Biofuel in Integrated Waste Management System. Crit. Rev. Environ. Sci. Technol. 2021, 52, 3453–3492. [Google Scholar] [CrossRef]
- Bourdin, S.; Colas, M.; Raulin, F. Understanding the Problems of Biogas Production Deployment in Different Regions: Territorial Governance Matters Too. J. Environ. Plan. Manag. 2019, 63, 1655–1673. [Google Scholar] [CrossRef]
- Tucho, G.T.; Moll, H.C.; Schoot Uiterkamp, A.J.M.; Nonhebel, S. Problems with Biogas Implementation in Developing Countries from the Perspective of Labor Requirements. Energies 2016, 9, 750. [Google Scholar] [CrossRef] [Green Version]
- Obaideen, K.; Abdelkareem, M.A.; Wilberforce, T.; Elsaid, K.; Sayed, E.T.; Maghrabie, H.M.; Olabi, A.G. Biogas Role in Achievement of the Sustainable Development Goals: Evaluation, Challenges, and Guidelines. J. Taiwan Inst. Chem. Eng. 2022, 131, 104207. [Google Scholar] [CrossRef]
- Lohani, S.P.; Dhungana, B.; Horn, H.; Khatiwada, D. Small-Scale Biogas Technology and Clean Cooking Fuel: Assessing the Potential and Links with SDGs in Low-Income Countries—A Case Study of Nepal. Sustain. Energy Technol. Assess. 2021, 46, 101301. [Google Scholar] [CrossRef]
- Pizarro-Loaiza, C.A.; Antón, A.; Torrellas, M.; Torres-Lozada, P.; Palatsi, J.; Bonmatí, A. Environmental, Social and Health Benefits of Alternative Renewable Energy Sources. Case Study for Household Biogas Digesters in Rural Areas. J. Clean. Prod. 2021, 297, 126722. [Google Scholar] [CrossRef]
- Abanades, S.; Abbaspour, H.; Ahmadi, A.; Das, B.; Ehyaei, M.A.; Esmaeilion, F.; El Haj Assad, M.; Hajilounezhad, T.; Jamali, D.H.; Hmida, A.; et al. A Critical Review of Biogas Production and Usage with Legislations Framework across the Globe. Int. J. Environ. Sci. Technol. 2022, 19, 3377–3400. [Google Scholar] [CrossRef]
- Bonaldo, C. Benefits of Blending Mandate in Sustainable Economies. In New Metropolitan Perspectives; Smart Innovation, Systems and Technologies; Springer: Cham, Switzerland, 2021; Volume 178, pp. 526–535. [Google Scholar] [CrossRef]
- Lazaro, L.L.B.; Giatti, L.L.; Bermann, C.; Giarolla, A.; Ometto, J. Policy and Governance Dynamics in the Water-Energy-Food-Land Nexus of Biofuels: Proposing a Qualitative Analysis Model. Renew. Sustain. Energy Rev. 2021, 149, 111384. [Google Scholar] [CrossRef]
- Takaes Santos, I. Confronting Governance Challenges of the Resource Nexus through Reflexivity: A Cross-Case Comparison of Biofuels Policies in Germany and Brazil. Energy Res. Soc. Sci. 2020, 65, 101464. [Google Scholar] [CrossRef]
- Bashir, M.A.; Wu, S.; Zhu, J.; Krosuri, A.; Khan, M.U.; Ndeddy Aka, R.J. Recent Development of Advanced Processing Technologies for Biodiesel Production: A Critical Review. Fuel Process. Technol. 2022, 227, 107120. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Bonilla-Petriciolet, A.; Prasad, S.; van Hullebusch, E.D.; Rtimi, S. Emerging Technologies for Biofuel Production: A Critical Review on Recent Progress, Challenges and Perspectives. J. Environ. Manag. 2021, 290, 112627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, X.; Yang, M.; Singh, S.; Cheng, G. Transforming Lignocellulosic Biomass into Biofuels Enabled by Ionic Liquid Pretreatment. Bioresour. Technol. 2021, 322, 124522. [Google Scholar] [CrossRef] [PubMed]
- Naji, S.Z.; Tye, C.T.; Abd, A.A. State of the Art of Vegetable Oil Transformation into Biofuels Using Catalytic Cracking Technology: Recent Trends and Future Perspectives. Process Biochem. 2021, 109, 148–168. [Google Scholar] [CrossRef]
- Awogbemi, O.; Von Kallon, D.V.; Onuh, E.I.; Aigbodion, V.S. An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications. Energies 2021, 14, 5687. [Google Scholar] [CrossRef]
- Narnaware, S.L.; Panwar, N.L. Biomass Gasification for Climate Change Mitigation and Policy Framework in India: A Review. Bioresour. Technol. Rep. 2022, 17, 100892. [Google Scholar] [CrossRef]
- Jatoi, A.S.; Abbasi, S.A.; Hashmi, Z.; Shah, A.K.; Alam, M.S.; Bhatti, Z.A.; Maitlo, G.; Hussain, S.; Khandro, G.A.; Usto, M.A.; et al. Recent Trends and Future Perspectives of Lignocellulose Biomass for Biofuel Production: A Comprehensive Review. Biomass Convers. Biorefinery 2021, 13, 6457–6469. [Google Scholar] [CrossRef]
- Mohamed, M.; Tan, C.K.; Fouda, A.; Gad, M.S.; Abu-Elyazeed, O.; Hashem, A.F. Diesel Engine Performance, Emissions and Combustion Characteristics of Biodiesel and Its Blends Derived from Catalytic Pyrolysis of Waste Cooking Oil. Energies 2020, 13, 5708. [Google Scholar] [CrossRef]
- Hoang, A.T.; Ong, H.C.; Fattah, I.M.R.; Chong, C.T.; Cheng, C.K.; Sakthivel, R.; Ok, Y.S. Progress on the Lignocellulosic Biomass Pyrolysis for Biofuel Production toward Environmental Sustainability. Fuel Process. Technol. 2021, 223, 106997. [Google Scholar] [CrossRef]
- Fimbres Weihs, G.A.; Jones, J.S.; Ho, M.; Malik, R.H.; Abbas, A.; Meka, W.; Fennell, P.; Wiley, D.E. Life Cycle Assessment of Co-Firing Coal and Wood Waste for Bio-Energy with Carbon Capture and Storage—New South Wales Study. Energy Convers. Manag. 2022, 273, 116406. [Google Scholar] [CrossRef]
- Jha, S.; Nanda, S.; Acharya, B.; Dalai, A.K. A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies 2022, 15, 6352. [Google Scholar] [CrossRef]
- Ma, X.; Liu, F.; Helian, Y.; Li, C.; Wu, Z.; Li, H.; Chu, H.; Wang, Y.; Wang, Y.; Lu, W.; et al. Current Application of MOFs Based Heterogeneous Catalysts in Catalyzing Transesterification/Esterification for Biodiesel Production: A Review. Energy Convers. Manag. 2021, 229, 113760. [Google Scholar] [CrossRef]
- Azimov, U.; Okoro, V.; Hernandez, H.H. Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review. Energies 2021, 14, 6011. [Google Scholar] [CrossRef]
- Odega, C.A.; Ayodele, O.; Alagbe, O.; Adewole, A.; Adekunle, A. Review of Anerobic Digestion Process for Biogas Production. Biosci. J. 2022, 10, 81–96. [Google Scholar]
- Lv, L.; Dai, L.; Du, W.; Liu, D. Progress in Enzymatic Biodiesel Production and Commercialization. Processes 2021, 9, 355. [Google Scholar] [CrossRef]
- Scown, C.D.; Baral, N.R.; Yang, M.; Vora, N.; Huntington, T. Technoeconomic Analysis for Biofuels and Bioproducts. Curr. Opin. Biotechnol. 2021, 67, 58–64. [Google Scholar] [CrossRef]
- Acharya, R.N.; Perez-Pena, R. Role of Comparative Advantage in Biofuel Policy Adoption in Latin America. Sustainability 2020, 12, 1411. [Google Scholar] [CrossRef] [Green Version]
- Cherubin, M.R.; Carvalho, J.L.N.; Cerri, C.E.P.; Nogueira, L.A.H.; Souza, G.M.; Cantarella, H. Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy. Land 2021, 10, 72. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Biogas Production and Applications in the Sustainable Energy Transition. J. Energy 2022, 2022, 8750221. [Google Scholar] [CrossRef]
- Jankovský, M.; García-Jácome, S.P.; Dvořák, J.; Nyarko, I.; Hájek, M.; Paletto, A.; Dobsinska, Z.; Carina, E.; Keskitalo, H. Innovations in Forest Bioeconomy: A Bibliometric Analysis. Forests 2021, 12, 1392. [Google Scholar] [CrossRef]
- Sallustio, L.; Harfouche, A.L.; Salvati, L.; Marchetti, M.; Corona, P. Evaluating the Potential of Marginal Lands Available for Sustainable Cellulosic Biofuel Production in Italy. Socioecon. Plann. Sci. 2022, 82, 101309. [Google Scholar] [CrossRef]
- Departamento Administrativo Nacional de Estadística-Instituto Colombiano Agropecuario. National Livestock Census (Censo Nacional Agropecuario); DANE-ICA: Bogotá, Colombia, 2021. [Google Scholar]
- Sagastume Gutiérrez, A.; Cabello Eras, J.J.; Hens, L.; Vandecasteele, C. The Energy Potential of Agriculture, Agroindustrial, Livestock, and Slaughterhouse Biomass Wastes through Direct Combustion and Anaerobic Digestion. The Case of Colombia. J. Clean. Prod. 2020, 269, 122317. [Google Scholar] [CrossRef]
- TECSOL. Estimation of the Biomass Potential for Conversion into Biogas in Colombia and Its Use (Estimación Del Potencial de Conversión a Biogás de La Biomasa En Colombia y Su Aprovechamiento); TECSOL: Bogotá, Colombia, 2018. [Google Scholar]
- Rubén Rodríguez-Nuñez, J.; Surisadai, O.; Baltazar, C. Anaerobic Digestion Technology for Management of Organic Wastes: Latin American Context. In Biogas Production; Springer: Cham, Switzerland, 2020; pp. 39–55. [Google Scholar] [CrossRef]
- Ahmed, N.; Qamar, S.; Jabeen, G.; Yan, Q.; Ahmad, M. Systematic Analysis of Factors Affecting Biogas Technology Acceptance: Insights from the Diffusion of Innovation. Sustain. Energy Technol. Assess. 2022, 52, 102122. [Google Scholar] [CrossRef]
- Abubakar, A.M. Biodigester and Feedstock Type: Characteristic, Selection, and Global Biogas Production. J. Eng. Res. Sci. 2022, 1, 170–187. [Google Scholar] [CrossRef]
- Murugaiyan, J.; Narayanan, A.; Naina Mohamed, S. An Overview of Microbial Electrolysis Cell Configuration: Challenges and Prospects on Biohydrogen Production. Int. J. Energy Res. 2022, 46, 20811–20827. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Alarab, S.; Al-Othman, A.; Muhammad, R.; Javed, N. The Operating Parameters, Structural Composition, and Fuel Sustainability Aspects of PEM Fuel Cells: A Mini Review. Fuels 2022, 3, 449–474. [Google Scholar] [CrossRef]
- Fadzli, F.S.; Bhawani, S.A.; Adam Mohammad, R.E. Microbial Fuel Cell: Recent Developments in Organic Substrate Use and Bacterial Electrode Interaction. J. Chem. 2021, 2021, 4570388. [Google Scholar] [CrossRef]
- Sonawane, J.M.; Mahadevan, R.; Pandey, A.; Greener, J. Recent Progress in Microbial Fuel Cells Using Substrates from Diverse Sources. Heliyon 2022, 8, e12353. [Google Scholar] [CrossRef]
- Ali, R.B.; Noori, M.T.; Lee, S.H.; Park, H.D.; Min, B. Enhancing Biogas and Electricity Recovery Using an Iron-Manganese Oxide Catalyzed Bioanode in an Integrated Submersible Microbial Fuel Cell-Anaerobic Digester. Sustain. Energy Technol. Assess. 2022, 52, 102276. [Google Scholar] [CrossRef]
- Guan, T.; Alvfors, P.; Lindbergh, G. Investigation of the Prospect of Energy Self-Sufficiency and Technical Performance of an Integrated PEMFC (Proton Exchange Membrane Fuel Cell), Dairy Farm and Biogas Plant System. Appl. Energy 2014, 130, 685–691. [Google Scholar] [CrossRef]
- Chouhan, K.; Sinha, S.; Kumar, S.; Kumar, S. Steam Reforming of Biogas from Different Feedstocks for H2 Production and Its Use in PEMFC: Thermodynamic Analysis. In Water-Energy-Nexus in the Ecological Transition; Springer: Cham, Switzerland, 2022; pp. 295–298. [Google Scholar] [CrossRef]
- Ghorbani, B.; Mehrpooya, M.; Karimian Bahnamiri, F. An Integrated Structure of Bio-Methane/Bio-Methanol Cogeneration Composed of Biogas Upgrading Process and Alkaline Electrolysis Unit Coupled with Parabolic Trough Solar Collectors System. Sustain. Energy Technol. Assess. 2021, 46, 101304. [Google Scholar] [CrossRef]
- Kong, F.; Swift, J.; Zhang, Q.; Fan, L.S.; Tong, A. Biogas to H2 Conversion with CO2 Capture Using Chemical Looping Technology: Process Simulation and Comparison to Conventional Reforming Processes. Fuel 2020, 279, 118479. [Google Scholar] [CrossRef]
- Acevedo-Osorio, Á.; Chohan, J.K. Agroecology as Social Movement and Practice in Cabrera’s Peasant Reserve Zone, Colombia. Agroecol. Sustain. Food Syst. 2019, 44, 331–351. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Sarker, S.A.; Wang, S.; Adnan, K.M.M.; Sattar, M.N. Economic Feasibility and Determinants of Biogas Technology Adoption: Evidence from Bangladesh. Renew. Sustain. Energy Rev. 2020, 123, 109766. [Google Scholar] [CrossRef]
- Iqbal, N.; Sakhani, M.A.; Khan, A.R.; Atiq-ur-Rehman; Ajmal, Z.; Khan, M.Z. Socioeconomic Impacts of Domestic Biogas Plants on Rural Households to Strengthen Energy Security. Environ. Sci. Pollut. Res. 2021, 28, 27446–27456. [Google Scholar] [CrossRef]
- Tian, H.; Wang, X.; Lim, E.Y.; Lee, J.T.E.; Ee, A.W.L.; Zhang, J.; Tong, Y.W. Life Cycle Assessment of Food Waste to Energy and Resources: Centralized and Decentralized Anaerobic Digestion with Different Downstream Biogas Utilization. Renew. Sustain. Energy Rev. 2021, 150, 111489. [Google Scholar] [CrossRef]
- Ali, S.; Yan, Q.; Razzaq, A.; Khan, I.; Irfan, M. Modeling Factors of Biogas Technology Adoption: A Roadmap towards Environmental Sustainability and Green Revolution. Environ. Sci. Pollut. Res. 2022, 30, 11838–11860. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development. Enabling Conditions for Bioenergy Finance and Investment in Colombia; Green Finance and Investment; OECD: Bogotá, Colombia, 2021. [Google Scholar]
- Alzate, S.; Restrepo-Cuestas, B.; Jaramillo-Duque, Á. Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios. Resources 2019, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Arias-Gaviria, J.; Carvajal-Quintero, S.X.; Arango-Aramburo, S. Understanding Dynamics and Policy for Renewable Energy Diffusion in Colombia. Renew. Energy 2019, 139, 1111–1119. [Google Scholar] [CrossRef]
Technology | Definition | Common Fuel Used | Reference |
---|---|---|---|
Combustion | The process of burning biomass to produce heat and electricity. | Wood, wood waste, agricultural residues, and energy crops. | [41] |
Gasification | The process of converting biomass into a gaseous fuel, typically syngas. | Wood, wood waste, agricultural residues, and energy crops. | [42,43] |
Pyrolysis | The process of heating biomass in the absence of oxygen to produce a liquid biofuel, typically bio-oil. | Wood, wood waste, agricultural residues, and energy crops. | [44,45] |
Co-firing | The process of using biomass along with fossil fuels, such as coal, to generate electricity. | Wood, wood waste, agricultural residues, and energy crops. However, the fuel used in co-firing is mostly dependent on the type of fossil fuel used. | [44,46] |
Technology | Definition | Fuel Used | Reference |
---|---|---|---|
Transesterification | The process of converting fats or oils into methyl esters (biodiesel) by reacting with an alcohol, typically methanol or ethanol. | Lipid-rich feedstocks such as vegetable oils, animal fats, and waste cooking oils. | [47,48] |
Synthetic Biology | The field of biology that involves the design, construction, and manipulation of biological parts, devices, and systems that do not occur naturally. | Various microorganisms, mainly algae, to produce biofuels such as bioethanol and biodiesel. | [49] |
Anaerobic Digestion | The process of breaking down organic matter in the absence of oxygen to produce biogas, a mixture of methane and carbon dioxide. | Organic waste, such as food waste, agricultural waste, and sewage sludge. | [50] |
Enzymatic Conversion | The process of using enzymes to convert biomass into a usable form of bioenergy, such as bioethanol or biogas. | Various types of feedstocks, such as lignocellulosic materials, such as agricultural waste and woody biomass, as well as starchy and sugary materials like corn and sugarcane. | [51] |
Municipal Wastewater | |||||||||
---|---|---|---|---|---|---|---|---|---|
Bogotá | Medellín | Cali | Barranquilla | Cartagena | Cucuta | Soledad | Ibague | Bucaramanga | |
Volume per year | 520,684 | 161,236 | 154,518 | 80,414 | 63,550 | 41,597 | 40,722 | 34,640 | 34,533 |
Biogas yield (m3/year) | 27,196,203 | 8,421,626 | 8,070,723 | 4,200,192 | 3,319,307 | 2,172,669 | 2,126,985 | 1,809,293 | 1,803,721 |
Biogas energy yield (TJ/year) | 634 | 196 | 188 | 98 | 77 | 51 | 50 | 42 | 42 |
Livestock | |||||||||
Poultry | Swine | Bovine | |||||||
Total manure (ton/year) | 6,619,942 | 2,745,392 | 83,497,181 | ||||||
Methane yield (m3/year) | 238,317,928 | 115,306,473 | 2,003,932,344 | ||||||
Agricultural | |||||||||
Rice | Plantain | Coffee | Corn | ||||||
Production (ton/year) | 2,078,073 | 310,192 | 859,185 | 912,659 | |||||
Methane yield (m3/year) | 438,888,968 | 233,880 | 4,484,945 | 225,171,298 |
Biodigester Technology | Fabrication Materials | Temperature Requirements | Advantages | Disadvantages | Geographical Implementation | Other Considerations |
---|---|---|---|---|---|---|
Fixed dome biodigesters | Bricks | Underground construction. Unaffected by temperature variations. | High biogas production. | More expensive than other types of biodigesters, making them a less cost-effective option. | China | Lifespan: over 20 years if maintenance is guaranteed. Construction time: approx. 18 days. |
Cement | Less maintenance than other types of biodigesters. | Limited capacity when compared to other types of biodigesters. | India | |||
Concrete | Quick and easy installation. | Fragile and can be damaged easily if not handled correctly. | Nepal | |||
Polymers | Constructed with durable materials built to last for many years. | Less efficient than other types of biodigesters. | Uganda | |||
Glass-fiber-reinforced plastics | Suits a variety of applications. | Poor performance in cold climate conditions. | Tanzania | |||
Supports higher gas pressure than tubular and floating drum biodigesters. | ||||||
Self-agitated by biogas pressure. | ||||||
Floating drum biodigesters | Bricks and concrete for digester | It requires warm conditions for its optimal operation. | Cost-effective solution as it requires minimal maintenance. | Fragile and can be damaged easily if not handled correctly. | India | Lifespan: 20 years if maintenance is guaranteed. Construction time: approx. 18 days. |
Metal for drum | Quick and easy installation. | Poor performance in cold climate conditions. | ||||
High-density Polyethylene | High capacity when compared to other types of biodigesters. | Biogas leakages may occur. | ||||
Medium biogas production. | Requires manual steering. | |||||
Tubular biodigesters | Polyethylene | Structures are easily heated due to their thin walls. Built partially underground. | Low-cost solution. | Low biogas production. | South America | Lifespan: 2 years if exposed to the sun. Between 2 and 5 years if maintenance is guaranteed. Construction time: approx. 2 days. |
Poly vinyl chloride | Low-maintenance biodigester compared to others. | Easily damaged by external factors. | Africa | |||
High-density polyethylene | Versatile and easy to install. | Biogas leakages may occur. | South Asia | |||
Glass-fiber-reinforced plastics | Construction with low-cost materials. | Steering not possible. |
Obstacles | Levers |
---|---|
Lack of awareness and education about biogas production | Promoting benefits of biogas production to local communities and stakeholders |
Inadequate infrastructure for biogas production in rural areas | Implementing policies and regulations that incentivize biogas production |
Limited or inaccessible financing mechanisms for small-scale farmers and rural communities | Providing financial support and access to financing mechanisms for biogas production |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha-Meneses, L.; Luna-delRisco, M.; González, C.A.; Moncada, S.V.; Moreno, A.; Sierra-Del Rio, J.; Castillo-Meza, L.E. An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia. Energies 2023, 16, 5901. https://doi.org/10.3390/en16165901
Rocha-Meneses L, Luna-delRisco M, González CA, Moncada SV, Moreno A, Sierra-Del Rio J, Castillo-Meza LE. An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia. Energies. 2023; 16(16):5901. https://doi.org/10.3390/en16165901
Chicago/Turabian StyleRocha-Meneses, Lisandra, Mario Luna-delRisco, Carlos Arrieta González, Sebastián Villegas Moncada, Andrés Moreno, Jorge Sierra-Del Rio, and Luis E. Castillo-Meza. 2023. "An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia" Energies 16, no. 16: 5901. https://doi.org/10.3390/en16165901
APA StyleRocha-Meneses, L., Luna-delRisco, M., González, C. A., Moncada, S. V., Moreno, A., Sierra-Del Rio, J., & Castillo-Meza, L. E. (2023). An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia. Energies, 16(16), 5901. https://doi.org/10.3390/en16165901