Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies
Abstract
:1. Introduction
2. LAES Basic Principles
3. LAES Historical Background
4. LAES Performance Improvement Methods
4.1. System Configuration and Optimisation
4.2. Thermal Energy Storage Enhancements
4.3. Integration of LAES
4.4. Hot and Cold Thermal Recycle
4.5. Summary of Approaches for LAES Enhancement
5. LAES in the Literature
Performance of TES Systems with LAES
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CAES | compressed air energy storage |
HTF | heat transfer fluids |
IEA | International Energy Agency |
LAES | liquid air energy storage |
LNG | liquefied natural gas |
NPP | nuclear power plant |
ORC | organic Rankine cycle |
PHES | pumped hydro energy storage |
PTES | pumped thermal energy storage |
RTE | round-trip efficiency |
TCES | thermochemical energy storage |
TES | thermal energy storage |
References
- IEA. Renewables–Global Energy Review 2021–Analysis-IEA. Global Energy Review 2021. 2021. Available online: https://www.iea.org/reports/global-energy-review-2021/renewables (accessed on 11 May 2023).
- Rabi, A.M.; Radulovic, J.; Buick, J.M. Comprehensive Review of Compressed Air Energy Storage (CAES) Technologies. Thermo 2023, 3, 104–126. [Google Scholar] [CrossRef]
- Aneke, M.; Wang, M. Energy storage technologies and real life applications–A state of the art review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef]
- Rabi, A.M.; Radulovic, J.; Buick, J.M. Pumped Thermal Energy Storage Technology (PTES): Review. Thermo 2023, 3, 396–411. [Google Scholar] [CrossRef]
- O’Callaghan, O.; Donnellan, P. Liquid air energy storage systems: A review. Renew. Sustain. Energy Rev. 2021, 146, 111113. [Google Scholar] [CrossRef]
- Morgan, R.; Nelmes, S.; Gibson, E.; Brett, G. An analysis of a large-scale liquid air energy storage system. Proc. Inst. Civ. Eng. Energy 2015, 168, 135–144. [Google Scholar] [CrossRef]
- She, X.; Peng, X.; Nie, B.; Leng, G.; Zhang, X.; Weng, L.; Tong, L.; Zheng, L.; Wang, L.; Ding, Y. Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression. Appl. Energy 2017, 206, 1632–1642. [Google Scholar] [CrossRef]
- Guo, H.; Xu, Y.; Chen, H.; Zhou, X. Thermodynamic characteristics of a novel supercritical compressed air energy storage system. Energy Convers. Manag. 2016, 115, 167–177. [Google Scholar] [CrossRef]
- Hüttermann, L.; Span, R.; Maas, P.; Scherer, V. Investigation of a liquid air energy storage (LAES) system with different cryogenic heat storage devices. Energy Procedia 2019, 158, 4410–4415. [Google Scholar] [CrossRef]
- BOC. Guidance on the Safe Operation of Vacuum Insulated Storage Tanks. VIEs and VITs. no. April. 2010. Available online: https://www.boconline.co.uk/en/images/Safe-Operation-of-VIEs-and-VITs_tcm410-39416.pdf (accessed on 20 July 2023).
- Vecchi, A.; Li, Y.; Ding, Y.; Mancarella, P.; Sciacovelli, A. Liquid air energy storage (LAES): A review on technology state-of-the-art, integration pathways and future perspectives. Adv. Appl. Energy 2021, 3, 100047. [Google Scholar] [CrossRef]
- Peng, X. Liquid Air Energy Storage: Process Optimization and Performance. Ph.D. Thesis, University of Birmingham, Birmingham, UK, September 2018. Available online: http://etheses.bham.ac.uk/id/eprint/8615 (accessed on 24 August 2023).
- Ding, Y.; Tong, L.; Zhang, P.; Li, Y.; Radcliffe, J.; Wang, L. Liquid Air Energy Storage; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Akhurst, M.; Atkins, A.; Uk, R.; Bruges, R.; Cooper, S.; Consulting, S. Liquid Air in the Energy and Transport Systems; The Centre for Low Carbon Futures: Brighton, UK, 2013. [Google Scholar]
- Ghaseminejad, A.; Hajidavalloo, E.; Azimi, A. Modeling, analyses, and assessment of a liquid air energy storage (LAES) system. Energy Equip. Syst. 2021, 9, 249–260. [Google Scholar] [CrossRef]
- Smith, E.M. STORAGE OF ELECTRICAL ENERGY USING SUPERCRITICAL LIQUID AIR. Inst. Mech. Eng. Proc. 1977, 191, 289–298. [Google Scholar] [CrossRef]
- Chino, K.; Araki, H. Evaluation of energy storage method using liquid air. Heat Transf.-Asian Res. 2000, 29, 347–357. [Google Scholar] [CrossRef]
- Kishimoto, K.; Hasegawa, K.; Asano, T. Development of Generator of Liquid Air Storage Energy System. Tech. Rev. Mitsubishi Heavy Ind. 1998, 35, 117–120. [Google Scholar]
- Araki, H.; Nakabaru, M.; Chino, K. Simulation of heat transfer in the cool storage unit of a liquid–air energy storage system. Heat Transf.-Asian Res. 2002, 31, 284–296. [Google Scholar] [CrossRef]
- Menezes, M.V.P.; Vilasboas, I.F.; Da Silva, J.A.M. Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC). Energies 2022, 15, 2730. [Google Scholar] [CrossRef]
- Chen, H.; Ding, Y.; Peters, T.; Berger, F. A Method of Storing Energy and a Cryogenic Energy Storage System. U.S. Patent WO2007096656A1, 30 August 2007. [Google Scholar]
- Peng, X.; She, X.; Li, C.; Luo, Y.; Zhang, T.; Li, Y.; Ding, Y. Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction. Appl. Energy 2019, 250, 1190–1201. [Google Scholar] [CrossRef]
- Patel, S. Market Prospects Heating up for Cryogenic Energy Storage. Power. Available online: https://www.powermag.com/market-prospects-heating-up-for-cryogenic-energy-storage/ (accessed on 9 July 2023).
- Paneru, S.; Radcliffe, J. Cryogenic Energy Storage for Renewable Refrigeration and Power Supply, CryoHub. 2021. Available online: https://ior.org.uk/public/downloads/eunAX/D10.3+Active+role+in+engagement+strategy+to+communicate+S1.pdf (accessed on 24 August 2023).
- Liu, Z.; Kim, D.; Gundersen, T. Optimal recovery of thermal energy in liquid air energy storage. Energy 2022, 240, 122810. [Google Scholar] [CrossRef]
- Morgan, R.; Nelmes, S.; Gibson, E.; Brett, G. Liquid air energy storage-Analysis and first results from a pilot scale demonstration plant. Appl. Energy 2015, 137, 845–853. [Google Scholar] [CrossRef]
- Abdo, R.F.; Pedro, H.T.C.; Koury, R.N.N.; Machado, L.; Coimbra, C.F.M.; Porto, M.P. Performance evaluation of various cryogenic energy storage systems. Energy 2015, 90, 1024–1032. [Google Scholar] [CrossRef]
- Guizzi, G.L.; Manno, M.; Tolomei, L.M.; Vitali, R.M. Thermodynamic analysis of a liquid air energy storage system. Energy 2015, 93, 1639–1647. [Google Scholar] [CrossRef]
- Antonelli, M.; Barsali, S.; Desideri, U.; Paganucci, F.; Pasini, G. Liquid Air Energy Storage: 1 Potential and challenges of hybrid power plants. Appl. Energy 2017, 194, 522–529. [Google Scholar] [CrossRef]
- Krawczyk, P.; Szabłowski, Ł.; Karellas, S.; Kakaras, E.; Badyda, K. Comparative thermodynamic analysis of compressed air and liquid air energy storage systems. Energy 2018, 142, 46–54. [Google Scholar] [CrossRef]
- Kantharaj, B.; Garvey, S.; Pimm, A. Compressed air energy storage with liquid air capacity extension. Appl. Energy 2015, 157, 152–164. [Google Scholar] [CrossRef]
- Kantharaj, B.; Garvey, S.; Pimm, A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air. Sustain. Energy Technol. Assess. 2015, 11, 159–164. [Google Scholar] [CrossRef]
- Hamdy, S.; Morosuk, T.; Tsatsaronis, G. Cryogenics-based energy storage: Evaluation of cold exergy recovery cycles. Energy 2017, 138, 1069–1080. [Google Scholar] [CrossRef]
- Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- Peng, H.; Dong, H.; Ling, X. Thermal investigation of PCM-based high temperature thermal energy storage in packed bed. Energy Convers Manag. 2014, 81, 420–427. [Google Scholar] [CrossRef]
- Peng, H.; Li, R.; Ling, X.; Dong, H. Modeling on heat storage performance of compressed air in a packed bed system. Appl. Energy 2015, 160, 1–9. [Google Scholar] [CrossRef]
- Peng, H.; Yang, Y.; Li, R.; Ling, X. Thermodynamic analysis of an improved adiabatic compressed air energy storage system. Appl. Energy 2016, 183, 1361–1373. [Google Scholar] [CrossRef]
- Sciacovelli, A.; Vecchi, A.; Ding, Y. Liquid air energy storage (LAES) with packed bed cold thermal storage–From component to system level performance through dynamic modelling. Appl. Energy 2017, 190, 84–98. [Google Scholar] [CrossRef]
- Li, Y.; Cao, H.; Wang, S.; Jin, Y.; Li, D.; Wang, X.; Ding, Y. Load shifting of nuclear power plants using cryogenic energy storage technology. Appl. Energy 2014, 113, 1710–1716. [Google Scholar] [CrossRef]
- Lee, I.; Park, J.; Moon, I. Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes: Cold and power integration. Energy 2017, 140, 106–115. [Google Scholar] [CrossRef]
- Kim, J.; Noh, Y.; Chang, D. Storage system for distributed-energy generation using liquid air combined with liquefied natural gas. Appl. Energy 2018, 212, 1417–1432. [Google Scholar] [CrossRef]
- Chen, J.; An, B.; Yang, L.; Wang, J.; Hu, J. Construction and optimization of the cold storage process based on phase change materials used for liquid air energy storage system. J. Energy Storage 2021, 41, 102873. [Google Scholar] [CrossRef]
- Cetin, T.H.; Kanoglu, M.; Yanikomer, N. Cryogenic energy storage powered by geothermal energy. Geothermics 2019, 77, 34–40. [Google Scholar] [CrossRef]
- Peng, X.; She, X.; Cong, L.; Zhang, T.; Li, C.; Li, Y.; Wang, L.; Tong, L.; Ding, Y. Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage. Appl. Energy 2018, 221, 86–99. [Google Scholar] [CrossRef]
- Qi, M.; Park, J.; Kim, J.; Lee, I.; Moon, I. Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation. Appl. Energy 2020, 269, 115049. [Google Scholar] [CrossRef]
- She, X.; Zhang, T.; Cong, L.; Peng, X.; Li, C.; Luo, Y.; Ding, Y. Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement. Appl. Energy 2019, 251, 113355. [Google Scholar] [CrossRef]
- Legrand, M.; Rodríguez-Antón, L.M.; Martinez-Arevalo, C.; Gutiérrez-Martín, F. Integration of liquid air energy storage into the spanish power grid. Energy 2019, 187, 5965. [Google Scholar] [CrossRef]
- Chai, L.; Liu, J.; Wang, L.; Yue, L.; Yang, L.; Sheng, Y.; Chen, H.; Tan, C. Cryogenic energy storage characteristics of a packed bed at different pressures. Appl. Therm. Eng. 2014, 63, 439–446. [Google Scholar] [CrossRef]
- Morgan, R.; Rota, C.; Pike-Wilson, E.; Gardhouse, T.; Quinn, C. The modelling and experimental validation of a cryogenic packed bed regenerator for liquid air energy storage applications. Energies 2020, 13, 5155. [Google Scholar] [CrossRef]
- Hüttermann, L.; Span, R. Influence of the heat capacity of the storage material on the efficiency of thermal regenerators in liquid air energy storage systems. Energy 2019, 174, 236–245. [Google Scholar] [CrossRef]
- Dutta, R.; Sandilya, P. Experimental Investigations on Cold Recovery Efficiency of Packed-bed in Cryogenic Energy Storage System. IOP Conf. Ser. Mater. Sci. Eng. 2020, 755, 012103. [Google Scholar] [CrossRef]
- White, A.J. Loss analysis of thermal reservoirs for electrical energy storage schemes. Appl. Energy 2011, 88, 4150–4159. [Google Scholar] [CrossRef]
- She, X.; Li, Y.; Peng, X.; Ding, Y. Theoretical analysis on performance enhancement of stand-alone liquid air energy storage from perspective of energy storage and heat transfer. Energy Procedia 2017, 142, 3498–3504. [Google Scholar] [CrossRef]
- Guo, L.; Gao, Z.; Ji, W.; Xu, H.; Chen, L.; Wang, J. Thermodynamics and Economics of Different Asymmetric Cold Energy Transfer in a Liquid Air Energy Storage System. Energy Technol. 2020, 8, 1901487. [Google Scholar] [CrossRef]
- An, B.; Chen, J.; Deng, Z.; Zhang, T.; Wang, J.; Yang, L.; Chang, X. Design and testing of a high performance liquid phase cold storage system for liquid air energy storage. Energy Convers Manag. 2020, 226, 113520. [Google Scholar] [CrossRef]
- Peng, H.; Shan, X.; Yang, Y.; Ling, X. A study on performance of a liquid air energy storage system with packed bed units. Appl. Energy 2018, 211, 126–135. [Google Scholar] [CrossRef]
- Farres-Antunez, P.; Xue, H.; White, A.J. Thermodynamic analysis and optimisation of a combined liquid air and pumped thermal energy storage cycle. J. Energy Storage 2018, 18, 90–102. [Google Scholar] [CrossRef]
- Farrés-Antúnez, P. Modelling and Development of Thermo-Mechanical Energy Storage. Ph.D. Thesis, Department of Engineering, University of Cambridge, Cambridge, UK, September 2018. [Google Scholar]
- Tafone, A.; Borri, E.; Cabeza, L.F.; Romagnoli, A. Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES)–Numerical dynamic modelling and experimental study of a packed bed unit. Appl Energy 2021, 301, 117417. [Google Scholar] [CrossRef]
- Guo, L.; Ji, W.; Gao, Z.; Fan, X.; Wang, J. Dynamic characteristics analysis of the cold energy transfer in the liquid air energy storage system based on different modes of packed bed. J. Energy Storage 2021, 40, 102712. [Google Scholar] [CrossRef]
- Li, X.; Lv, C.; Yang, S.; Li, J.; Deng, B.; Li, Q. Preliminary design and performance analysis of a radial inflow turbine for a large-scale helium cryogenic system. Energy 2019, 167, 106–116. [Google Scholar] [CrossRef]
- Xue, X.D.; Wang, S.X.; Zhang, X.L.; Cui, C.; Chen, L.B.; Zhou, Y.; Wang, J.J. Thermodynamic analysis of a novel liquid air energy storage system. Phys. Procedia 2015, 67, 733–738. [Google Scholar] [CrossRef]
- Tafone, A.; Romagnoli, A.; Borri, E.; Comodi, G. New parametric performance maps for a novel sizing and selection methodology of a Liquid Air Energy Storage system. Appl. Energy 2019, 250, 1641–1656. [Google Scholar] [CrossRef]
- Fan, X.; Gao, Z.; Ji, W.; Guo, L.; Lin, W.; Wang, J. Thermodynamic optimization with multi objectives and parameters for liquid air energy storage system based on the particle swarm optimization (PSO). J. Energy Storage 2021, 41, 102878. [Google Scholar] [CrossRef]
- Dincer, I.; Rosen, M.A. Exergy Analysis of Cryogenic and Liquefaction Systems. In Exergy, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; pp. 319–333. [Google Scholar] [CrossRef]
- Fu, Q.; Kansha, Y.; Song, C.; Liu, Y.; Ishizuka, M.; Tsutsumi, A. An elevated-pressure cryogenic air separation unit based on self-heat recuperation technology for integrated gasification combined cycle systems. Energy 2016, 103, 440–446. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, C.; Doroodchi, E.; Moghtaderi, B. Techno-economic analysis of an integrated liquid air and thermochemical energy storage system. Energy Convers. Manag. 2020, 205, 112341. [Google Scholar] [CrossRef]
- Gao, Z.; Ji, W.; Guo, L.; Fan, X.; Wang, J. Thermo-economic analysis of the integrated bidirectional peak shaving system consisted by liquid air energy storage and combined cycle power plant. Energy Convers. Manag. 2021, 234, 113945. [Google Scholar] [CrossRef]
- Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; Pan, C.Z.; Wang, J.J. Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system. IOP Conf. Ser. Mater. Sci. Eng. 2017, 278, 012070. [Google Scholar] [CrossRef]
- Parka, J.H.; Oha, S.H.; Choia, Y.J.; Heoa, J.Y.; Leea, J.I. Preliminary thermodynamic analysis of LAES integrated nuclear power plant. In Transactions of the Korean Nuclear Society Virtual Spring Meeting, Virtual, 9–10 July 2020. Available online: https://www.kns.org/files/pre_paper/43/20S-279-%EB%B0%95%EC%A0%95%ED%99%98.pdf (accessed on 24 August 2023).
- He, T.; Lv, H.; Shao, Z.; Zhang, J.; Xing, X.; Ma, H. Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling. Appl. Energy 2020, 277, 115570. [Google Scholar] [CrossRef]
- Park, J.; You, F.; Mun, H.; Lee, I. Liquefied natural gas supply chain using liquid air as a cold carrier: Novel method for energy recovery. Energy Convers. Manag. 2021, 227, 113611. [Google Scholar] [CrossRef]
- Tafone, A.; Borri, E.; Comodi, G.; van den Broek, M.; Romagnoli, A. Liquid Air Energy Storage performance enhancement by means of Organic Rankine Cycle and Absorption Chiller. Appl. Energy 2018, 228, 1810–1821. [Google Scholar] [CrossRef]
- Xue, X.D.; Zhang, T.; Zhang, X.L.; Ma, L.R.; He, Y.L.; Li, M.J.; Mei, S.W. Performance evaluation and exergy analysis of a novel combined cooling, heating and power (CCHP) system based on liquid air energy storage. Energy 2021, 222, 119975. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.L.; He, Y.L.; Xue, X.D.; Mei, S.W. Thermodynamic analysis of hybrid liquid air energy storage systems based on cascaded storage and effective utilization of compression heat. Appl. Therm. Eng. 2020, 164, 114526. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Jin, Y.; Ding, Y. An integrated solar-cryogen hybrid power system. Renew Energy. 2012, 37, 76–81. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Xue, X.; Wang, G.; Mei, S. Thermodynamic Analysis of a Hybrid Power System Combining Kalina Cycle with Liquid Air Energy Storage. Entropy 2019, 21, 220. [Google Scholar] [CrossRef]
- She, X.; Zhang, T.; Peng, X.; Wang, L.; Tong, L.; Luo, Y.; Zhang, X.; Ding, Y. Liquid Air Energy Storage for Decentralized Micro Energy Networks with Combined Cooling, Heating, Hot Water and Power Supply. JThSc 2021, 30, 1–17. [Google Scholar] [CrossRef]
- Cetin, T.H.; Kanoglu, M.; Bedir, F. Integration of cryogenic energy storage and cryogenic organic cycle to geothermal power plants. Geothermics 2020, 87, 101830. [Google Scholar] [CrossRef]
- Al-Zareer, M.; Dincer, I.; Rosen, M.A. Analysis and assessment of novel liquid air energy storage system with district heating and cooling capabilities. Energy 2017, 141, 792–802. [Google Scholar] [CrossRef]
- Lin, X.; Wang, L.; Xie, N.; Li, G.; Chen, H. Thermodynamic analysis of the cascaded packed bed cryogenic storage based supercritical air energy storage system. Energy Procedia 2019, 158, 5079–5085. [Google Scholar] [CrossRef]
- Kim, J.; Chang, D. Pressurized cryogenic air energy storage for efficiency improvement of liquid air energy storage. Energy Procedia 2019, 158, 5086–5091. [Google Scholar] [CrossRef]
Energy Storage Method | Lifetime (Years) | RTE (%) | Power Range (GW) | Energy Storage Density (Wh L−1) | Discharge Time (hour) |
---|---|---|---|---|---|
PHES | 75 | 70–80 | 0.5–3 | 0.2–2 | 12 |
CAES | 40 | 60–75 | 0.5–1 | 0.4–20 | 4–24 |
LAES | 30 | 50–70 | 0.1–1 | 60–200 | 2–12 |
Standalone LAES | Hybrid LAES |
---|---|
Operates independently without integration with other energy storage systems. | Combines the use of liquid air energy storage with other energy storage technology |
Relies solely on the liquefied air energy storage concept | Integrates multiple storage technologies like batteries, flywheel, or compressed air systems. |
Typically designed to store and release energy using liquified air | Enhances overall system performance and flexibility by leveraging the strengths of different storage technologies. |
Offers self-contained energy storage and discharge capabilities | Allows for optimized energy storage and discharge based on varying demand requirements. |
Can provide rapid response and short-duration energy discharge through additional storage technologies |
References | System | Integrated Process | Additional Cycle | RTE (%) |
---|---|---|---|---|
Smith [16] | Standalone | __ | __ | 62.0 |
Vecchi et al. [11] | Standalone | __ | __ | 60.0 |
Guizzi et al. [28] | Standalone | __ | __ | 54.4 |
Morgan et al. [6] | Standalone | __ | __ | 57.0 |
Chen et al. [42] | Standalone | __ | __ | 58.2 |
Cetin et al. [43] | Standalone | __ | __ | 54.2 |
Peng et al. [44] | Standalone | __ | __ | 62.7 |
Peng et al. [44] | Integrated | NP | __ | 71.3 |
Cetin et al. [43] | Integrated | Geothermal power | __ | 46.7 |
Ding et al. [13] | Integrated | LNG regasification | __ | 172.1 |
Ding et al. [13] | Integrated | Combustion | Brayton | 90.0 |
Qi et al. [45] | Integrated | LNG regasification | ORC | 129.2 |
Ding et al. [13] | Integrated | LNG regasification | ORC | 122.8 |
Medium | Technical Solution | Specific Heat (KJ/Kg.K) | Density (Kg/m3) | T Range (K) | Notes |
---|---|---|---|---|---|
Quartzite | C, PB | 0.5–0.6 | 2560–2650 | 80–293 | Variable properties, cost ∼0 |
Propane | C, 2-T | 1.9–2.3 | 732–581 | 93–210 | High-grade cold only |
R218 | C, 2-T | 0.8–0.9 | 1711–2137 | 93–210 | High-grade cold only |
Methanol | C, 2-T | 2.2–2.4 | 904–810 | 210–293 | Low-grade cold only, cost ∼0.4 USD/kg |
R123 | C, 2-T | 0.9–1.0 | 1477–1727 | 185–293 | Low-grade cold only |
Water | H, 2-T | 4.2–4.4 | 890–998 | 300–450 | Pressurization needed, cost ∼0 |
Solar salt | H, 2-T | 1.6 | 1900 | 493–873 | Solidifies for lower T, cost ∼0.5 USD/kg |
Diathermic oil | H, 2-T | 2.2–2.4 | 750–850 | 293–630 | Cost ∼1 USD/kg |
CaLiNaK | H, 2-T | 1.7 | 1917 | 373–673 | Solidifies for lower T |
Steatite | H, PB | 0.8–0.9 | 2680 | 250–573 | Variable properties, cost ~0 |
LAES Type | RTE (%) | Methodology | Summary | Ref |
---|---|---|---|---|
LAES + Kalina cycle | 57.0 | Thermodynamic |
| Zhang et al. [77] |
LAES + LNG | 78.0 | Thermodynamic |
| Peng et al. [22] |
LAES + absorption chiller + heating + domestic hot water (DHW) | 55.0 | Thermodynamic |
| She et al. [78] |
LAES + LNG regasification + ORC + cooling | 142.0 | Thermodynamic |
| He et al. [71] |
Co-designed LAES geothermal + ORC | 28.4 | Thermodynamic |
| Cetin et al. [79] |
LAES + ORC and LAES + Kalina cycle | 57.0 | Thermodynamic |
| Zhang et al. [75] |
LAES + LNG + N2 power cycle | 72.0 | Thermodynamic |
| She et al. [46] |
Co-designed LAES-geothermal | 46.0 | Thermodynamic |
| Cetin et al. [43] |
LAES + ORC | 54.4 | Thermodynamic |
| Tafone et al. [73] |
Co-designed LAES-PTES | 70.0 | Thermodynamic |
| Farres-Antunez et al. [57] |
LAES + ORC + absorption chiller | 61.3 | Thermodynamic |
| Peng et al. [44] |
LAES + absorption chiller + CH4 combustion | 72.0 | Thermodynamic |
| Al-Zareer et al. [80] |
Standalone LAES Kapitza 72.5 MW-Rankine 100 MW | 52.1 | Thermodynamic |
| Legrand et al. [47] |
Standalone LAES Kapitza 16.7 MW-Rankine 9.9 MW | 59.4 | Thermodynamic |
| Lin et al. [81] |
Standalone LAES Linde 51.5 MW-Rankine 100 MW | 64.7 | Thermodynamic |
| Kim et al. [82] |
Standalone LAES Kapitza-Rankine 10 MW | 48.2 | Thermodynamic |
| Tafone et al. [73] |
Standalone LAES Linde-Rankine | 59.4 | Thermodynamic |
| Peng et al. [44] |
Standalone LAES Kapitza 70 MW-Rankine 100 MW | 48.3 | Thermodynamic |
| Sciacovelli et al. [38] |
Standalone LAES Linde-Rankine 10 MW | 67.4 | Thermodynamic |
| Guo et al. [8] |
Standalone LAES Linde-Rankine | 54.4 | Thermodynamic |
| Guizzi et al. [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabi, A.M.; Radulovic, J.; Buick, J.M. Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies. Energies 2023, 16, 6216. https://doi.org/10.3390/en16176216
Rabi AM, Radulovic J, Buick JM. Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies. Energies. 2023; 16(17):6216. https://doi.org/10.3390/en16176216
Chicago/Turabian StyleRabi, Ayah Marwan, Jovana Radulovic, and James M. Buick. 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies" Energies 16, no. 17: 6216. https://doi.org/10.3390/en16176216
APA StyleRabi, A. M., Radulovic, J., & Buick, J. M. (2023). Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies. Energies, 16(17), 6216. https://doi.org/10.3390/en16176216