The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy
Abstract
:1. Introduction
2. Energy Prosumers and Energy Efficiency
3. Energy Prosumers and Net-Zero Emissions
4. Energy Prosumers and SDG 7
5. Energy Prosumers and Energy Management Efficiency
6. Energy Prosumer Systems
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baumol, W.J.; Blinder, A.S. Economics: Principles, and Policy; South-Western: Mason, OH, USA, 2012; p. 12e. [Google Scholar]
- Zafar, R.; Mahmood, A.; Razzaq, S.; Ali, W.; Naeem, U.; Shehzad, K. Prosumer based energy management and sharing in smart grid. Renew. Sustain. Energy Rev. 2018, 82, 1675–1684. [Google Scholar] [CrossRef]
- Gimeno, J.Á.; Llera-Sastresa, E.; Scarpellini, S. A heuristic approach to the decision-making process of energy prosumers in a circular economy. Appl. Sci. 2020, 10, 6869. [Google Scholar] [CrossRef]
- Rodríguez-Molina, J.; Martínez-Núñez, M.; Martínez, J.-F.; Pérez-Aguiar, W. Business models in the smart grid: Challenges, opportunities and proposals for prosumer profitability. Energies 2014, 7, 6142–6171. [Google Scholar] [CrossRef]
- Toffler, A. The Third Wave; William Collins Sons & Co., Ltd.: London, UK, 1980. [Google Scholar]
- Rayna, T.; Striukova, L. Involving consumers: The role of digital technologies in promoting ‘prosumption’ and user innovation. J. Knowl. Econ. 2021, 12, 218–237. [Google Scholar] [CrossRef]
- Strähle, J.; Grünewald, A.-K. The prosumer concept in fashion retail: Potentials and limitations. In Green Fashion Retail; Strähle, J., Ed.; Springer: Singapore, 2017; pp. 95–117. [Google Scholar]
- Considine, E.; Cormican, K. The rise of the prosumer: An analysis of self-service technology adoption in a corporate context. Int. J. Inf. Syst. Proj. Manag. 2022, 5, 25–39. [Google Scholar] [CrossRef]
- Kosnik, E. Production for consumption: Prosumer, citizen-consumer, and ethical consumption in a postgrowth context. Econ. Anthropol. 2018, 5, 123–134. [Google Scholar] [CrossRef]
- Mestres, S.G.; Lien, M.E. Recovering food commons in post industrial Europe: Cooperation networks in organic food provisioning in Catalonia and Norway. J. Agric. Environ. Ethics 2017, 30, 625–643. [Google Scholar] [CrossRef]
- Alberio, M.; Moralli, M. Social innovation in alternative food networks. The role of co-producers in Campi Aperti. J. Rural. Stud. 2021, 82, 447–457. [Google Scholar] [CrossRef]
- Pieńkowski, D. Rethinking the concept of prosuming: A critical and integrative perspective. Energy Res. Soc. Sci. 2021, 74, 101967. [Google Scholar] [CrossRef]
- European Environment Agency. Energy Prosumers in Europe: Citizen Participation in the Energy Transition; EEA Report; European Environment Agency: Copenhagen, Denmark, 2022. [Google Scholar]
- Gajdzik, B.; Jaciow, M.; Wolniak, R.; Wolny, R.; Grebski, W.W. Energy behaviors of prosumers in example of Polish households. Energies 2023, 16, 3186. [Google Scholar] [CrossRef]
- Jacobs, S.B. The energy prosumer. Ecol. Law Q. 2016, 43, 519–579. [Google Scholar]
- Wuebben, D.; Romero-Luis, J.; Gertrudix, M. Citizen science and citizen energy communities: A systematic review and potential alliances for SDGs. Sustainability 2020, 12, 10096. [Google Scholar] [CrossRef]
- Child, D.B.; Aghahosseini, A.; Breyer, C. The role of energy prosumers in the transition of the Finnish energy system towards 100% renewable energy by 2050. Futures 2020, 124, 102644. [Google Scholar] [CrossRef]
- UN Environment Program. GOAL 7: Affordable and Clean Energy. Available online: https://www.unep.org/explore-topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-7 (accessed on 24 June 2023).
- Söderholm, P. The green economy transition: The challenges of technological change for sustainability. Sustain. Earth 2020, 3, 6. [Google Scholar] [CrossRef]
- Cheba, K.; Bąk, I.; Szopik-Depczyńska, K.; Ioppolo, G. Directions of green transformation of the European Union countries. Ecol. Indic. 2022, 136, 108601. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Sharma, G.D.; Tiwari, A.K.; Erkut, B.; Mundi, H.S. Exploring the nexus between non-renewable and renewable energy consumptions and economic development: Evidence from panel estimations. Renew. Sustain. Energy Rev. 2021, 146, 111152. [Google Scholar] [CrossRef]
- Gil, L.; Bernardo, J. An approach to energy and climate issues aiming at carbon neutrality. Renew. Energy Focus 2020, 33, 37–42. [Google Scholar] [CrossRef]
- Sołtysik, M.; Kozakiewicz, M.; Jasiński, J. Profitability of prosumers according to various business models & mdash; An analysis in the Light of the COVID-19 Effect. Energies 2021, 14, 8488. [Google Scholar]
- Lorek, S.; Spangenberg, J.H. Sustainable consumption within a sustainable economy—Beyond green growth and green economies. J. Clean. Prod. 2014, 63, 33–44. [Google Scholar] [CrossRef]
- Pahle, M.; Pachauri, S.; Steinbacher, K. Can the green economy deliver it all? Experiences of renewable energy policies with socio-economic objectives. Appl. Energy 2016, 179, 1331–1341. [Google Scholar] [CrossRef]
- Solano Rodriguez, B.; Drummond, P.; Ekins, P. Decarbonizing the EU energy system by 2050: An important role for BECCS. Clim. Policy 2017, 17 (Suppl. S1), S93–S110. [Google Scholar] [CrossRef]
- Capros, P.; Tasios, N.; De Vita, A.; Mantzos, L.; Paroussos, L. Model-based analysis of decarbonising the EU economy in the time horizon to 2050. Energy Strategy Rev. 2012, 1, 76–84. [Google Scholar] [CrossRef]
- Khalifa, A.A.; Ibrahim, A.-J.; Amhamed, A.I.; El-Naas, M.H. Accelerating the transition to a circular economy for net-zero emissions by 2050: A Systematic Review. Sustainability 2022, 14, 11656. [Google Scholar] [CrossRef]
- Khan, M.I.; Al-Ghamdi, S.G. Hydrogen economy for sustainable development in GCC countries: A SWOT analysis considering current situation, challenges, and prospects. Int. J. Hydrog. Energy 2023, 48, 10315–10344. [Google Scholar] [CrossRef]
- Kemfert, C.; Schafer, D.; Semmler, W. Great green transition and finance. Intereconomics Rev. Eur. Econ. Policy 2020, 55, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-L.; Chang, T.-Y. Energy resilience: A cross-economy comparison. Energies 2023, 16, 2214. [Google Scholar] [CrossRef]
- Czarnecka, M.; Chudy–Laskowska, K.; Kinelski, G.; Lew, G.; Sadowska, B.; Wójcik-Jurkiewicz, M.; Budka, B. Grants and funding for the processes of decarbonization in the scope of sustainability development & mdash; The case from Poland. Energies 2022, 15, 7481. [Google Scholar]
- Miller, W.; Senadeera, M. Social transition from energy consumers to prosumers: Rethinking the purpose and functionality of eco-feedback technologies. Sustain. Cities Soc. 2017, 35, 615–625. [Google Scholar] [CrossRef]
- Hwang, J.; Choi, M.-i.; Lee, T.; Jeon, S.; Kim, S.; Park, S.; Park, S. Energy prosumer business model using blockchain system to ensure transparency and safety. Energy Procedia 2017, 141, 194–198. [Google Scholar] [CrossRef]
- Immonen, A.; Kiljander, J.; Aro, M. Consumer viewpoint on a new kind of energy market. Electr. Power Syst. Res. 2020, 180, 106153. [Google Scholar] [CrossRef]
- Ma, Y.; Thornton, T.F.; Mangalagiu, D.; Lan, J.; Hestad, D.; Cappello, E.A.; Van der Leeuw, S. Co-creation, co-evolution and co-governance: Understanding green businesses and urban transformations. Clim. Chang. 2020, 160, 621–636. [Google Scholar] [CrossRef]
- Yang, W.-C.; Lu, W.-M. Achieving net zero-an illustration of carbon emissions reduction with a new meta-inverse DEA approach. Int. J. Environ. Res. Public Health 2023, 20, 4044. [Google Scholar] [CrossRef]
- Welton, S.; Eisen, J. Clean energy justice: Charting an emerging agenda. Harv. Environ. Law Rev. 2019, 43, 307–371. [Google Scholar]
- Oyewo, A.S.; Bogdanov, D.; Aghahosseini, A.; Mensah, T.N.O.; Breyer, C. Contextualizing the scope, scale, and speed of energy pathways toward sustainable development in Africa. iScience 2022, 25, 104965. [Google Scholar] [CrossRef] [PubMed]
- Ferlito, R.; Faraci, R. Business model innovation for sustainability: A new framework. Innov. Manag. Rev. 2022, 19, 222–236. [Google Scholar] [CrossRef]
- Babayomi, O.O.; Dahoro, D.A.; Zhang, Z. Affordable clean energy transition in developing countries: Pathways and technologies. iScience 2022, 25, 104178. [Google Scholar] [CrossRef]
- Księżopolski, K.; Drygas, M.; Pronińska, K.; Nurzyńska, I. The economic effects of new patterns of energy efficiency and heat sources in rural single-family houses in Poland. Energies 2020, 13, 6358. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Zhou, Y. Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage. Appl. Energy 2021, 298, 117206. [Google Scholar] [CrossRef]
- van der Spek, M.; Banet, C.; Bauer, C.; Gabrielli, P.; Goldthorpe, W.; Mazzotti, M.; Munkejord, S.T.; Røkke, N.A.; Shah, N.; Sunny, N. Perspective on the hydrogen economy as a pathway to reach net-zero CO 2 emissions in Europe. Energy Environ. Sci 2022, 15, 1034–1077. [Google Scholar] [CrossRef]
- Horstink, L.; Wittmayer, J.M.; Ng, K.; Luz, G.P.; Marín-González, E.; Gährs, S.; Campos, I.; Holstenkamp, L.; Oxenaar, S.; Brown, D. Collective renewable energy prosumers and the promises of the energy union: Taking stock. Energies 2020, 13, 421. [Google Scholar] [CrossRef]
- Foxon, T.J.; Bale, C.S.E.; Busch, J.; Bush, R.; Hall, S.; Roelich, K. Low carbon infrastructure investment: Extending business models for sustainability. Infrastruct. Complex. 2015, 2, 4. [Google Scholar] [CrossRef]
- Creutzig, F.; Fernandez, B.; Haberl, H.; Khosla, R.; Mulugetta, Y.; Seto, K.C. Beyond technology: Demand-side solutions for climate change mitigation. Annu. Rev. Environ. Resour. 2016, 41, 173–198. [Google Scholar] [CrossRef]
- Birol, F.; Keppler, J.H. Prices, technology development and the rebound effect. Energy Policy 2000, 28, 457–469. [Google Scholar] [CrossRef]
- Pezzini, P.; Gomis-Bellmunt, O.; Sudrià-Andreu, A. Optimization techniques to improve energy efficiency in power systems. Renew. Sustain. Energy Rev. 2011, 15, 2028–2041. [Google Scholar] [CrossRef]
- Filippini, M.; Hunt, L.C. Measurement of energy efficiency based on economic foundations. Energy Econ. 2015, 52, S5–S16. [Google Scholar] [CrossRef]
- Hu, J.L.; Chang, T.P. Energy and pollution efficiencies in China’s regions. In China’s Energy Efficiency and Conservation: Household Behaviour, Legislation, Regional Analysis and Impacts; Su, B., Thomson, E., Eds.; Springer: Singapore, 2016; pp. 61–74. [Google Scholar]
- Hu, J.L.; Chang, T.P. Total-Factor Energy Efficiency and Its Extensions: Introduction, Computation and Application. In Data Envelopment Analysis; International Series in Operations Research & Management, Science; Zhu, J., Ed.; Springer: Boston, MA, USA, 2016; Volume 238. [Google Scholar] [CrossRef]
- Hsiao, W.-L.; Hu, J.-L.; Hsiao, C.; Chang, M.-C. Energy efficiency of the Baltic sea countries: An application of stochastic frontier analysis. Energies 2019, 12, 104. [Google Scholar] [CrossRef]
- Mansoor, M.; Paul, J. Impact of energy efficiency-based ICT adoptions on prosumers and consumers. J. Clean. Prod. 2022, 331, 130008. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Wei, H.-H.; Chi, H.-L.; Ma, Y.; Jian, I.Y. Psychological and demographic factors affecting household energy-saving intentions: A TPB-Based study in Northwest China. Sustainability 2020, 12, 836. [Google Scholar] [CrossRef]
- Parag, Y. Beyond energy efficiency: A ‘prosumer market’as an integrated platform for consumer engagement with the energy system. Eur. Counc. Energy Effic. Econ. Summer Study 2015, 1, 15–23. [Google Scholar]
- Gautier, A.; Jacqmin, J.; Poudou, J.-C. The prosumers and the grid. J. Regul. Econ. 2018, 53, 100–126. [Google Scholar] [CrossRef]
- Inês, C.; Guilherme, P.L.; Esther, M.-G.; Swantje, G.; Stephen, H.; Lars, H. Regulatory challenges and opportunities for collective renewable energy prosumers in the EU. Energy Policy 2020, 138, 111212. [Google Scholar] [CrossRef]
- Hua, W.; Chen, Y.; Qadrdan, M.; Jiang, J.; Sun, H.; Wu, J. Applications of blockchain and artificial intelligence technologies for enabling prosumers in smart grids: A review. Renew. Sustain. Energy Rev. 2022, 161, 112308. [Google Scholar] [CrossRef]
- Hu, J.-L.; Chen, Y.-C.; Yang, Y.-P. The development and issues of energy-ICT: A review of literature with economic and managerial viewpoints. Energies 2022, 15, 594. [Google Scholar] [CrossRef]
- Zheng, S.; Jin, X.; Huang, G.; Lai, A.C.K. Coordination of commercial prosumers with distributed demand-side flexibility in energy sharing and management system. Energy 2022, 248, 123634. [Google Scholar] [CrossRef]
- Sadawi, A.A.; Madani, B.; Saboor, S.; Ndiaye, M.; Abu-Lebdeh, G. A comprehensive hierarchical blockchain system for carbon emission trading utilizing blockchain of things and smart contract. Technol. Forecast. Soc. Chang. 2021, 173, 121124. [Google Scholar] [CrossRef]
- Ahl, A.; Yarime, M.; Tanaka, K.; Sagawa, D. Review of blockchain-based distributed energy: Implications for institutional development. Renew. Sustain. Energy Rev. 2019, 107, 200–211. [Google Scholar] [CrossRef]
- Teufel, B.; Sentic, A.; Barmet, M. Blockchain energy: Blockchain in future energy systems. J. Electron. Sci. Technol. 2019, 17, 100011. [Google Scholar] [CrossRef]
- Park, L.W.; Lee, S.; Chang, H. A Sustainable Home Energy Prosumer-Chain Methodology with Energy Tags over the Blockchain. Sustainability 2018, 10, 658. [Google Scholar] [CrossRef]
- Dzobo, O.; Malila, B.; Sithole, L. Proposed framework for blockchain technology in a decentralised energy network. Prot. Control Mod. Power Syst. 2021, 6, 31. [Google Scholar] [CrossRef]
- Hansen, M.; Hauge, B. Prosumers and smart grid technologies in Denmark: Developing user competences in smart grid households. Energy Effic. 2017, 10, 1215–1234. [Google Scholar] [CrossRef]
- Mahmud, K.; Khan, B.; Ravishankar, J.; Ahmadi, A.; Siano, P. An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview. Renew. Sustain. Energy Rev. 2020, 127, 109840. [Google Scholar] [CrossRef]
- Das, A.; Peu, S.D.; Akanda, M.A.M.; Islam, A.R.M.T. Peer-to-peer energy trading pricing mechanisms: Towards a comprehensive analysis of energy and network service pricing (NSP) mechanisms to get sustainable enviro-economical energy sector. Energies 2023, 16, 2198. [Google Scholar] [CrossRef]
- Manrique Delgado, B.; Cao, S.; Hasan, A.; Sirén, K. Energy and exergy analysis of prosumers in hybrid energy grids. Build. Res. Inf. 2018, 46, 668–685. [Google Scholar] [CrossRef]
- Anam, M.Z.; Bari, A.B.M.M.; Paul, S.K.; Ali, S.M.; Kabir, G. Modelling the drivers of solar energy development in an emerging economy: Implications for sustainable development goals. Resour. Conserv. Recycl. Adv. 2022, 13, 200068. [Google Scholar] [CrossRef]
- Espe, E.; Potdar, V.; Chang, E. Prosumer communities and relationships in smart grids: A literature review, evolution and future directions. Energies 2018, 11, 2528. [Google Scholar] [CrossRef]
- Kotilainen, K. Energy Prosumers’ Role in the Sustainable Energy System. In Affordable and Clean Energy; Leal Filho, W., Marisa Azul, A., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–14. [Google Scholar]
- Cantore, N.; Calì, M.; Velde, D.W.t. Does energy efficiency improve technological change and economic growth in developing countries? Energy Policy 2016, 92, 279–285. [Google Scholar] [CrossRef]
- Vigna, I.; Pernetti, R.; Pasut, W.; Lollini, R. New domain for promoting energy efficiency: Energy Flexible Building Cluster. Sustain. Cities Soc. 2018, 38, 526–533. [Google Scholar] [CrossRef]
- Anthony, B.; Petersen, S.A.; Ahlers, D.; Krogstie, J.; Livik, K. Big data-oriented energy prosumption service in smart community districts: A multi-case study perspective. Energy Inform. 2019, 2, 36. [Google Scholar] [CrossRef]
- Milčiuvienė, S.; Kiršienė, J.; Doheijo, E.; Urbonas, R.; Milčius, D. The role of renewable energy prosumers in implementing energy justice theory. Sustainability 2019, 11, 5286. [Google Scholar] [CrossRef]
- Li, Y.; Gao, W.; Zhang, X.; Ruan, Y.; Ushifusa, Y.; Hiroatsu, F. Techno-economic performance analysis of zero energy house applications with home energy management system in Japan. Energy Build. 2020, 214, 109862. [Google Scholar] [CrossRef]
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef]
- Teske, S. Transition of the Energy Industry to (Net)-Zero Emissions. In Achieving the Paris Climate Agreement Goals: Part 2: Science-Based Target Setting for the Finance industry—Net-Zero Sectoral 1.5 °C Pathways for Real Economy Sectors; Teske, S., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 7–270. [Google Scholar]
- Liu, J.; Zhou, Y.; Yang, H.; Wu, H. Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis. Appl. Energy 2022, 321, 119312. [Google Scholar] [CrossRef]
- Mahmoud, M.; Slama, S.B. Peer-to-Peer Energy Trading Case Study Using an AI-Powered Community Energy Management System. Appl. Sci. 2023, 13, 7838. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, X.; Mu, Y.; Jia, H. A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System. Appl. Energy 2020, 260, 114327. [Google Scholar] [CrossRef]
- Villa-Arrieta, M.; Sumper, A. Economic evaluation of Nearly Zero Energy Cities. Appl. Energy 2019, 237, 404–416. [Google Scholar] [CrossRef]
- Majewski, P.; Florin, N.; Jit, J.; Stewart, R.A. End-of-life policy considerations for wind turbine blades. Renew. Sustain. Energy Rev. 2022, 164, 112538. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
- Rani, M.; Choudhary, P.; Krishnan, V.; Zafar, S. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Compos. Part B:Eng. 2021, 215, 108768. [Google Scholar] [CrossRef]
- Kilkis, B. Net-zero buildings, what are they and what they should be? Energy 2022, 256, 124442. [Google Scholar] [CrossRef]
- Santos, F.D.; Ferreira, P.L.; Pedersen, J.S.T. The climate change challenge: A review of the barriers and solutions to deliver a Paris solution. Climate 2022, 10, 75. [Google Scholar] [CrossRef]
- Zhou, Y. Climate change adaptation with energy resilience in energy districts—A state-of-the-art review. Energy Build. 2023, 279, 112649. [Google Scholar] [CrossRef]
- Pestana, C.; Barros, L.; Scuri, S.; Barreto, M. Can HCI Help increase people’s engagement in sustainable development? A case study on energy literacy. Sustainability 2021, 13, 7543. [Google Scholar] [CrossRef]
- Gouldson, A.; Sudmant, A.; Khreis, H.; Papargyropoulou, E. The Economic and Social Benefits of Low-Carbon Cities: A Systematic Review of the Evidence; Coalition for Urban Transitions: London, UK; Washington, DC, USA, 2018. [Google Scholar]
- Riedy, C.; Diesendorf, M. Financial subsidies to the Australian fossil fuel industry. Energy Policy 2003, 31, 125–137. [Google Scholar] [CrossRef]
- Andrew, J.; Kaidonis, M.A.; Andrew, B. Carbon tax: Challenging neoliberal solutions to climate change. Crit. Perspect. Account. 2010, 21, 611–618. [Google Scholar] [CrossRef]
- Kennedy, C.A.; Ibrahim, N.; Hoornweg, D. Low-carbon infrastructure strategies for cities. Nat. Clim. Chang. 2014, 4, 343–346. [Google Scholar] [CrossRef]
- Croci, E.; Lucchitta, B.; Molteni, T. Low carbon urban strategies: An investigation of 124 European cities. Urban Clim. 2021, 40, 101022. [Google Scholar] [CrossRef]
- Moustakas, K.; Loizidou, M.; Rehan, M.; Nizami, A.S. A review of recent developments in renewable and sustainable energy systems: Key challenges and future perspective. Renew. Sustain. Energy Rev. 2020, 119, 109418. [Google Scholar] [CrossRef]
- Millot, A.; Maïzi, N. From open-loop energy revolutions to closed-loop transition: What drives carbon neutrality? Technol. Forecast. Soc. Chang. 2021, 172, 121003. [Google Scholar] [CrossRef]
- Luo, S.; Yuan, Y. The path to low carbon: The impact of network infrastructure construction on energy conservation and emission reduction. Sustainability 2023, 15, 3683. [Google Scholar] [CrossRef]
- Chen, L.; Huang, L.; Hua, J.; Chen, Z.; Wei, L.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Dong, L.; Yap, P.-S. Green construction for low-carbon cities: A review. Environ. Chem. Lett. 2023, 21, 1627–1657. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid MZ, A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Stoeglehner, G. Integrated spatial and energy planning: A means to reach sustainable development goals. Evol. Institutional Econ. Rev. 2020, 17, 473–486. [Google Scholar] [CrossRef]
- Fankhauser, S.; Sehlleier, F.; Stern, N. Climate change, innovation and jobs. Clim. Policy 2008, 8, 421–429. [Google Scholar] [CrossRef]
- Cumming, G.S.; Cumming, D.H.M.; Redman, C.L. Scale mismatches in social-ecological systems: Causes, consequences, and solutions. Ecol. Soc. 2006, 11, 14. [Google Scholar] [CrossRef]
- Shahbaz, M.; Nasir, M.A.; Hille, E.; Mahalik, M.K. UK’s net-zero carbon emissions target: Investigating the potential role of economic growth, financial development, and R&D expenditures based on historical data (1870–2017). Technol. Forecast. Soc. Chang. 2020, 161, 120255. [Google Scholar]
- Sareen, S.; Nordholm, A.J. Sustainable development goal interactions for a just transition: Multi-scalar solar energy rollout in Portugal. Energy Sources Part B 2021, 16, 1048–1063. [Google Scholar] [CrossRef]
- Brown, D.; Hall, S.; Davis, M.E. What is prosumerism for? Exploring the normative dimensions of decentralised energy transitions. Energy Res. Soc. Sci. 2020, 66, 101475. [Google Scholar] [CrossRef]
- Gunningham, N. Confronting the Challenge of Energy Governance. Transnatl. Environ. Law 2012, 1, 119–135. [Google Scholar] [CrossRef]
- Hu, J.-L.; Honma, S.; Chang, S.-Y. Renewable energy generation efficiency of Japan’s administrative regions: An application of the dynamic slacks-based measure. Next Energy 2023, 1, 100029. [Google Scholar] [CrossRef]
- Dimitroulis, P.; Alamaniotis, M. A fuzzy logic energy management system of on-grid electrical system for residential prosumers. Electr. Power Syst. Res. 2022, 202, 107621. [Google Scholar] [CrossRef]
- Rathnayaka, A.J.D.; Potdar, V.M.; Dillon, T.; Hussain, O. Prosumer recruitment framework for prosumer community groups in smart-grid. Comput. Syst. Sci. Eng. 2015, 30, 317–326. [Google Scholar]
- Armenia, S.; Dangelico, R.M.; Nonino, F.; Pompei, A. Sustainable Project Management: A Conceptualization-Oriented Review and a Framework Proposal for Future Studies. Sustainability 2019, 11, 2664. [Google Scholar] [CrossRef]
- Basir Khan, M.R.; Jidin, R.; Pasupuleti, J. Multi-agent based distributed control architecture for microgrid energy management and optimization. Energy Convers. Manag. 2016, 112, 288–307. [Google Scholar] [CrossRef]
- Cui, S.; Wang, Y.W.; Shi, Y.; Xiao, J.W. An Efficient peer-to-peer energy-sharing framework for numerous community prosumers. IEEE Trans. Ind. Inform. 2020, 16, 7402–7412. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, H. Distributed energy trading management for renewable prosumers with HVAC and energy storage. Energy Rep. 2021, 7, 2512–2525. [Google Scholar] [CrossRef]
- Worighi, I.; Maach, A.; Hafid, A.; Hegazy, O.; Van Mierlo, J. Integrating renewable energy in smart grid system: Architecture, virtualization and analysis. Sustain. Energy Grids Netw. 2019, 18, 100226. [Google Scholar] [CrossRef]
- Jiang, A.; Yuan, H.; Li, D. Energy management for a community-level integrated energy system with photovoltaic prosumers based on bargaining theory. Energy 2021, 225, 120272. [Google Scholar] [CrossRef]
- Si, F.; Wang, J.; Han, Y.; Zhao, Q.; Han, P.; Li, Y. Cost-efficient multi-energy management with flexible complementarity strategy for energy internet. Appl. Energy 2018, 231, 803–815. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Zhou, Y. Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles. Appl. Energy 2021, 302, 117578. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Rezaee Jordehi, A.; Marzband, M.; Tostado-Véliz, M.; Jurado, F.; Aguado, J.A. An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster. Appl. Energy 2023, 333, 120560. [Google Scholar] [CrossRef]
- Shandiz, S.C.; Rismanchi, B.; Foliente, G.; Aye, L. A model for energy master planning and resilience assessment of net-zero emissions community. Sustain. Resilient Infrastruct. 2023, 8, 375–399. [Google Scholar] [CrossRef]
- Shandiz, S.C.; Rismanchi, B.; Foliente, G. Energy master planning for net-zero emission communities: State of the art and research challenges. Renew. Sustain. Energy Rev. 2021, 137, 110600. [Google Scholar] [CrossRef]
- Lo Cascio, E.; Girardin, L.; Ma, Z.; Maréchal, F. How Smart is the Grid? Front. Energy Res. 2021, 9, 637447. [Google Scholar] [CrossRef]
- Parag, Y.; Sovacool, B.K. Electricity market design for the prosumer era. Nat. Energy 2016, 1, 16032. [Google Scholar] [CrossRef]
- O’Dwyer, B.; Owen, D.L. Assurance statement practice in environmental, social and sustainability reporting: A critical evaluation. Br. Account. Rev. 2005, 37, 205–229. [Google Scholar] [CrossRef]
- Petri, I.; Barati, M.; Rezgui, Y.; Rana, O.F. Blockchain for energy sharing and trading in distributed prosumer communities. Comput. Ind. 2020, 123, 103282. [Google Scholar] [CrossRef]
- Khajeh, H.; Shafie-khah, M.; Laaksonen, H. Chapter 7—Blockchain-based demand response using prosumer scheduling. In Blockchain-Based Smart Grids; Shafie-khah, M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 131–144. [Google Scholar]
- Anggraeni, M.; Gupta, J.; Verrest, H.J.L.M. Cost and value of stakeholders participation: A systematic literature review. Environ. Sci. Policy 2019, 101, 364–373. [Google Scholar] [CrossRef]
- Syed, T.A.; Alzahrani, A.; Jan, S.; Siddiqui, M.S.; Nadeem, A.; Alghamdi, T. A comparative analysis of blockchain architecture and its applications: Problems and recommendations. IEEE Access 2019, 7, 176838–176869. [Google Scholar] [CrossRef]
- Karaeva, A.; Magaril, E. Considering waste generation in the energy sector during the transition to a circular economy. Recycling 2023, 8, 42. [Google Scholar] [CrossRef]
- Parra-Domínguez, J.; Sánchez, E.; Ordóñez, Á. The prosumer: A systematic review of the new paradigm in energy and sustainable development. Sustainability 2023, 15, 10552. [Google Scholar] [CrossRef]
- Fthenakis, V.M. End-of-life management and recycling of PV modules. Energy Policy 2000, 28, 1051–1058. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, T.; Gupta, A.K. End-of-life management of solar PV waste in India: Situation analysis and proposed policy framework. Renew. Sustain. Energy Rev. 2022, 153, 111774. [Google Scholar] [CrossRef]
- Yu, H.F.; Hasanuzzaman, M.; Rahim, N.A.; Amin, N.; Nor Adzman, N. Global challenges and prospects of photovoltaic materials disposal and recycling: A comprehensive review. Sustainability 2022, 14, 8567. [Google Scholar] [CrossRef]
- Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef]
- Włodarczyk, R. Analysis of the photovoltaic waste-recycling process in Polish conditions— A short review. Sustainability 2022, 14, 4739. [Google Scholar]
Energy Prosumer Literature | Description |
---|---|
Energy prosumers and energy efficiency | Outlines the research on prosumer relationships in different energy efficiency settings. Systematic energy efficiency is beneficial for further analyzing the behavior and relationships of energy prosumers. |
Energy prosumers and net-zero emissions | Outlines prosumer research in this area on the provision of relationships in net-zero emission settings and consideration of the initial cost of installing distributed energy resources and the potential for increased costs. |
Energy prosumers and Sustainable Development Goal (SDG) 7 | Outlines research in this area on the provision of relationships concerning SDG 7. |
Energy prosumers and energy management efficiency | Outlines approaches to effectively arranging and organizing efficiency in relation to energy management efficiency. |
Energy prosumer systems | Describes the role of the energy prosumer as derived from the literature review and offers a systematic perspective. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.-L.; Chuang, M.-Y. The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy. Energies 2023, 16, 6270. https://doi.org/10.3390/en16176270
Hu J-L, Chuang M-Y. The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy. Energies. 2023; 16(17):6270. https://doi.org/10.3390/en16176270
Chicago/Turabian StyleHu, Jin-Li, and Min-Yueh Chuang. 2023. "The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy" Energies 16, no. 17: 6270. https://doi.org/10.3390/en16176270
APA StyleHu, J.-L., & Chuang, M.-Y. (2023). The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy. Energies, 16(17), 6270. https://doi.org/10.3390/en16176270