Under-Expanded Jets in Advanced Propulsion Systems—A Review of Latest Theoretical and Experimental Research Activities
Abstract
:1. Introduction
2. Physics of Under-Expanded Jets
- the near-nozzle zone;
- the transition zone;
- the far-field zone;
- The jet is weakly under-expanded, a normal shock appears in the exit plane.
- The jet is moderately under-expanded and has a “diamond” or “X” structure, depicted in Figure 4, [30,31]. In the exit plane (marker A), a Prandtl–Meyer expansion fan (marker C) expands the fluid downstream of the device’s edges up to the jet boundary that corresponds to the external surface of the mixing layer (marked JB). The expansion waves are reflected as compression waves when they reach the constant pressure streamline (marker D), where the pressure matches the ambient pressure. They converge on the inner jet and merge to produce an oblique shock (marker E), commonly referred to as the intercepting shock.
- The jet is highly under-expanded, [32,33]. It has a “barrel” or “bottle” structure, shown in Figure 5, Mach disc appears (due to a singular reflection). When the pressure ratio grows, the regular reflection of the intercepting shock on the axis is no longer possible. As a result, above the critical angle, this reflection becomes singular, resulting in the appearance of a normal shock-denominated Mach disc (marker F). The triple point is defined as the intersection of the intercepting shock, the Mach disc and the reflected shock (marker G). A slipstream (marker H) develops at this point: this is an embedded shear layer that divides the flow upstream of the Mach disc (subsonic) from the flow downstream of the reflected shock (supersonic).
- The jet is extremely (or very highly) under-expanded, [34,35]. As depicted in Figure 6, the structure is dominated by a unique barrel. In this case, the Mach disc is no longer considered as a normal shock, and its curvature must be considered. Due to the momentum exchange generated by the ambient fluid’s entrainment, the jet’s overall diameter will decrease, resulting in an extremely long plume.
3. Experimental Observation of Under-Expanded Jets
4. CFD Simulation of Under-Expanded Jets
4.1. Discretization Schemes and Solution Algorithms
4.2. Turbulence Modelling
5. Jet Structure Analysis
5.1. Characteristics and Parameters of the Injection
5.2. Near Field—Mach Disc Features
5.3. Far Field—Turbulent Mixing
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics |
CNG | Compressed Natural Gas |
CVC | Constant Volume Chamber |
DI | Direct Injection |
DNS | Direct Numerical Simulation |
fps | frames per second |
ICE | Internal Combustion Engines |
KNP | Kurganov |
KT | Kurganov and Tadmor |
LED | Light Emitting Diode |
LES | Large Eddy Simulation |
critical mass flow | |
NPR | Net Pressure Ratio |
Probability Density Function | |
PECU | Programmable Electronic Control Unit |
PFI | Port Fuel Injected |
P | injection pressure |
p | ambient pressure |
P | critical pressure |
PISO | Pressure Implicit Split Operator |
PPM | Piecewise Parabolic Method |
RANS | Reynolds-Averaged Navier–Stokes |
TKE | Turbulent Kinetic Energy |
TTL | Transistor–Transistor Logic |
WENO | Weighted Essentially Non-Oscillatory |
References
- Joshi, A. Review of Vehicle Engine Efficiency and Emissions; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2020; Volume 2020, pp. 1–29. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Eds.; Cambridge University Press: Cambridge, UK, 2021; p. 3949. [Google Scholar]
- International Energy Agency. Tracking Transport 2020; IEA: Paris, France, 2021. [Google Scholar]
- International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector; IEA: Paris, France, 2021; p. 224. [Google Scholar]
- Li, F.; Wang, Z.; Wang, Y.; Wang, B. High-Efficiency and Clean Combustion Natural Gas Engines for Vehicles. Automot. Innov. 2019, 2, 284–304. [Google Scholar] [CrossRef]
- Senecal, K.; Leach, F. Racing Toward Zero: The Untold Story of Driving Green; SAE International: Warrendale, PA, USA, 2021. [Google Scholar]
- Sankesh, D.; Lappas, P. Natural-Gas Direct-Injection for Spark-Ignition Engines—A Review on Late-Injection Studies; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Nocivelli, L.; Sforzo, B.A.; Tekawade, A.; Yan, J.; Powell, C.F.; Chang, W.; Lee, C.F.; Som, S. Analysis of the Spray Numerical Injection Modeling for Gasoline Applications; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Zembi, J.; Mariani, F.; Battistoni, M.; Irimescu, A.; Merola, S. Numerical Investigation of Water Injection Effects on Flame Wrinkling and Combustion Development in a GDI Spark Ignition Optical Engine. In Proceedings of the SAE WCX Digital Summit, Virtual, 12–15 April 2021; SAE International: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- Oh, H.; Hwang, J.; Pickett, L.M.; Han, D. Machine-learning based prediction of injection rate and solenoid voltage characteristics in GDI injectors. Fuel 2022, 311, 122569. [Google Scholar] [CrossRef]
- Allocca, L.; Montanaro, A.; Meccariello, G.; Duronio, F.; Ranieri, S.; De Vita, A. Under-Expanded Gaseous Jets Characterization for Application in Direct Injection Engines: Experimental and Numerical Approach; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2020; Volume 2020, pp. 1–15. [Google Scholar] [CrossRef]
- Yip, H.L.; Srna, A.; Chun, A.; Yuen, A.C.Y.; Kook, S.; Taylor, R.; Yeoh, G.; Medwell, P.; Chan, Q. A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion. Appl. Sci. 2019, 9, 4842. [Google Scholar] [CrossRef]
- Hajialimohammadi, A.; Honnery, D.; Abdullah, A.; Mirsalim, M.A. Time resolved characteristics of gaseous jet injected by a group-hole nozzle. Fuel 2013, 113, 497–505. [Google Scholar] [CrossRef]
- Chiodi, M.; Berner, H.J.; Bargende, M. Investigation on Different Injection Strategies in a Direct-Injected Turbocharged Cng-Engine; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2006. [Google Scholar] [CrossRef]
- Yadollahi, B.; Boroomand, M. The effect of combustion chamber geometry on injection and mixture preparation in a CNG direct injection SI engine. Fuel 2013, 107, 52–62. [Google Scholar] [CrossRef]
- Erfan, I.; Hajialimohammadi, A.; Chitsaz, I.; Ziabasharhagh, M.; Martinuzzi, R.J. Influence of chamber pressure on CNG jet characteristics of a multi-hole high pressure injector. Fuel 2017, 197, 186–193. [Google Scholar] [CrossRef]
- Duronio, F.; Ranieri, S.; Montanaro, A.; Allocca, L.; De Vita, A. ECN Spray G injector: Numerical modelling of flash-boiling breakup and spray collapse. Int. J. Multiph. Flow 2021, 145, 103817. [Google Scholar] [CrossRef]
- Fox, J.H. On the Structure of Jet Plumes. AIAA J. 1974, 12, 105–107. [Google Scholar] [CrossRef]
- Doroudi, S. Ansys Fluent Modelling of an Underexpanded Supersonic Sootblower Jet Impinging into Recovery Boiler Tube Geometries; University of Toronto (Canada): Toronto, ON, Canada, 2015. [Google Scholar]
- Knowles, K.; Saddington, A.J. A review of jet mixing enhancement for aircraft propulsion applications. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2006, 220, 103–127. [Google Scholar] [CrossRef]
- Orescanin, M.M.; Austin, J.M.; Kieffer, S.W. Unsteady high-pressure flow experiments with applications to explosive volcanic eruptions. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef]
- Von der Linden, J.; Kimblin, C.; McKenna, I.; Bagley, S.; Li, H.C.; Houim, R.; Kueny, C.S.; Kuhl, A.; Grote, D.; Converse, M.; et al. Standing shock prevents propagation of sparks in supersonic explosive flows. Commun. Earth Environ. 2021, 2, 195. [Google Scholar] [CrossRef]
- Carcano, S.; Bonaventura, L.; Esposti Ongaro, T.; Neri, A. A semi-implicit, second-order-accurate numerical model for multiphase underexpanded volcanic jets. Geosci. Model Dev. 2013, 6, 1905–1924. [Google Scholar] [CrossRef]
- Verhelst, S. Recent progress in the use of hydrogen as a fuel for internal combustion engines. Int. J. Hydrogen Energy 2014, 39, 1071–1085. [Google Scholar] [CrossRef]
- Onorati, A.; Payri, R.; Vaglieco, B.; Agarwal, A.; Bae, C.; Bruneaux, G.; Canakci, M.; Gavaises, M.; Günthner, M.; Hasse, C.; et al. The role of hydrogen for future internal combustion engines. Int. J. Engine Res. 2022, 23, 529–540. [Google Scholar] [CrossRef]
- Kurnia, J.C.; Sasmito, A.P. Hydrogen Fuel Cell in Vehicle Propulsion: Performance, Efficiency, and Challenge. In Energy Efficiency in Mobility Systems; Sulaiman, S.A., Ed.; Springer: Singapore, 2020; pp. 9–26. [Google Scholar] [CrossRef]
- Petrescu, R.V.V.; Machín, A.; Fontánez, K.; Arango, J.C.; Márquez, F.M.; Petrescu, F.I.T. Hydrogen for aircraft power and propulsion. Int. J. Hydrogen Energy 2020, 45, 20740–20764. [Google Scholar] [CrossRef]
- Depcik, C.; Cassady, T.; Collicott, B.; Burugupally, S.P.; Li, X.; Alam, S.S.; Arandia, J.R.; Hobeck, J. Comparison of lithium ion Batteries, hydrogen fueled combustion Engines, and a hydrogen fuel cell in powering a small Unmanned Aerial Vehicle. Energy Convers. Manag. 2020, 207, 112514. [Google Scholar] [CrossRef]
- Abdel-Rahman, A. A review of effects of initial and boundary conditions on turbulent jets. WSEAS Trans. Fluid Mech. 2010, 4, 257–275. [Google Scholar]
- Donaldsion, C.; Snedeker, R. A study of free jet impingement. J. Fluid Mech. 1971, 45, 281–319. [Google Scholar] [CrossRef]
- Saddington, A.J.; Lawson, N.J.; Knowles, K. An experimental and numerical investigation of under-expanded turbulent jets. Aeronaut. J. 2004, 108, 145–152. [Google Scholar] [CrossRef]
- John, J. Gas Dynamics; Prentice Hall PTR: Hoboken, NJ, USA, 1984. [Google Scholar]
- Dam, N.J.; Rodenburg, M.; Tolboom, R.A.L.; Stoffels, G.G.M.; Huisman-Kleinherenbrink, P.M.; ter Meulen, J.J. Imaging of an underexpanded nozzle flow by UV laser Rayleigh scattering. Exp. Fluids 1998, 24, 93–101. [Google Scholar] [CrossRef]
- Saad, M. Compressible Fluid Flow; Prentice-Hall: Hoboken, NJ, USA, 1985. [Google Scholar]
- EWAN, B.C.R.; MOODIE, K. Structure and Velocity Measurements in Underexpanded Jets. Combust. Sci. Technol. 1986, 45, 275–288. [Google Scholar] [CrossRef]
- Keith, T.G.; John, J.E. Gas Dynamics; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Zucker, R.D.; Biblarz, O. Fundamentals of Gas Dynamics; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Antsupov, A. Properties of Underexpanded and Overexpanded Supersonic Gas Jets. Sov. Phys. Tech. Phys. 1974, 19, 234–238. [Google Scholar]
- Hatanaka, K.; Saito, T. Influence of nozzle geometry on underexpanded axisymmetric free jet characteristics. Shock Waves 2012, 22, 427–434. [Google Scholar] [CrossRef]
- Addy, A.L. Effects of axisymmetric sonic nozzle geometry on Mach disk characteristics. AIAA J. 1981, 19, 121–122. [Google Scholar] [CrossRef]
- Dong, Q.; Li, Y.; Song, E.; Fan, L.; Yao, C.; Sun, J. Visualization research on injection characteristics of high-pressure gas jets for natural gas engine. Appl. Therm. Eng. 2018, 132, 165–173. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, W.; Liu, Y. Experimental investigation on the microscopic characteristics of underexpanded transient hydrogen jets. Int. J. Hydrogen Energy 2020, 45, 16865–16873. [Google Scholar] [CrossRef]
- Ni, Z.; Dong, Q.; Wang, D.; Yang, X. Visualization research of natural gas jet characteristics with ultra-high injection pressure. Int. J. Hydrogen Energy 2022, 47, 32473–32492. [Google Scholar] [CrossRef]
- Settles, G.S. Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Panigrahi, P.K.; Muralidhar, K. Schlieren and Shadowgraph Methods in Heat and Mass Transfer; Springer: Berlin/Heidelberg, Germany, 2012; Volume 2. [Google Scholar]
- Kook, S.; Le, M.K.; Padala, S.; Hawkes, E.R. Z-type Schlieren Setup and its Application to High-Speed Imaging of Gasoline Sprays. In Proceedings of the SAE International Powertrains, Fuels and Lubricants Meeting, Kyoto, Japan, 30 August–2 September 2011; SAE International: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Montanaro, A.; Allocca, L.; De Vita, A.; Ranieri, S.; Duronio, F.; Meccariello, G. Experimental and Numerical Characterization of High-Pressure Methane Jets for Direct Injection in Internal Combustion Engines. In Proceedings of the SAE Powertrains, Fuels & Lubricants Meeting, Kraków, Poland, 22–24 September 2020; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Samsam-Khayani, H.; Chen, B.; Kim, M.; Kim, K.C. Visualization of supersonic free jet flow structures subjected to various temperature and pressure ratio conditions. Opt. Lasers Eng. 2022, 158, 107144. [Google Scholar] [CrossRef]
- Yu, J.; Hillamo, H.; Vuorinen, V.; Sarjovaara, T.; Kaario, O.; Larmi, M. Experimental Investigation of Characteristics of Transient Low Pressure Wall-Impinging Gas Jet; Institute of Physics Publishing: Bristol, UK, 2011; Volume 318. [Google Scholar] [CrossRef]
- Yu, J.; Vuorinen, V.; Kaario, O.; Sarjovaara, T.; Larmi, M. Visualization and analysis of the characteristics of transitional underexpanded jets. Int. J. Heat Fluid Flow 2013, 44, 140–154. [Google Scholar] [CrossRef]
- Sakellarakis, V.D.; Vera-Tudela, W.; Doll, U.; Ebi, D.; Wright, Y.M.; Boulouchos, K. The effect of high-pressure injection variations on the mixing state of underexpanded methane jets. Int. J. Engine Res. 2021, 22, 2900–2918. [Google Scholar] [CrossRef]
- Deshmukh, A.Y.; Falkenstein, T.; Pitsch, H.; Khosravi, M.; van Bebber, D.; Klaas, M.; Schroeder, W. Numerical Investigation of Direct Gas Injection in an Optical Internal Combustion Engine. SAE Int. J. Engines 2018, 11, 353–378. [Google Scholar] [CrossRef]
- Yu, J.; Vuorinen, V.; Kaario, O.; Sarjovaara, T.; Larmi, M. Characteristics of High Pressure Jets for Direct Injection Gas Engine. Int. J. Fuels Lubr. 2013, 6, 149–156. [Google Scholar] [CrossRef]
- Schulz, C.; Sick, V. Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Prog. Energy Combust. Sci. 2005, 31, 75–121. [Google Scholar] [CrossRef]
- Kirchweger, W.; Haslacher, R.; Hallmannsegger, M.; Gerke, U. Applications of the LIF method for the diagnostics of the combustion process of gas-IC-engines. Exp. Fluids 2007, 43, 329–340. [Google Scholar] [CrossRef]
- Banholzer, M.; Vera-Tudela, W.; Traxinger, C.; Pfitzner, M.; Wright, Y.; Boulouchos, K. Numerical investigation of the flow characteristics of underexpanded methane jets. Phys. Fluids 2019, 31, 056105. [Google Scholar] [CrossRef]
- Thawko, A.; van Hout, R.; Yadav, H.; Tartakovsky, L. Flow field characteristics of a confined, underexpanded transient round jet. Phys. Fluids 2021, 33. [Google Scholar] [CrossRef]
- Xiao, C.N.; Fond, B.; Beyrau, F.; T’Joen, C.; Henkes, R.; Veenstra, P.; van Wachem, B. Numerical Investigation and Experimental Comparison of the Gas Dynamics in a Highly Underexpanded Confined Real Gas Jet. Flow Turbul. Combust. 2019, 103, 141–173. [Google Scholar] [CrossRef]
- Duronio, F.; Mascio, A.D.; Villante, C.; Anatone, M.; Vita, A.D. ECN Spray G: Coupled Eulerian internal nozzle flow and Lagrangian spray simulation in flash boiling conditions. Int. J. Engine Res. 2023, 24, 1530–1544. [Google Scholar] [CrossRef]
- Hamzehloo, A.; Aleiferis, P.G. Large Eddy Simulation of Near-Nozzle Shock Structure and Mixing Characteristics of Hydrogen Jets for Direct-Injection Spark-Ignition Engines. In Proceedings of the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Orlando, FL, USA, 14–16 July 2014. [Google Scholar]
- Rahantamialisoa, F.N.; Zembi, J.; Miliozzi, A.; Sahranavardfard, N.; Battistoni, M. CFD Simulations of Under-Expanded Hydrogen Jets under High-Pressure Injection Conditions; Institute of Physics: Bristol, UK, 2022; Volume 2385. [Google Scholar] [CrossRef]
- Verrière, J.; Kopriva, J.E. Simulations of an Underexpanded Round Jet Using the Lattice-Boltzmann Method; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2021. [Google Scholar] [CrossRef]
- Kopriva, J.E.; Laskowski, G.M.; Polidoro, F.; Li, Y.; Jammalamadaka, A.; Nardari, C. Lattice-Boltzmann Simulations of an Underexpanded Jet from a Rectangular Nozzle with and without Aft-Deck; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2019. [Google Scholar] [CrossRef]
- Ren, Z.; Wen, J.X. Numerical characterization of under-expanded cryogenic hydrogen gas jets. AIP Adv. 2020, 10. [Google Scholar] [CrossRef]
- Buttay, R.; Lehnasch, G.; Mura, A. Analysis of small-scale scalar mixing processes in highly under-expanded jets. Shock Waves 2016, 26, 193–212. [Google Scholar] [CrossRef]
- Quimby, D.; Jacobs, G.B. Large Eddy Simulation of a Supersonic Underexpanded Jet with a High-Order Hybrid WENO-Z/central Scheme; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2016. [Google Scholar] [CrossRef]
- Su, H.; Cai, J.; Qu, K.; Pan, S. Numerical simulations of inert and reactive highly underexpanded jets. Phys. Fluids 2020, 32. [Google Scholar] [CrossRef]
- Greenshields, C.J.; Weller, H.G.; Gasparini, L.; Reese, J.M. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids 2010, 63, 1–21. [Google Scholar] [CrossRef]
- Versteg, H.; Malalasekera, W. An introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed.; Pearson Education: London, UK, 2007. [Google Scholar]
- Di Angelo, L.; Duronio, F.; De Vita, A.; Di Mascio, A. Cartesian Mesh Generation with Local Refinement for Immersed Boundary Approaches. J. Mar. Sci. Eng. 2021, 9, 572. [Google Scholar] [CrossRef]
- Kurganov, A.; Tadmor, E. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations. J. Comput. Phys. 2000, 160, 241–282. [Google Scholar] [CrossRef]
- Kurganov, A.; Noelle, S.; Petrova, G. Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton–Jacobi Equations. SIAM J. Sci. Comput. 2001, 23, 707–740. [Google Scholar] [CrossRef]
- van Leer, B. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 1974, 14, 361–370. [Google Scholar] [CrossRef]
- Jin, Y.; Yao, W. LES Investigation of Real-Fluid Effect on Underexpanded Jets; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2021. [Google Scholar] [CrossRef]
- Duronio, F.; Montanaro, A.; Ranieri, S.; Allocca, L.; De Vita, A. Under-Expanded Jets Characterization by Means of CFD Numerical Simulation Using an Open FOAM Density-Based Solver. In Proceedings of the 15th International Conference on Engines & Vehicles, Napoli, Italy, 12–16 September 2021; SAE International: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- Wu, K.; Li, X.; Yao, W.; Fan, X. Three-Dimensional Numerical Study of the Acoustic Properities of a Highly Underexpanded Jet; AIAA American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2015. [Google Scholar] [CrossRef]
- Li, X.; Yao, W.; Fan, X. Large-eddy simulation of time evolution and instability of highly underexpanded sonic jets. AIAA J. 2016, 54, 3191–3211. [Google Scholar] [CrossRef]
- Vuorinen, V.; Wehrfritz, A.; Yu, J.; Kaario, O.; Larmi, M.; Boersma, B.J. Large-eddy simulation of subsonic jets. J. Phys. Conf. Ser. 2011, 318, 032052. [Google Scholar] [CrossRef]
- Vuorinen, V.; Keskinen, J.P.; Duwig, C.; Boersma, B.J. On the implementation of low-dissipative Runge–Kutta projection methods for time dependent flows using OpenFOAM®. Comput. Fluids 2014, 93, 153–163. [Google Scholar] [CrossRef]
- Vuorinen, V.; Larmi, M.; Schlatter, P.; Fuchs, L.; Boersma, B.J. A low-dissipative, scale-selective discretization scheme for the Navier–Stokes equations. Comput. Fluids 2012, 70, 195–205. [Google Scholar] [CrossRef]
- Modesti, D.; Pirozzoli, S. A low-dissipative solver for turbulent compressible flows on unstructured meshes, with OpenFOAM implementation. Comput. Fluids 2017, 152, 14–23. [Google Scholar] [CrossRef]
- Hamzehloo, A.; Aleiferis, P.G. Numerical modelling of transient under-expanded jets under different ambient thermodynamic conditions with adaptive mesh refinement. Int. J. Heat Fluid Flow 2016, 61, 711–729. [Google Scholar] [CrossRef]
- Sun, G.; Wu, G.; Liu, C.J. Numerical Simulation of Supersonic Flow with Shock Wave using Modified AUSM Scheme. Int. J. Nonlinear Sci. Numer. Simul. 2006, 7, 329–332. [Google Scholar] [CrossRef]
- Vuorinen, V.; Wehrfritz, A.; Duwig, C.; Boersma, B.J. Large-eddy simulation on the effect of injection pressure and density on fuel jet mixing in gas engines. Fuel 2014, 130, 241–250. [Google Scholar] [CrossRef]
- Vuorinen, V.; Yu, J.; Tirunagari, S.; Kaario, O.; Larmi, M.; Duwig, C.; Boersma, B.J. Large-eddy simulation of highly underexpanded transient gas jets. Phys. Fluids 2013, 25, 016101. [Google Scholar] [CrossRef]
- Hamzehloo, A.; Aleiferis, P.G. LES and RANS modelling of under-expanded jets with application to gaseous fuel direct injection for advanced propulsion systems. Int. J. Heat Fluid Flow 2019, 76, 309–334. [Google Scholar] [CrossRef]
- Deshmukh, A.Y.; Bode, M.; Pitsch, H.; Khosravi, M.; Bebber, D.v.; Vishwanathan, G. Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines. SAE Int. J. Fuels Lubr. 2018, 11, 353–377. [Google Scholar] [CrossRef]
- Bartolucci, L.; Cordiner, S.; Mulone, V.; Rocco, V. Natural Gas Stable Combustion under Ultra-Lean Operating Conditions in Internal Combustion Engines. Energy Procedia 2016, 101, 886–892. [Google Scholar] [CrossRef]
- Hamzehloo, A.; Aleiferis, P. Large eddy simulation of highly turbulent under-expanded hydrogen and methane jets for gaseous-fuelled internal combustion engines. Int. J. Hydrogen Energy 2014, 39, 21275–21296. [Google Scholar] [CrossRef]
- De Vita, M.; Duronio, F.; De Vita, A.; De Berardinis, P. Adaptive Retrofit for Adaptive Reuse: Converting an Industrial Chimney into a Ventilation Duct to Improve Internal Comfort in a Historic Environment gas expansion. Sustainability 2022, 14, 3360. [Google Scholar] [CrossRef]
- Zhu, H.; Battistoni, M.; Manjegowda Ningegowda, B.; Nadia Zazaravaka Rahantamialisoa, F.; Yue, Z.; Wang, H.; Yao, M. Thermodynamic modeling of trans/supercritical fuel sprays in internal combustion engines based on a generalized cubic equation of state. Fuel 2022, 307, 121894. [Google Scholar] [CrossRef]
- Li, X.; Zhou, R.; Yao, W.; Fan, X. Flow characteristic of highly underexpanded jets from various nozzle geometries. Appl. Therm. Eng. 2017, 125, 240–253. [Google Scholar] [CrossRef]
- Anaclerio, G.; Capurso, T.; Torresi, M.; Camporeale, S.M. Numerical Characterization of Hydrogen Under-Expanded Jets: Influence of the Nozzle Cross-Section Shape; Institute of Physics: Bristol, UK, 2022; Volume 2385. [Google Scholar] [CrossRef]
- Bonelli, F.; Viggiano, A.; Magi, V. A numerical analysis of hydrogen underexpanded jets under real gas assumption. J. Fluids Eng. Trans. ASME 2013, 135. [Google Scholar] [CrossRef]
- Kaario, O.; Vuorinen, V.; Hulkkonen, T.; Keskinen, K.; Nuutinen, M.; Larmi, M.; Tanner, F.X. Large eddy simulation of high gas density effects in fuel sprays. At. Sprays 2013, 23, 297–325. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Weickert, M.; Teike, G.; Schmidt, O.; Sommerfeld, M. Investigation of the LES WALE turbulence model within the lattice Boltzmann framework. Comput. Math. Appl. 2010, 59, 2200–2214. [Google Scholar] [CrossRef]
- Huang, S.; Li, Q.S. A new dynamic one-equation subgrid-scale model for large eddy simulations. Int. J. Numer. Methods Eng. 2010, 81, 835–865. [Google Scholar] [CrossRef]
- Yoshizawa, A.; Horiuti, K. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 1985, 54, 2834–2839. [Google Scholar] [CrossRef]
- Munday, D.; Gutmark, E.; Liu, J.; Kailasanath, K. Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles. Phys. Fluids 2011, 23, 116102. [Google Scholar] [CrossRef]
- Garnier, E.; Adams, N.; Sagaut, P. Large Eddy Simulation for Compressible Flows; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Rana, Z.A.; Thornber, B.; Drikakis, D. Transverse jet injection into a supersonic turbulent cross-flow. Phys. Fluids 2011, 23, 046103. [Google Scholar] [CrossRef]
- Hamzehloo, A.; Aleiferis, P.G. Gas dynamics and flow characteristics of highly turbulent under-expanded hydrogen and methane jets under various nozzle pressure ratios and ambient pressures. Int. J. Hydrogen Energy 2016, 41, 6544–6566. [Google Scholar] [CrossRef]
- Duronio, F.; Ranieri, S.; Mascio, A.D.; Vita, A.D. Simulation of high pressure, direct injection processes of gaseous fuels by a density-based OpenFOAM solver. Phys. Fluids 2021, 33, 066104. [Google Scholar] [CrossRef]
- Duronio, F.; Montanaro, A.; Allocca, L.; Ranieri, S.; De Vita, A. Effects of Thermodynamic Conditions and Nozzle Geometry in Gaseous Fuels Direct Injection Process for Advanced Propulsion Systems. In Proceedings of the WCX SAE World Congress Experience, Detroit, MI, USA, 18–20 April 2020; SAE International: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Banholzer, M.; Müller, H.; Pfitznery, M. Numerical Investigation of the Flow Structure of Underexpanded Jets in Quiescent Air Using Real-Gas Thermodynamics; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2017. [Google Scholar] [CrossRef]
- Traxinger, C.; Banholzer, M.; Pfitzner, M. Real-Gas Effects and Phase Separation in Underexpanded Jets at Engine-Relevant Conditions. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar] [CrossRef]
- Rahantamialisoa, F.; Battistoni, M.; Miliozzi, A.; Sahranavardfard, N.; Zembi, J. Investigations on Hydrogen Injections Using a Real-Fluid Approach; SAE International: Warrendale, PA, USA, 2023. [Google Scholar] [CrossRef]
- Yosri, M.R.; Talei, M.; Gordon, R.; Brear, M.; Lacey, J. A Numerical Simulation of an Under-Expanded Jet Issued from a Prototype Injector; The University of Queensland: Brisbane, Australia, 2020. [Google Scholar] [CrossRef]
- Bartolucci, L.; Cordiner, S.; Mulone, V.; Scarcelli, R.; Wallner, T.; Swantek, A.; Powell, C.; Kastengren, A. Gaseous jet through an outward opening injector: Details of mixing characteristic and turbulence scales. Int. J. Heat Fluid Flow 2020, 85, 108660. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Z.; Zhou, W.; Xu, S.; Xiao, Q.; Cao, W.; Jiao, F.; Zhang, Y.; Yu, S.; Xu, S. The flow field behaviours of under-expansion jet flame in premixed hydrogen/air explosion venting. Int. J. Hydrogen Energy 2022, 47, 10420–10430. [Google Scholar] [CrossRef]
- Duronio, F.; Di Mascio, A.; De Vita, A.; Innocenzi, V.; Prisciandaro, M. Eulerian–Lagrangian modeling of phase transition for application to cavitation-driven chemical processes. Phys. Fluids 2023, 35, 053305. [Google Scholar] [CrossRef]
- Förster, F.J.; Baab, S.; Steinhausen, C.; Lamanna, G.; Ewart, P.; Weigand, B. Mixing characterization of highly underexpanded fluid jets with real gas expansion. Exp. Fluids 2018, 59. [Google Scholar] [CrossRef]
- Verhelst, S.; Sierens, R. Hydrogen engine-specific properties. Int. J. Hydrogen Energy 2001, 26, 987–990. [Google Scholar] [CrossRef]
Technique | Measurement Zone | Fuel | NPR | Reference |
---|---|---|---|---|
Schlieren | Developed Spray | CH4 | [56] | |
Developed Spray | He | [13] | ||
Near-nozzle/Mach Disc | N2 | [57] | ||
Developed Spray | CH4 | NPR = 190, 220, 250, 280, 310 | [43] | |
Developed Spray | CH4 | [41] | ||
Developed Spray | CH4 | [42] | ||
PLIF | Near-nozzle/Mach Disc | N2 | [50] | |
Developed Spray | N2 | [53] | ||
Developed Spray | CH4 | [51] | ||
PIV | Developed Spray | N2 | [57] | |
Developed Spray | Ar | [58] |
Numerical Approach | Code | Turbulence Modeling | Fuel | Reference |
---|---|---|---|---|
WENO/ENO | In-house | LES | Air | [65] |
In-house | LES | Air | [66] | |
In-house/Finite Differences | LES | Reactive jet | [67] | |
In-house | LES | H2 | [64] | |
AUSM | STAR CCM+ | LES WALE | H2 | [60,82,89,103] |
LES WALE | N2 | [60,103] | ||
LES WALE | CH4 | [89,103] | ||
KNP/KT | OpenFOAM | LES, RANS k- | H2 | [74,86] |
OpenFOAM | LES k-Eqn | N2 | [77,86] | |
OpenFOAM | LES k-Eqn | CH4 | [47,75,104,105] | |
Bulk Viscosity Method | OpenFOAM | LES Scale Selective Method | N2 | [53,85] |
CH4 | [84] | |||
H2 | [53] | |||
Hybrid KNP/KT | OpenFOAM | LES | CH4 | [56,106,107] |
OpenFOAM | LES, RANS | H2 | [61,108] | |
MUSCL | CONVERGE | LES | CH4 | [61,109] |
Lattice Boltzmann | In-house | LES | N.A. | [62,63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duronio, F.; Villante, C.; De Vita, A. Under-Expanded Jets in Advanced Propulsion Systems—A Review of Latest Theoretical and Experimental Research Activities. Energies 2023, 16, 6471. https://doi.org/10.3390/en16186471
Duronio F, Villante C, De Vita A. Under-Expanded Jets in Advanced Propulsion Systems—A Review of Latest Theoretical and Experimental Research Activities. Energies. 2023; 16(18):6471. https://doi.org/10.3390/en16186471
Chicago/Turabian StyleDuronio, Francesco, Carlo Villante, and Angelo De Vita. 2023. "Under-Expanded Jets in Advanced Propulsion Systems—A Review of Latest Theoretical and Experimental Research Activities" Energies 16, no. 18: 6471. https://doi.org/10.3390/en16186471
APA StyleDuronio, F., Villante, C., & De Vita, A. (2023). Under-Expanded Jets in Advanced Propulsion Systems—A Review of Latest Theoretical and Experimental Research Activities. Energies, 16(18), 6471. https://doi.org/10.3390/en16186471