Geomechanics for Energy and the Environment
- ➢
- Multiphase flow and transport in porous media;
- ➢
- Carbon dioxide sequestration and hydrogen storage in geological formations;
- ➢
- Mathematical modeling and numerical simulations of coupled processes;
- ➢
- Development, storage, and transportation of unconventional oil and gas;
- ➢
- Prevention and mitigation of geological disasters in mining;
- ➢
- Mathematical challenges in rock mechanics and rock engineering;
- ➢
- Production and storage of geological energy;
- ➢
- Environmental protection in resource development;
- ➢
- Application of machine learning to address complex energy and environmental problems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, A.; Xie, H.; Zhang, R.; Gao, M.; Xie, J.; Jia, Z.; Ren, L.; Zhang, Z. Mechanical properties and energy characteristics of coal at different depths under cyclic triaxial loading and unloading. Int. J. Rock. Mech. Min. 2023, 161, 105271. [Google Scholar] [CrossRef]
- Guo, X.; Fan, N.; Liu, Y.; Liu, X.; Wang, Z.; Xie, X.; Jia, Y. Deep seabed mining: Frontiers in engineering geology and environment. Int. J. Coal. Sci. Technol. 2023, 10, 23. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, P.; Li, P.; Zhou, X.; Liang, Z.; Xu, N. Formation mechanism of rockburst in deep tunnel adjacent to faults: Implication from numerical simulation and microseismic monitoring. J. Cent. South Univ. 2022, 29, 4035–4050. [Google Scholar] [CrossRef]
- Dubiński, J.; Stec, K.; Krupanek, J. Comprehensive use of the Gutenberg-Richter law and Geotomography for improving seismic hazard evaluation in hard coal mines. Int. J. Coal. Sci. Technol. 2023, 10, 3. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Tang, L.; Li, J.; Ren, X. Fracturing behavior of brittle solids containing 3D internal crack of different depths under ultrasonic fracturing. Int. J. Min. Sci. Technol. 2022, 32, 1245–1257. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Tang, L.; Ren, X.; Meng, Q.; Zhu, C. Fracture of two 3D parallel internal cracks in brittle solid under ultrasonic fracturing. J. Rock. Mech. Geotech. Eng. 2022, 14, 757–769. [Google Scholar] [CrossRef]
- Feng, G.; Kang, Y.; Chen, F.; Liu, Y.; Wang, X. The influence of temperature on mixed-mode (I+II) and mode-II fracture toughness of sandstone. Eng. Fract. Mech. 2018, 189, 51–63. [Google Scholar] [CrossRef]
- Feng, G.; Kang, Y.; Meng, T.; Hu, Y.; Li, X. The influence of temperature on mode I fracture toughness and fracture characteristics of sandstone. Rock. Mech. Rock. Eng. 2017, 50, 2007–2019. [Google Scholar] [CrossRef]
- Zhang, J.; Song, Z.; Wang, S. Mechanical behavior of deep sandstone under high stress-seepage coupling. J. Cent. South Univ. 2021, 28, 3190–3206. [Google Scholar] [CrossRef]
- Jiang, F.; Zhou, H.; Sheng, J.; Li, X.; Kou, Y. Temperature effect on shear behavior of ore-backfill coupling specimens at various shear directions. J. Cent. South Univ. 2021, 28, 3173–3189. [Google Scholar] [CrossRef]
- Yang, J.; Wu, Z.; Sun, W.; Yao, C.; Wang, Q. Numerical simulation on radiation and energy of blast-induced seismic waves in deep rock masses. J. Cent. South Univ. 2022, 29, 645–662. [Google Scholar] [CrossRef]
- Sainoki, A.; Schwartzkopff, A.K.; Jiang, L.; Mitri, H. Numerical modelling of spatially and temporally distributed on-fault induced seismicity: Implication for seismic hazards. Int. J. Coal. Sci. Technol. 2023, 10, 4. [Google Scholar] [CrossRef]
- Jia, L.; Li, K.; Shi, X.; Zhao, L.; Linghu, J. Application of gas wettability alteration to improve methane drainage performance: A case study. Int. J. Min. Sci. Technol. 2021, 31, 621–629. [Google Scholar] [CrossRef]
- Chugh, Y.P.; Schladweiler, B.K.; Skilbred, C. Sustainable and responsible mining through sound mine closure. Int. J. Coal. Sci. Technol. 2023, 10, 14. [Google Scholar] [CrossRef]
- Ammirati, L.; Martire, D.D.; Bordicchia, F.; Calcaterra, D.; Russo, G.; Mondillo, N. Semi-real time systems for subsidence monitoring in areas affected by underground mining: The example of the Nuraxi-Figus coal district (Sardinia, Italy). Int. J. Coal. Sci. Technol. 2022, 9, 91. [Google Scholar] [CrossRef]
- Fallgren, P.H.; Chen, L.; Peng, M.; Urynowicz, M.A.; Jin, S. Facultative-anaerobic microbial digestion of coal preparation waste and use of effluent solids to enhance plant growth in a sandy soil. Int. J. Coal. Sci. Technol. 2021, 8, 767–779. [Google Scholar] [CrossRef]
- Tian, F.; Liang, Y.; Zhu, H.; Chen, M.; Wang, J. Application of a novel detection approach based on non-dispersive infrared theory to the in-situ analysis on indicator gases from underground coal fire. J. Cent. South Univ. 2022, 29, 1840–1855. [Google Scholar] [CrossRef]
- Ma, Q.; Tan, Y.; Liu, X.; Zhao, Z.; Fan, D.; Purev, L. Experimental and numerical simulation of loading rate effects on failure and strain energy characteristics of coal-rock composite samples. J. Cent. South Univ. 2021, 28, 3207–3222. [Google Scholar] [CrossRef]
- Wang, C.; Cao, C.; Chang, F.; Chuai, X.; Zhao, G.; Lu, H. Experimental investigation on synergetic prediction of granite rockburst using rock failure time and acoustic emission energy. J. Cent. South Univ. 2022, 29, 1262–1273. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Z.; Li, J.; Zhao, Y. Effects of earthquake on damage evolution and failure mechanism of key rock pillars in underground engineering. J. Cent. South Univ. 2022, 29, 3125–3139. [Google Scholar] [CrossRef]
- Shi, X.; Feng, G.; Bai, J.; Zhu, C.; Wang, S.; Wang, K.; Cui, B.; Song, C. Brazil splitting characteristics of coal-backfilling composite structure with different interface angles: Insights from laboratory experiment and numerical simulation. J. Cent. South Univ. 2023, 30, 189–201. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, X.; Song, X.; Wang, K.; Jiang, Y.; Yue, S. Experimental study on triaxial creep characteristics of the anthracite coal under low confining pressure. J. Cent. South Univ. 2023, 30, 1618–1630. [Google Scholar] [CrossRef]
- Leśniak, G.; Brunner, D.J.; Topór, T.; Słota-Valim, M.; Cicha-Szot, R.; Jura, B.; Skiba, J.; Przystolik, A.; Lyddall, B.; Plonka, G. Application of long-reach directional drilling boreholes for gas drainage of adjacent seams in coal mines with severe geological conditions. Int. J. Coal. Sci. Technol. 2022, 9, 88. [Google Scholar] [CrossRef]
- Namjesnik, D.; Kinscher, J.; Contrucci, I.; Klein, E. Impact of past mining on public safety: Seismicity in area of flooded abandoned coal Gardanne mine, France. Int. J. Coal. Sci. Technol. 2022, 9, 90. [Google Scholar] [CrossRef]
- Shekarian, Y.; Rahimi, E.; Rezaee, M.; Roghanchi, P. A systematic review of occupational exposure to respirable coal mine dust (RCMD) in the U.S. mining industry. Int. J. Coal. Sci. 2023, 10, 29. [Google Scholar] [CrossRef]
- Tian, F.; Liang, Y.; Wang, D.; Jin, K. Effects of caprock sealing capacities on coalbed methane preservation: Experimental investigation and case study. J. Cent. South Univ. 2019, 26, 925–937. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.; Wang, P.; Yu, G.; Gu, S. Experimental and theoretical study on the dynamic effective stress of loaded gassy coal during gas release. Int. J. Min. Sci. Technol. 2023, 33, 339–349. [Google Scholar] [CrossRef]
- Yang, L.; Rui, H.; Zhao, Q. Investigation of Barree-Conway non-Darcy flow effects on coalbed methane production. J. Cent. South Univ. 2016, 23, 3322–3331. [Google Scholar] [CrossRef]
- Feng, G.; Kang, Y.; Wang, X.; Hu, Y.; Li, X. Investigation on The Failure Characteristics and Fracture Classification of Shale Under Brazilian Test Conditions. Rock. Mech. Rock. Eng. 2020, 53, 3325–3340. [Google Scholar] [CrossRef]
- Feng, G.; Kang, Y.; Sun, Z.; Wang, X.; Hu, Y. Effects of Supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale. Energy 2019, 173, 870–882. [Google Scholar] [CrossRef]
- Zhu, G.; Dong, S.; Jia, H.; Dong, Z. Generation and propagation characteristics of fluctuation pressure in hydraulic fracturing with unstable fluid-injection. J. Cent. South Univ. 2022, 29, 186–196. [Google Scholar] [CrossRef]
- Su, D.W.H.; Zhang, P.; Dougherty, H.; Dyke, M.V.; Kimutis, R. Longwall mining, shale gas production, and underground miner safety and health. Int. J. Min. Sci. Technol. 2021, 31, 523–529. [Google Scholar] [CrossRef]
- Yang, W.; Han, S.; Li, W. Geological factors controlling deep geothermal anomalies in the Qianjiaying Mine, China. Int. J. Min. Sci. Technol. 2020, 30, 839–847. [Google Scholar] [CrossRef]
- Hu, J.; Xie, H.; Sun, Q.; Li, C.; Liu, G. Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action. Int. J. Min. Sci. Technol. 2021, 31, 843–852. [Google Scholar] [CrossRef]
- Hu, J.; Xie, H.; Gao, M.; Li, C.; Sun, Q. Damage mechanism and heat transfer characteristics of limestone after thermal shock cycle treatments based on geothermal development. Int. J. Rock. Mech. Min. 2022, 160, 105269. [Google Scholar] [CrossRef]
- Jin, P.; Hu, Y.; Shao, J.; Zhao, G.; Zhu, X.; Li, C. Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite. Geothermics 2019, 78, 118–128. [Google Scholar] [CrossRef]
- Feng, G.; Wang, X.; Kang, Y.; Zhang, Z. Effect of thermal cycling-dependent cracks on physical and mechanical properties of granite for enhanced geothermal system. Int. J. Rock. Mech. Min. 2020, 134, 104476. [Google Scholar] [CrossRef]
- Feng, G.; Wang, X.; Wang, M.; Kang, Y. Experimental investigation of thermal cycling on fracture characteristics of granite in a geothermal-energy reservoir. Eng. Fract. Mech. 2020, 235, 107180. [Google Scholar] [CrossRef]
- Feng, G.; Zhu, C.; Wang, X.; Tang, S. Thermal effects on prediction accuracy of dense granite mechanical behaviors using modified maximum tangential stress criterion. J. Rock. Mech. Geotech. 2023, 15, 1734–1748. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, G.; Xie, H.; Liu, A.; Taherdangkoo, R.; Lyu, Q. Geomechanics for Energy and the Environment. Energies 2023, 16, 6588. https://doi.org/10.3390/en16186588
Feng G, Xie H, Liu A, Taherdangkoo R, Lyu Q. Geomechanics for Energy and the Environment. Energies. 2023; 16(18):6588. https://doi.org/10.3390/en16186588
Chicago/Turabian StyleFeng, Gan, Hongqiang Xie, Ang Liu, Reza Taherdangkoo, and Qiao Lyu. 2023. "Geomechanics for Energy and the Environment" Energies 16, no. 18: 6588. https://doi.org/10.3390/en16186588
APA StyleFeng, G., Xie, H., Liu, A., Taherdangkoo, R., & Lyu, Q. (2023). Geomechanics for Energy and the Environment. Energies, 16(18), 6588. https://doi.org/10.3390/en16186588