Optimization of Expressway Microgrid Construction Mode and Capacity Configuration Considering Carbon Trading
Abstract
:1. Introduction
- (1)
- This paper proposes a MINLP model that includes carbon trading and a carbon offset mechanism for optimizing the construction mode and capacity configuration of expressway microgrids with various energy sources. In addition, this paper compares the effects of different source-load structures on the optimal construction mode selection.
- (2)
- The necessity and validity of taking carbon trading mechanism into account is investigated by comparing the planning results with different carbon trading models.
- (3)
- The effects of the changing of CER trading price on the optimal construction mode selection are compared.
2. Problem Statement
3. Probabilistic Renewable Energy Generation Modeling
3.1. Modeling of Solar Irradiance and PV Module Output Power
3.2. Modeling of Wind Speed and Wind Turbine Output Power
4. Expressway Microgrid Construction Mode and Capacity Configuration Optimization Design Model
4.1. Introduction of Carbon Trading Mechanism
4.1.1. Free Carbon Emission Allowance
4.1.2. Carbon Trading Model Considering Carbon Offset Mechanism
4.2. Objective Function
4.2.1. Investment Cost
4.2.2. Operational Cost
4.3. Constraints
4.3.1. Power Balance Constraints
4.3.2. Renewable Energy Installed Capacity Constraints
4.3.3. Renewable Energy Output Constraints
4.3.4. Diesel Generator Output Constraints
4.3.5. Battery Energy Storage Constraints
4.3.6. Transmission Line Constraints
4.3.7. AC/DC Load Constraint
4.3.8. SVC Constraint
5. Case Study
5.1. Basic Data
- (a)
- Scenario a is the base scenario represented by the data above, which is applicable to a normal expressway microgrid that contains AC and DC loads.
- (b)
- Scenario b reduces the grid-connected distance to 5 km on the basis of scenario a, which is applicable to expressway load centers close to the point of common coupling.
- (c)
- Scenario c adds the maximum deployable capacity of PV power generation to 3000 kW, which is the deployable capacity in the available area of the expressway side slopes around the load center. This scenario is applicable to load centers on east–west expressways, whose side slopes are able to make full use of PV resources, while north–south expressways are not.
- (d)
- Scenario d eliminates the DC loads on the basis of scenario a. This scenario is applicable to expressway microgrids that contain only AC loads, such as tunnels and service areas without charging points.
5.2. Optimization Results and Analysis of Different Scenarios
5.2.1. Scenario a
5.2.2. Scenario b
5.2.3. Scenario c
5.2.4. Scenario d
5.3. Comparison between Different Carbon Trading Models
5.4. Sensitivity Analysis of the CER Trading Price
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, M.; Zheng, W.; Wang, Z. Environmental efficiency and energy consumption of highway transportation systems in China. Int. J. Prod. Econ. 2016, 181, 441–449. [Google Scholar] [CrossRef]
- Ye, Y.; Shi, R.; Gao, Y.; Ma, X.; Wang, D. Two-Stage Optimal Scheduling of Highway Self-Consistent Energy System in Western China. Energies 2023, 16, 2435. [Google Scholar] [CrossRef]
- Jia, L.; Ma, J.; Cheng, P.; Liu, Y. A Perspective on Solar Energy-powered Road and Rail Transportation in China. CSEE J. Power Energy Syst. 2020, 6, 760–771. [Google Scholar]
- Ding, Z.; Zhang, Y.; Tan, W.; Pan, X.; Tang, H. Pricing Based Charging Navigation Scheme for Highway Transportation to Enhance Renewable Generation Integration. IEEE Trans. Ind. Appl. 2023, 59, 108–117. [Google Scholar] [CrossRef]
- Hafez, O.; Bhattacharya, K. Optimal design of electric vehicle charging stations considering various energy resources. Renew. Energy 2017, 107, 576–589. [Google Scholar] [CrossRef]
- Shoji, T.; Noda, T. A study of harmonics in a dedicated cable supply system to feed EV fast chargers. Electr. Power Syst. Res. 2023, 221, 109421. [Google Scholar] [CrossRef]
- Hu, Z.C.; Song, Y.H.; Xu, Z.W.; Luo, Z.W.; Zhan, K.Q.; Jia, L. Impacts and Utilization of Electric Vehicles Integration into Power Systems. Proc. Chin. Soc. Electr. Eng. 2012, 32, 1–10. [Google Scholar]
- Pires, V.F.; Pires, A.; Cordeiro, A. DC Microgrids: Benefits, Architectures, Perspectives and Challenges. Energies 2023, 16, 1217. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, B.; Chen, Z.; Ni, C.; Yan, J.; Yan, X.; Bian, X.; Liu, N. Low-carbon operation method of microgrid considering carbon emission quota trading. Energy Rep. 2023, 9, 379–387. [Google Scholar] [CrossRef]
- Bae, S.; Kwasinski, A. Spatial and Temporal Model of Electric Vehicle Charging Demand. IEEE Trans. Smart Grid 2012, 3, 394–403. [Google Scholar] [CrossRef]
- Liu, H.; Li, R.; Ge, S.Y.; Wang, L.; Han, J. Multi-objective Planning of Electric Vehicle Charging Stations on Expressway Based on Dynamic Traffic Flow Simulation. Autom. Electr. Power Syst. 2015, 39, 56–62+79. [Google Scholar]
- Ge, S.Y.; Zhu, L.W.; Liu, H.; Li, T.; Liu, C. Optimal Deployment of Electric Vehicle Charging Stations on the Highway Based on Dynamic Traffic Simulation. Trans. China Electrotech. Soc. 2018, 33, 2991–3001. [Google Scholar]
- Rousis, A.O.; Konstantelos, I.; Strbac, G. A Planning Model for a Hybrid AC-DC Microgrid Using a Novel GA/AC OPF Algorithm. IEEE Trans. Power Syst. 2020, 35, 227–237. [Google Scholar] [CrossRef]
- Lotfi, H.; Khodaei, A. AC Versus DC Microgrid Planning. IEEE Trans. Smart Grid 2017, 8, 296–304. [Google Scholar] [CrossRef]
- Hamad, A.A.; Nassar, M.E.; El-Saadany, E.F.; Salama, M.M.A. Optimal Configuration of Isolated Hybrid AC/DC Microgrids. IEEE Trans. Smart Grid 2019, 10, 2789–2798. [Google Scholar] [CrossRef]
- Cleenwerck, R.; Azaioud, H.; Vafaeipour, M.; Coosemans, T.; Desmet, J. Impact Assessment of Electric Vehicle Charging in an AC and DC Microgrid: A Comparative Study. Energies 2023, 16, 3205. [Google Scholar] [CrossRef]
- John, B.; Ghosh, A.; Goyal, M.; Zare, F. A DC Power Exchange Highway Based Power Flow Management for Interconnected Microgrid Clusters. IEEE Syst. J. 2019, 13, 3347–3357. [Google Scholar] [CrossRef]
- Ning, F.; Ji, L.; Ma, J.; Jia, L.; Yu, Z. Research and analysis of a flexible integrated development model of railway system and photovoltaic in China. Renew. Energy 2021, 175, 853–867. [Google Scholar] [CrossRef]
- D’Arco, S.; Piegari, L.; Tricoli, P. Comparative Analysis of Topologies to Integrate Photovoltaic Sources in the Feeder Stations of AC Railways. IEEE Trans. Transp. Electrif. 2018, 4, 951–960. [Google Scholar] [CrossRef]
- Tabar, V.S.; Jirdehi, M.A.; Hemmati, R. Sustainable planning of hybrid microgrid towards minimizing environmental pollution, operational cost and frequency fluctuations. J. Clean. Prod. 2018, 203, 1187–1200. [Google Scholar] [CrossRef]
- Wang, R.; Wen, X.; Wang, X.; Fu, Y.; Zhang, Y. Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading. Appl. Energy 2022, 311, 118664. [Google Scholar] [CrossRef]
- Feng, F.; Du, X.; Si, Q.; Cai, H. Hybrid Game Optimization of Microgrid Cluster (MC) Based on Service Provider (SP) and Tiered Carbon Price. Energies 2022, 15, 5291. [Google Scholar] [CrossRef]
- Atwa, Y.M.; El-Saadany, E.F.; Salama, M.M.A.; Seethapathy, R.; Assam, M.; Conti, S. Adequacy Evaluation of Distribution System Including Wind/Solar DG during Different Modes of Operation. IEEE Trans. Power Syst. 2011, 26, 1945–1952. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Chen, J.; Wang, C.; Guo, L. Operation Optimization of Standalone Microgrids Considering Lifetime Characteristics of Battery Energy Storage System. IEEE Trans. Sustain. Energy 2013, 4, 934–943. [Google Scholar] [CrossRef]
- Wang, L.; Dong, H.; Lin, J.; Zeng, M. Multi-objective optimal scheduling model with IGDT method of integrated energy system considering ladder-type carbon trading mechanism. Int. J. Electr. Power Energy Syst. 2022, 143, 108386. [Google Scholar] [CrossRef]
- Li, L.X.; Ye, F.; Li, Y.N.; Chang, C.-T. How will the Chinese Certified Emission Reduction scheme save cost for the national carbon trading system? J. Environ. Manag. 2019, 244, 99–109. [Google Scholar] [CrossRef]
- Yu, J.; Mallory, M.L. Carbon price interaction between allocated permits and generated offsets. Oper. Res. 2020, 20, 671–700. [Google Scholar] [CrossRef]
- Naderipour, A.; Saboori, H.; Mehrjerdi, H.; Jadid, S.; Abdul-Malek, Z. Sustainable and reliable hybrid AC/DC microgrid planning considering technology choice of equipment. Sustain. Energy Grids Netw. 2020, 23, 100386. [Google Scholar] [CrossRef]
- Liang, S.H.; Lou, S.H.; Wu, Y.W.; Peng, Y. Generation Expansion Planning for Solvent-Storaged Carbon Capture Power Plants Considering the Internalization of the Carbon Emission Effects. IEEE Trans. Power Syst. 2023, 1–15. [Google Scholar] [CrossRef]
- Zhang, H.; Moura, S.J.; Hu, Z.; Song, Y. PEV Fast-Charging Station Siting and Sizing on Coupled Transportation and Power Networks. IEEE Trans. Smart Grid 2018, 9, 2595–2605. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, J.K.; Zhang, B.; Wu, F.Z. Optimal configuration of grid-connected microgrid with hydrogen energy storage considering ladder-type carbon trading and demand response. Electr. Power Autom. Equip. 2023, 43, 121–129. [Google Scholar]
- Che, Q.H.; Wu, Y.W.; Zhu, Z.G.; Lou, S.H. Carbon Trading Based Optimal Scheduling of Hybrid Energy Storage System in Power Systems with Large-scale Photovoltaic Power Generation. Autom. Electr. Power Syst. 2019, 43, 76–82+154. [Google Scholar]
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
(USD/kW) | 825 | (USD/kW) | 120 | (USD/kW) | 0.1 |
(USD/kW) | 525 | (USD/kW) | 140 | (USD/kW) | 0.03 |
(USD/kW) | 200 | (USD/kW) | 140 | & | 0.96 |
(USD/kW) | 150 | (USD/kW) | 140 | & & | 0.95 |
(USD/kWh) | 180 | (USD/kW) | 788 | (USD/kvar) | 30 |
(kg/kWh) | 0.50 | (kg/kWh) | 0.65 | (USD/t) | 40 |
(kg/kWh) | 0.78 | (kg/kWh) | 0.92 | (USD/t) | 20 |
Capacity Configuration | Mode 1 | Mode 2 | Mode 3 | Mode 4 |
---|---|---|---|---|
Wind power generation (kW) | 500 | 500 | 500 | 500 |
PV power generation (kW) | 1500 | 1500 | 1500 | 1500 |
Battery energy storage power capacity (kW) | 251 | 241 | 225 | 158 |
Battery energy storage energy capacity (kWh) | 1105 | 1284 | 1155 | 750 |
Diesel generator (kW) | 0 | 0 | 344 | 394 |
Transmission line (kW) | 366 | 360 | 0 | 0 |
SVC capacity (kvar) | 0 | 20 | 0 | 28 |
Annualized comprehensive cost (USD) | 316,668 | 343,093 | 306,856 | 323,184 |
Capacity Configuration | Mode 1 | Mode 2 | Mode 3 | Mode 4 |
---|---|---|---|---|
Wind power generation (kW) | 500 | 500 | 500 | 500 |
PV power generation (kW) | 1500 | 1500 | 1500 | 1500 |
Battery energy storage power capacity (kW) | 176 | 161 | 225 | 158 |
Battery energy storage energy capacity (kWh) | 689 | 560 | 1155 | 750 |
Diesel generator (kW) | 0 | 0 | 344 | 394 |
Transmission line (kW) | 396 | 404 | 0 | 0 |
SVC capacity (kvar) | 0 | 59 | 0 | 28 |
Annualized comprehensive cost (USD) | 246,838 | 265,343 | 306,856 | 323,184 |
Capacity Configuration | Mode 1 | Mode 2 | Mode 3 | Mode 4 |
---|---|---|---|---|
Wind power generation (kW) | 500 | 500 | 500 | 500 |
PV power generation (kW) | 2254 | 2120 | 1860 | 1847 |
Battery energy storage power capacity (kW) | 273 | 216 | 311 | 280 |
Battery energy storage energy capacity (kWh) | 1211 | 1005 | 1914 | 1643 |
Diesel generator (kW) | 0 | 0 | 288 | 308 |
Transmission line (kW) | 346 | 359 | 0 | 0 |
SVC capacity (kvar) | 0 | 16 | 0 | 5 |
Annualized comprehensive cost (USD) | 294,699 | 325,899 | 294,942 | 318,934 |
Capacity Configuration | Mode 1 | Mode 2 | Mode 3 | Mode 4 |
---|---|---|---|---|
Wind power generation (kW) | 500 | 500 | 500 | 500 |
PV power generation (kW) | 344 | 238 | 245 | 190 |
Battery energy storage power capacity (kW) | 46 | 31 | 35 | 10 |
Battery energy storage energy capacity (kWh) | 134 | 73 | 93 | 31 |
Diesel generator (kW) | 0 | 0 | 87 | 97 |
Transmission line (kW) | 80 | 82 | 0 | 0 |
SVC capacity (kvar) | 0 | 92 | 0 | 88 |
Annualized comprehensive cost (USD) | 66,251 | 55,601 | 71,193 | 57,098 |
Planning Result | Model a | Model b | Model c |
---|---|---|---|
Construction mode | Mode 3 | Mode 3 | Mode 1 |
Wind power generation (kW) | 500 | 500 | 500 |
PV power generation (kW) | 1805 | 1805 | 2254 |
Battery energy storage power capacity (kW) | 288 | 288 | 273 |
Battery energy storage energy capacity (kWh) | 1744 | 1744 | 1211 |
Diesel generator (kW) | 300 | 300 | 0 |
Transmission line (kW) | 0 | 0 | 346 |
CER Trading Price (USD/t) | 10 | 15 | 20 | 25 | 30 |
---|---|---|---|---|---|
Construction mode | Mode 3 | Mode 3 | Mode 1 | Mode 1 | Mode 1 |
Wind power generation (kW) | 500 | 500 | 500 | 500 | 500 |
PV power generation (kW) | 1805 | 1807 | 2254 | 2325 | 2325 |
Battery energy storage power capacity (kW) | 288 | 288 | 273 | 303 | 303 |
Battery energy storage energy capacity (kWh) | 1744 | 1743 | 1211 | 1211 | 1211 |
Diesel generator (kW) | 300 | 300 | 0 | 0 | 0 |
Transmission line (kW) | 0 | 0 | 346 | 346 | 346 |
Annualized comprehensive cost (USD) | 321,414 | 308,226 | 294,699 | 277,997 | 261,217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, L.; Bai, C.; Fu, H.; Lou, S.; Fu, Y. Optimization of Expressway Microgrid Construction Mode and Capacity Configuration Considering Carbon Trading. Energies 2023, 16, 6720. https://doi.org/10.3390/en16186720
Yao L, Bai C, Fu H, Lou S, Fu Y. Optimization of Expressway Microgrid Construction Mode and Capacity Configuration Considering Carbon Trading. Energies. 2023; 16(18):6720. https://doi.org/10.3390/en16186720
Chicago/Turabian StyleYao, Lei, Chongtao Bai, Hao Fu, Suhua Lou, and Yan Fu. 2023. "Optimization of Expressway Microgrid Construction Mode and Capacity Configuration Considering Carbon Trading" Energies 16, no. 18: 6720. https://doi.org/10.3390/en16186720
APA StyleYao, L., Bai, C., Fu, H., Lou, S., & Fu, Y. (2023). Optimization of Expressway Microgrid Construction Mode and Capacity Configuration Considering Carbon Trading. Energies, 16(18), 6720. https://doi.org/10.3390/en16186720