A Review on the Fundamental Properties of Sb2Se3-Based Thin Film Solar Cells
Abstract
:1. Introduction
- Bulk technology;
- Epitaxy;
- Thin film technology.
- The difficulty of cost-effectively transferring the epitaxial layer away from the substrate [22].
2. Properties
2.1. Structural Properties
2.2. Optical Properties and Band Structure
2.3. Defects in Antimony Selenide
- Se-rich conditions (Sb/Se ratio < 0.66);
- Sb-rich conditions (Sb/Se ratio > 0.66).
Sb2Se3 | Deposition Techniques | Ref. | |
---|---|---|---|
Density (g cm−3) | 5.84 | - | [125] |
Melting point (K) | 885 | - | [125] |
Conductivity (Ω−1 cm−1) | 2.5 × 10−5–6.7 × 10−7 | RTE; RFMS | [126,127,128] |
Eg (eV) | 1.02–1.26 | SC; RTE; RFMS; CBD | [58,92,111,112,129] |
χ (eV) | 3.9–4.15 | HSP; RFMS | [58,111,112,129] |
NA (cm−3) | 3.0 × 1013; 2 × 1014 | HSP; RFMS | [129] [58] |
Nv (cm−3) | 1.8 × 1019; 1.5–1.8 × 1020 | RTE; VTD | [130] [91] |
Nc (cm−3) | 2.2 × 1018; 1.4 × 1019; 1 × 1018 | RTE; VTD; RFMS | [130] [91] [58] |
Nt (cm−3) | 1.6–13 × 1015; 6.9 × 1014; 1.6 × 1015 | RFMS; RFMS, RTE; | [121] [130] [58] |
μn (cm2 V−1 s−1) | 10–17 | RTE; | [58,130] |
μp (cm2 V−1 s−1) | 1–5.1 | HSP; RTE | [58,129,130] |
τ (ns) | 67; 1.3; 0.6–4; | RTE; RTE; VTD; | [130] [61] [58] |
ε | 15.1; 18–19; 14.59 | RFMS; RTE; CBD | [121] [58,130] [92] |
κ | ≈1.5–2.5 | TE; CBD | [83,92] |
n | ≈4–4.5 | TE; CBD | [83,92] |
3. Device Configurations
4. Charge Transport, Recombination and Collection
4.1. Defects Mitigation
4.2. Reducing Recombination Losses
5. Deposition Techniques
6. Conclusions
- The selection of appropriate n-type materials to couple with Sb2Se3 is vital to reduce interface recombination and to increase the diode rectification and the shunt resistance. Furthermore, rising the transparency of the n part of the p-n junction will be beneficial in increasing the photocurrent;
- The control of the orientation of the Sb2Se3 film is of fundamental importance for this material due to the particular 1D crystalline structure;
- The deposition technique can also play a fundamental role, since performing the deposition in a Se-rich or Se-poor atmosphere means having control over the substitutional defects of Sb and Se, respectively, as well as over the interstitial defects which, as a rule, generate deep harmful levels in the energy gap;
- The engineering of the energy bands, the formation of alloys with Sb2S3, the passivation of interface defects and, more generally, the control of defects will have an increasingly crucial role;
- To overcome this challenge, it is necessary to find an effective way to render the defects that generate deep levels or recombination centers harmless. One possible strategy is to introduce p-type dopants to increase the intrinsic low carrier density of Sb2Se3.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. World Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- Ramanujam, J.; Verma, A.; González-Díaz, B.; Guerrero-Lemus, R.; del Cañizo, C.; García-Tabarés, E.; Rey-Stolle, I.; Granek, F.; Korte, L.; Tucci, M.; et al. Inorganic Photovoltaics—Planar and Nanostructured Devices. Prog. Mater. Sci. 2016, 82, 294–404. [Google Scholar] [CrossRef]
- Grätzel, M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorg. Chem. 2005, 44, 6841–6851. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.Nrel.Gov/Pv/Assets/Pdfs/Cell-Pv-Eff-Crysi.Pdf (accessed on 27 August 2023).
- Polverini, D.; Field, M.; Dunlop, E.; Zaaiman, W. Polycrystalline Silicon PV Modules Performance and Degradation over 20 Years. Prog. Photovolt. Res. Appl. 2013, 21, 1004–1015. [Google Scholar] [CrossRef]
- Bathey, B.R.; Cretella, M.C. Solar-Grade Silicon. J. Mater. Sci. 1982, 17, 3077–3096. [Google Scholar] [CrossRef]
- Lan, C.-W.; Hsieh, C.-K.; Hsu, W.-C. Czochralski Silicon Crystal Growth for Photovoltaic Applications. In Crystal Growth of Si for Solar Cells; Nakajima, K., Usami, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 25–39. [Google Scholar]
- Li, M.; Dai, Y.; Ma, W.; Yang, B.; Chu, Q. Review of New Technology for Preparing Crystalline Silicon Solar Cell Materials by Metallurgical Method. IOP Conf. Ser. Earth Environ. Sci. 2017, 94, 012016. [Google Scholar] [CrossRef]
- Hull, R. Properties of Crystalline Silicon; IET: Stevenage, UK, 1999; ISBN 0852969333. [Google Scholar]
- Kangsabanik, J.; Svendsen, M.K.; Taghizadeh, A.; Crovetto, A.; Thygesen, K.S. Indirect Band Gap Semiconductors for Thin-Film Photovoltaics: High-Throughput Calculation of Phonon-Assisted Absorption. J. Am. Chem. Soc. 2022, 144, 19872–19883. [Google Scholar] [CrossRef]
- Bube, R.H. Photovoltaic Materials; Newman, R.C., Ed.; Imperial College Press: London, UK, 1998; Volume 1, ISBN 1-86094-065-X. [Google Scholar]
- Stutenbaeumer, U.; Lewetegn, E. Comparison of Minority Carrier Diffusion Length Measurements in Silicon Solar Cells by the Photo-Induced Open-Circuit Voltage Decay (OCVD) with Different Excitation Sources. Renew. Energy 2000, 20, 65–74. [Google Scholar] [CrossRef]
- Alharbi, F.; Bass, J.D.; Salhi, A.; Alyamani, A.; Kim, H.C.; Miller, R.D. Abundant Non-Toxic Materials for Thin Film Solar Cells: Alternative to Conventional Materials. Renew. Energy 2011, 36, 2753–2758. [Google Scholar] [CrossRef]
- Sugaya, T.; Makita, K.; Takeda, A.; Oshima, R.; Matsubara, K.; Okano, Y.; Niki, S. InGaP/GaAs Tandem Solar Cells Fabricated Using Solid-Source Molecular Beam Epitaxy. Jpn. J. Appl. Phys. 2014, 53, 05FV06. [Google Scholar] [CrossRef]
- Miyashita, N.; Okada, Y. Inverted Lattice-Matched GaInP/GaAs/GaInNAsSb Triple-Junction Solar Cells: Epitaxial Lift-off Thin-Film Devices and Potential Space Applications. In Photovoltaics for Space; Elsevier: Amsterdam, The Netherlands, 2023; pp. 265–291. [Google Scholar] [CrossRef]
- Schön, J.; Bissels, G.M.M.W.; Mulder, P.; van Leest, R.H.; Gruginskie, N.; Vlieg, E.; Chojniak, D.; Lackner, D. Improvements in Ultra-light and Flexible Epitaxial Lift-off GaInP/GaAs/GaInAs Solar Cells for Space Applications. Prog. Photovolt. Res. Appl. 2022, 30, 1003–1011. [Google Scholar] [CrossRef]
- Van Rossum, M. Integrated Circuits. In Encyclopedia of Condensed Matter Physics; IMEC: Leuven, Belgium, 2005; pp. 394–403. [Google Scholar] [CrossRef]
- Geisz, J.F.; France, R.M.; Schulte, K.L.; Steiner, M.A.; Norman, A.G.; Guthrey, H.L.; Young, M.R.; Song, T.; Moriarty, T. Six-Junction III–V Solar Cells with 47.1% Conversion Efficiency under 143 Suns Concentration. Nat. Energy 2020, 5, 326–335. [Google Scholar] [CrossRef]
- Papež, N.; Dallaev, R.; Ţălu, Ş.; Kaštyl, J. Overview of the Current State of Gallium Arsenide-Based Solar Cells. Materials 2021, 14, 3075. [Google Scholar] [CrossRef]
- Levillayer, M.; Arnoult, A.; Massiot, I.; Duzellier, S.; Nuns, T.; Inguimbert, C.; Aicardi, C.; Parola, S.; Carrère, H.; Balocchi, A.; et al. As-Grown InGaAsN Subcells for Multijunction Solar Cells by Molecular Beam Epitaxy. IEEE J. Photovolt. 2021, 11, 1271–1277. [Google Scholar] [CrossRef]
- Miglio, L.; Sassella, A. Epitaxy. In Encyclopedia of Condensed Matter Physics; Università degli Studi di Milano: Milan, Italy, 2005; pp. 157–166. [Google Scholar] [CrossRef]
- Massiot, I.; Cattoni, A.; Collin, S. Progress and Prospects for Ultrathin Solar Cells. Nat. Energy 2020, 5, 959–972. [Google Scholar] [CrossRef]
- Abegunde, O.O.; Akinlabi, E.T.; Oladijo, O.P.; Akinlabi, S.; Ude, A.U. Overview of Thin Film Deposition Techniques. AIMS Mater. Sci. 2019, 6, 174–199. [Google Scholar] [CrossRef]
- Depla, D.; Mahieu, S.; Greene, J.E. Sputter Deposition Processes. In Handbook of Deposition Technologies for Films and Coatings; Elsevier: Amsterdam, The Netherlands, 2010; pp. 253–296. [Google Scholar]
- Seshan, K. Handbook of Thin Film Deposition Techniques Principles, Methods, Equipment and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2002; ISBN 9780429076749. [Google Scholar]
- Romeo, A.; Bätzner, D.L.; Zogg, H.; Tiwari, A.N. Recrystallization in CdTe/CdS. Thin Solid Films 2000, 361–362, 420–425. [Google Scholar] [CrossRef]
- Ferekides, C.; Britt, J.; Ma, Y.; Killian, L. High Efficiency CdTe Solar Cells by Close Spaced Sublimation. In Proceedings of the Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference—1993 (Cat. No.93CH3283-9), Louisville, KY, USA, 10–14 May 1993; pp. 389–393. [Google Scholar]
- Hopwood, J. Ionized Physical Vapor Deposition of Integrated Circuit Interconnects. Phys. Plasmas. 1998, 5, 1624–1631. [Google Scholar] [CrossRef]
- Rossnagel, S.M. Sputter Deposition for Semiconductor Manufacturing. IBM J. Res. Dev. 1999, 43, 163–179. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D.; Ahmed, W.; Afzal, A. Novel Engineering Coatings Produced by Closed-Field Unbalanced Magnetron Sputtering. Mater. Des. 1996, 17, 215–219. [Google Scholar] [CrossRef]
- Martinu, L.; Poitras, D. Plasma Deposition of Optical Films and Coatings: A Review. J. Vac. Sci. Technol. A Vac. Surf. Film. 2000, 18, 2619–2645. [Google Scholar] [CrossRef]
- Nadel, S.J.; Greene, P.; Rietzel, J.; Strümpfel, J. Equipment, Materials and Processes: A Review of High Rate Sputtering Technology for Glass Coating. Thin Solid Films 2003, 442, 11–14. [Google Scholar] [CrossRef]
- Blondeel, A.; Persoone, P.; De Bosselier, W. Rotatable Magnetron Sputter Technology for Large Area Glass and Web Coating. Vak. Forsch. Prax. 2009, 21, 6–13. [Google Scholar] [CrossRef]
- Bosio, A.; Pasini, S.; Romeo, N. The History of Photovoltaics with Emphasis on CdTe Solar Cells and Modules. Coatings 2020, 10, 344. [Google Scholar] [CrossRef]
- Devaney, W.E.; Barnett, A.M.; Storti, G.M.; Meakin, J.D. The Design and Fabrication of CdS/Cu2S Cells of 8.5-Percent Conversion Efficiency. IEEE Trans. Electron. Devices 1979, 26, 205–210. [Google Scholar] [CrossRef]
- Gill, W.D.; Bube, R.H. Photovoltaic Properties of Cu2S-CdS Heterojunctions. J. Appl. Phys. 1970, 41, 3731–3738. [Google Scholar] [CrossRef]
- Chopra, K.L.; Paulson, P.D.; Dutta, V. Thin-Film Solar Cells: An Overview. Prog. Photovolt. Res. Appl. 2004, 12, 69–92. [Google Scholar] [CrossRef]
- Romeo, A.; Artegiani, E. CdTe-Based Thin Film Solar Cells: Past, Present and Future. Energies 2021, 14, 1684. [Google Scholar] [CrossRef]
- Mufti, N.; Amrillah, T.; Taufiq, A.; Sunaryono; Aripriharta; Diantoro, M.; Zulhadjri; Nur, H. Review of CIGS-Based Solar Cells Manufacturing by Structural Engineering. Sol. Energy 2020, 207, 1146–1157. [Google Scholar] [CrossRef]
- Stuckelberger, M.; Biron, R.; Wyrsch, N.; Haug, F.J.; Ballif, C. Review: Progress in Solar Cells from Hydrogenated Amorphous Silicon. Renew. Sustain. Energy Rev. 2017, 76, 1497–1523. [Google Scholar] [CrossRef]
- Chen, C.; Li, K.; Tang, J. Ten Years of Sb2Se3 Thin Film Solar Cells. Sol. RRL 2022, 6, 2200094. [Google Scholar] [CrossRef]
- Nicolás-Marín, M.M.; González-Castillo, J.R.; Vigil-Galán, O.; Courel, M. The State of the Art of Sb2(S,Se)3 Thin Film Solar Cells: Current Progress and Future Prospect. J. Phys. D Appl. Phys. 2022, 55, 303001. [Google Scholar] [CrossRef]
- Kondrotas, R.; Chen, C.; Tang, J. Sb2S3 Solar Cells. Joule 2018, 2, 857–878. [Google Scholar] [CrossRef]
- Spaggiari, G.; Rampino, S.; Bersani, D. Sb2Se3: A Possible Future for Thin-Film Photovoltaics? EPJ Web. Conf. 2022, 268, 00006. [Google Scholar] [CrossRef]
- Mavlonov, A.; Razykov, T.; Raziq, F.; Gan, J.; Chantana, J.; Kawano, Y.; Nishimura, T.; Wei, H.; Zakutayev, A.; Minemoto, T.; et al. A Review of Sb2Se3 Photovoltaic Absorber Materials and Thin-Film Solar Cells. Sol. Energy 2020, 201, 227–246. [Google Scholar] [CrossRef]
- Lei, H.; Chen, J.; Tan, Z.; Fang, G. Review of Recent Progress in Antimony Chalcogenide-Based Solar Cells: Materials and Devices. Sol. RRL 2019, 3, 1900026. [Google Scholar] [CrossRef]
- Le Donne, A.; Trifiletti, V.; Binetti, S. New Earth-Abundant Thin Film Solar Cells Based on Chalcogenides. Front. Chem. 2019, 7, 297. [Google Scholar] [CrossRef]
- Juneja, N.; Mandati, S.; Katerski, A.; Spalatu, N.; Daskeviciute-Geguziene, S.; Vembris, A.; Karazhanov, S.; Getautis, V.; Krunks, M.; Oja Acik, I. Sb2S3 Solar Cells with a Cost-Effective and Dopant-Free Fluorene-Based Enamine as a Hole Transport Material. Sustain. Energy Fuels 2022, 6, 3220–3229. [Google Scholar] [CrossRef]
- Candelise, C.; Winskel, M.; Gross, R. Implications for CdTe and CIGS Technologies Production Costs of Indium and Tellurium Scarcity. Prog. Photovolt. Res. Appl. 2012, 20, 816–831. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Li, C.; Che, B.; Chen, X.; Chen, H.; Tang, R.; Wang, X.; Chen, G.; Wang, T.; et al. Regulating Deposition Kinetics via a Novel Additive-Assisted Chemical Bath Deposition Technology Enables Fabrication of 10.57%-Efficiency Sb2Se3 Solar Cells. Energy Environ. Sci. 2022, 15, 5118–5128. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Jiang, C.; Li, C.; Xiao, P.; Tang, R.; Gong, J.; Chen, G.; Chen, T.; Li, J.; et al. Regulating Energy Band Alignment via Alkaline Metal Fluoride Assisted Solution Post-Treatment Enabling Sb2(S,Se)3 Solar Cells with 10.7% Efficiency. Adv. Energy Mater. 2022, 12, 2103015. [Google Scholar] [CrossRef]
- Choi, Y.C.; Lee, D.U.; Noh, J.H.; Kim, E.K.; Seok, S. Il Highly Improved Sb2S3 Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy. Adv. Funct. Mater. 2014, 24, 3587–3592. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hinken, D.; Rauer, M.; Hao, X. Solar Cell Efficiency Tables (Version 60). Prog. Photovolt. Res. Appl. 2022, 30, 687–701. [Google Scholar] [CrossRef]
- Messina, S.; Nair, M.T.S.; Nair, P.K. Antimony Selenide Absorber Thin Films in All-Chemically Deposited Solar Cells. J. Electrochem. Soc. 2009, 156, H327. [Google Scholar] [CrossRef]
- Barrios-Salgado, E.; Nair, M.T.S.; Nair, P.K.; Zingaro, R.A. Chemically Deposited Thin Films of PbSe as an Absorber Component in Solar Cell Structures. Thin Solid Films 2011, 519, 7432–7437. [Google Scholar] [CrossRef]
- Leng, M.; Luo, M.; Chen, C.; Qin, S.; Chen, J.; Zhong, J.; Tang, J. Selenization of Sb2Se3 Absorber Layer: An Efficient Step to Improve Device Performance of CdS/Sb2Se3 Solar Cells. Appl. Phys. Lett. 2014, 105, 083905. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Chen, S.; Qin, S.; Liu, X.; Chen, J.; Xue, D.-J.; Luo, M.; Cao, Y.; Cheng, Y.; et al. Thin-Film Sb2Se3 Photovoltaics with Oriented One-Dimensional Ribbons and Benign Grain Boundaries. Nat. Photonics 2015, 9, 409–415. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Gao, L.; Nam, D.; Li, D.; Li, K.; Zhao, Y.; Ge, C.; Cheong, H.; Liu, H.; et al. 6.5% Certified Efficiency Sb2Se3 Solar Cells Using PbS Colloidal Quantum Dot Film as Hole-Transporting Layer. ACS Energy Lett. 2017, 2, 2125–2132. [Google Scholar] [CrossRef]
- Li, Z.; Liang, X.; Li, G.; Liu, H.; Zhang, H.; Guo, J.; Chen, J.; Shen, K.; San, X.; Yu, W.; et al. 9.2%-Efficient Core-Shell Structured Antimony Selenide Nanorod Array Solar Cells. Nat. Commun. 2019, 10, 125. [Google Scholar] [CrossRef]
- Duan, Z.; Liang, X.; Feng, Y.; Ma, H.; Liang, B.; Wang, Y.; Luo, S.; Wang, S.; Schropp, R.E.I.; Mai, Y.; et al. Sb2Se3 Thin-Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology. Adv. Mater. 2022, 34, 2202969. [Google Scholar] [CrossRef]
- Wen, X.; Chen, C.; Lu, S.; Li, K.; Kondrotas, R.; Zhao, Y.; Chen, W.; Gao, L.; Wang, C.; Zhang, J.; et al. Vapor Transport Deposition of Antimony Selenide Thin Film Solar Cells with 7.6% Efficiency. Nat. Commun. 2018, 9, 2179. [Google Scholar] [CrossRef]
- Itzhaik, Y.; Niitsoo, O.; Page, M.; Hodes, G. Sb2S3 -Sensitized Nanoporous TiO2 Solar Cells. J. Phys. Chem. C 2009, 113, 4254–4256. [Google Scholar] [CrossRef]
- Chang, J.A.; Rhee, J.H.; Im, S.H.; Lee, Y.H.; Kim, H.J.; Seok, S.I.; Nazeeruddin, M.K.; Gratzel, M. High-Performance Nanostructured Inorganicâ-Organic Heterojunction Solar Cells. Nano Lett. 2010, 10, 2609–2612. [Google Scholar] [CrossRef] [PubMed]
- Im, S.H.; Lim, C.S.; Chang, J.A.; Lee, Y.H.; Maiti, N.; Kim, H.J.; Nazeeruddin, M.K.; Grätzel, M.; Seok, S. Il Toward Interaction of Sensitizer and Functional Moieties in Hole-Transporting Materials for Efficient Semiconductor-Sensitized Solar Cells. Nano Lett. 2011, 11, 4789–4793. [Google Scholar] [CrossRef]
- Choi, Y.C.; Lee, Y.H.; Im, S.H.; Noh, J.H.; Mandal, T.N.; Yang, W.S.; Seok, S.I. Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb2(Sx/Se1−x)3 Graded-Composition Sensitizers. Adv. Energy Mater. 2014, 4, 1301680. [Google Scholar] [CrossRef]
- Wu, C.; Jiang, C.; Wang, X.; Ding, H.; Ju, H.; Zhang, L.; Chen, T.; Zhu, C. Interfacial Engineering by Indium-Doped CdS for High Efficiency Solution Processed Sb2 (S1−xSex)3 Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 3207–3213. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tang, R.; Jiang, C.; Lian, W.; Ju, H.; Jiang, G.; Li, Z.; Zhu, C.; Chen, T. Manipulating the Electrical Properties of Sb2(S,Se)3 Film for High-Efficiency Solar Cell. Adv. Energy Mater. 2020, 10, 2002341. [Google Scholar] [CrossRef]
- Liu, C.; Shen, K.; Lin, D.; Cao, Y.; Qiu, S.; Zheng, J.; Bao, F.; Gao, Y.; Zhu, H.; Li, Z.; et al. Back Contact Interfacial Modification in Highly-Efficient All-Inorganic Planar n-i-p Sb2Se3 Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 38397–38405. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Zhu, H.; Chen, J.; Guo, Y.; Zhang, C.; Zhang, W.; Niu, X.; Mai, Y. Sb2Se3 Thin Film Solar Cells in Substrate Configuration and the Back Contact Selenization. Sol. Energy Mater. Sol. Cells 2017, 161, 190–196. [Google Scholar] [CrossRef]
- Pasini, S.; Spoltore, D.; Parisini, A.; Marchionna, S.; Fornasini, L.; Bersani, D.; Fornari, R.; Bosio, A. Innovative Back-Contact for Sb2Se3-Based Thin Film Solar Cells. Sol. Energy 2023, 249, 414–423. [Google Scholar] [CrossRef]
- Pasini, S.; Spoltore, D.; Parisini, A.; Foti, G.; Marchionna, S.; Vantaggio, S.; Fornari, R.; Bosio, A. Sb2Se3 Polycrystalline Thin Films Grown on Different Window Layers. Coatings 2023, 13, 338. [Google Scholar] [CrossRef]
- Pattini, F.; Rampino, S.; Mezzadri, F.; Calestani, D.; Spaggiari, G.; Sidoli, M.; Delmonte, D.; Sala, A.; Gilioli, E.; Mazzer, M. Role of the Substrates in the Ribbon Orientation of Sb2Se3 Films Grown by Low-Temperature Pulsed Electron Deposition. Sol. Energy Mater. Sol. Cells 2020, 218, 110724. [Google Scholar] [CrossRef]
- Phillips, L.J.; Savory, C.N.; Hutter, O.S.; Yates, P.J.; Shiel, H.; Mariotti, S.; Bowen, L.; Birkett, M.; Durose, K.; Scanlon, D.O.; et al. Current Enhancement via a TiO2 Window Layer for CSS Sb2Se3 Solar Cells: Performance Limits and High Voc. IEEE J. Photovolt. 2019, 9, 544–551. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.-B.; Li, K.; Chen, C.; Deng, H.-X.; Gao, L.; Zhao, Y.; Jiang, F.; Li, L.; Huang, F.; et al. Stable 6%-Efficient Sb2Se3 Solar Cells with a ZnO Buffer Layer. Nat. Energy 2017, 2, 17046. [Google Scholar] [CrossRef]
- Abriksov, N.K.; Bankina, V.F.; Poretskaya, L.V.; Shelimova, L.E.; Skudnova, E.V. Semiconducting II–VI, IV–VI and V–VI Compounds; Monographs in Semiconductor Physics; Springer: Berlin/Heidelberg, Germany, 1969. [Google Scholar] [CrossRef]
- Nair, M.T.S.; Nair, P.K.; Garcia, V.M.; Pena, Y.; Arenas, O.L.; Garcia, J.C.; Gomez-Daza, O. Chemically Deposited Thin Films of Sulfides and Selenides of Antimony and Bismuth as Solar Energy Materials. In Proceedings of the Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV, San Diego, CA, USA, 28–29 July 1997; Lampert, C.M., Granqvist, C.G., Graetzel, M., Deb, S.K., Eds.; SPIE: Bellingham, WA, USA, 1997; pp. 186–196. [Google Scholar]
- Tideswell, N.W.; Kruse, F.H.; McCullough, J.D. The Crystal Structure of Antimony Selenide, Sb2Se3. Acta Crystallogr. 1957, 10, 99–102. [Google Scholar] [CrossRef]
- Voutsas, G.P.; Papazoglou, A.G.; Rentzeperis, P.J.; Siapkas, D. The Crystal Structure of Antimony Selenide, Sb2Se3. Z. Krist. Cryst. Mater. 1985, 171, 261–268. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Yu, L.; Zunger, A. Identification of Potential Photovoltaic Absorbers Based on First-Principles Spectroscopic Screening of Materials. Phys. Rev. Lett. 2012, 108, 068701. [Google Scholar] [CrossRef] [PubMed]
- Ei-Shair, H.T.; Ibrahim, A.M.; Ei-Wahabb, A.; Afify, M.A.; Ei-Salam, A. Optical Properties of Sb2Se3 Thin Films. Vacuum 1991, 42, 911–914. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, Y.; Cheng, L.; Su, J.; Zhang, X.; Li, X.; Zhang, H.; Xu, M.; Li, J. A Study on Optical Properties of Sb2Se3 Thin Films and Resistive Switching Behavior in Ag/Sb2Se3/W Heterojunctions. Results Phys. 2019, 13, 102228. [Google Scholar] [CrossRef]
- Chen, C.; Li, W.; Zhou, Y.; Chen, C.; Luo, M.; Liu, X.; Zeng, K.; Yang, B.; Zhang, C.; Han, J.; et al. Optical Properties of Amorphous and Polycrystalline Sb2Se3 Thin Films Prepared by Thermal Evaporation. Appl. Phys. Lett. 2015, 107, 043905. [Google Scholar] [CrossRef]
- El Radaf, I.M. Structural, Optical, Optoelectrical and Photovoltaic Properties of the Thermally Evaporated Sb2Se3 Thin Films. Appl. Phys. A Mater. Sci. Process. 2019, 125, 832. [Google Scholar] [CrossRef]
- El-Sayad, E.A.; Moustafa, A.M.; Marzouk, S.Y. Effect of Heat Treatment on the Structural and Optical Properties of Amorphous Sb2Se3 and Sb2Se2S Thin Films. Phys. B Condens Matter. 2009, 404, 1119–1127. [Google Scholar] [CrossRef]
- Yang, K.; Li, B.; Zeng, G. Structural, Morphological, Compositional, Optical and Electrical Properties of Sb2Se3 Thin Films Deposited by Pulsed Laser Deposition. Superlattices Microstruct. 2020, 145, 106618. [Google Scholar] [CrossRef]
- Liu, X.L.; Weng, Y.F.; Mao, N.; Zhang, P.Q.; Lin, C.G.; Shen, X.; Dai, S.X.; Song, B.A. Effect of Thickness of Antimony Selenide Film on Its Photoelectric Properties and Microstructure. Chin. Phys. B 2023, 32, 027802. [Google Scholar] [CrossRef]
- Minoura, S.; Kodera, K.; Maekawa, T.; Miyazaki, K.; Niki, S.; Fujiwara, H. Dielectric Function of Cu(In, Ga)Se2—Based Polycrystalline Materials. J. Appl. Phys. 2013, 113, 063505. [Google Scholar] [CrossRef]
- Zhang, B.; Qian, X. Competing Superior Electronic Structure and Complex Defect Chemistry in Quasi-One-Dimensional Antimony Chalcogenide Photovoltaic Absorbers. ACS Appl. Energy Mater. 2022, 5, 492–502. [Google Scholar] [CrossRef]
- Razykov, T.M.; Bekmirzoev, J.; Bosio, A.; Ergashev, B.A.; Isakov, D.; Khurramov, R.; Kouchkarov, K.M.; Makhmudov, M.A.; Romeo, A.; Romeo, N.; et al. Structural and Optical Properties of SbxSey Thin Films Obtained by Chemical Molecular Beam Deposition Method from Sb and Se Precursors. Sol. Energy 2023, 254, 67–72. [Google Scholar] [CrossRef]
- Syrbu, N.N.; Zalamai, V.V.; Stamov, I.G.; Beril, S.I. Excitonic and Electronic Transitions in Me-Sb2Se3 Structures. Beilstein J. Nanotechnol. 2020, 11, 1045–1053. [Google Scholar] [CrossRef]
- Maghraoui-Meherzi, H.; Ben Nasr, T.; Dachraoui, M. Synthesis, Structure and Optical Properties of Sb2Se3. Mater. Sci. Semicond. Process. 2013, 16, 179–184. [Google Scholar] [CrossRef]
- Kumar, P.; Thangaraj, R. Electrical Conduction and Optical Properties of Amorphous (Sb2Se3)100−XSnx Thin Films. Solid State Commun. 2006, 140, 525–528. [Google Scholar] [CrossRef]
- Rodríguez-Lazcano, Y.; Peña, Y.; Nair, M.T.S.; Nair, P.K. Polycrystalline Thin Films of Antimony Selenide via Chemical Bath Deposition and Post Deposition Treatments. Thin Solid Films 2005, 493, 77–82. [Google Scholar] [CrossRef]
- Arun, P.; Vedeshwar, A.G. Potential of Sb2Se3 Films for Photo-Thermal Phase Change Optical Storage. Thin Solid Films 1998, 335, 270–278. [Google Scholar] [CrossRef]
- Jayswal, N.K.; Rijal, S.; Subedi, B.; Subedi, I.; Song, Z.; Collins, R.W.; Yan, Y.; Podraza, N.J. Optical Properties of Thin Film Sb2Se3 and Identification of Its Electronic Losses in Photovoltaic Devices. Sol. Energy 2021, 228, 38–44. [Google Scholar] [CrossRef]
- Vadapoo, R.; Krishnan, S.; Yilmaz, H.; Marin, C. Electronic Structure of Antimony Selenide (Sb2Se3) from GW Calculations. Phys. Status Solidi (B) 2011, 248, 700–705. [Google Scholar] [CrossRef]
- Koc, H.; Mamedov, A.M.; Deligoz, E.; Ozisik, H. First Principles Prediction of the Elastic, Electronic, and Optical Properties of Sb2S3 and Sb2Se3 Compounds. Solid State Sci. 2012, 14, 1211–1220. [Google Scholar] [CrossRef]
- Peng, X.; Liao, Y.; Xie, J.; Song, X. Theoretical Investigation of the Electronic Structure and Anisotropic Optical Properties of Quasi-1D Sb2Se3 Photovoltaic Absorber Materials. J. Comput. Electron. 2021, 20, 317–323. [Google Scholar] [CrossRef]
- Jiménez, T.; Seuret-Jiménez, D.; Vigil-Galán, O.; Basurto-Pensado, M.A.; Courel, M. Sb2(S1−xSex)3 Solar Cells: The Impact of Radiative and Non-Radiative Loss Mechanisms. J. Phys. D Appl. Phys. 2018, 51, 435501. [Google Scholar] [CrossRef]
- El-Sayad, E.A. Compositional Dependence of the Optical Properties of Amorphous Sb2Se3−XSx Thin Films. J. Non. Cryst. Solids 2008, 354, 3806–3811. [Google Scholar] [CrossRef]
- King, H.W. Quantitative Size-Factors for Metallic Solid Solutions. J. Mater. Sci. 1966, 1, 79–90. [Google Scholar] [CrossRef]
- Uslu, M.E.; Kondrotas, R.; Nedzinskas, R.; Volobujeva, O.; Timmo, K.; Kauk-Kuusik, M.; Krustok, J.; Grossberg, M. Study of the Optical Properties of Sb2(Se1−xSx)3 (x = 0–1) Solid Solutions. Mater. Sci. Semicond. Process. 2022, 144, 106571. [Google Scholar] [CrossRef]
- Joshi, D.P.; Bhatt, D.P. Theory of Grain Boundary Recombination and Carrier Transport in Polycrystalline Silicon under Optical Illumination. IEEE Trans. Electron. Devices 1990, 37, 237–249. [Google Scholar] [CrossRef]
- Yan, Y.; Yin, W.-J.; Wu, Y.; Shi, T.; Paudel, N.R.; Li, C.; Poplawsky, J.; Wang, Z.; Moseley, J.; Guthrey, H.; et al. Physics of Grain Boundaries in Polycrystalline Photovoltaic Semiconductors. J. Appl. Phys. 2015, 117, 112807. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, X.; Yang, Y.; Xue, D.-J.; Li, D.-B.; Chen, C.; Lu, S.; Gao, L.; He, Y.; Beard, M.C.; et al. Enhanced Sb2Se3 Solar Cell Performance through Theory-Guided Defect Control. Prog. Photovolt. Res. Appl. 2017, 25, 861–870. [Google Scholar] [CrossRef]
- Huang, M.; Xu, P.; Han, D.; Tang, J.; Chen, S. Complicated and Unconventional Defect Properties of the Quasi-One-Dimensional Photovoltaic Semiconductor Sb2Se3. ACS Appl. Mater. Interfaces 2019, 11, 15564–15572. [Google Scholar] [CrossRef] [PubMed]
- Stoliaroff, A.; Lecomte, A.; Rubel, O.; Jobic, S.; Zhang, X.; Latouche, C.; Rocquefelte, X. Deciphering the Role of Key Defects in Sb2Se3, a Promising Candidate for Chalcogenide-Based Solar Cells. ACS Appl. Energy Mater. 2020, 3, 2496–2509. [Google Scholar] [CrossRef]
- Savory, C.N.; Scanlon, D.O. The Complex Defect Chemistry of Antimony Selenide. J. Mater. Chem. A Mater. 2019, 7, 10739–10744. [Google Scholar] [CrossRef]
- Guo, H.; Jia, X.; Liu, J.; Feng, Z.; Zhang, S.; Chen, Z.; Tian, H.; Qiu, J.; Yuan, N.; Ding, J. Classification of Lattice Defects and the Microscopic Origin of P-Type Conductivity of Sb2Se3 Solar Cell Absorber with Varying Al2O3-Layer Thicknesses. Phys. B Condens. Matter. 2023, 648, 414394. [Google Scholar] [CrossRef]
- Tang, R.; Zheng, Z.H.; Su, Z.H.; Li, X.J.; Wei, Y.D.; Zhang, X.H.; Fu, Y.Q.; Luo, J.T.; Fan, P.; Liang, G.X. Highly Efficient and Stable Planar Heterojunction Solar Cell Based on Sputtered and Post-Selenized Sb2Se3 Thin Film. Nano Energy 2019, 64, 103929. [Google Scholar] [CrossRef]
- Tang, R.; Chen, S.; Zheng, Z.H.; Su, Z.H.; Luo, J.T.; Fan, P.; Zhang, X.H.; Tang, J.; Liang, G.X. Heterojunction Annealing Enabling Record Open-Circuit Voltage in Antimony Triselenide Solar Cells. Adv. Mater. 2022, 34, 2109078. [Google Scholar] [CrossRef]
- Liang, G.; Chen, M.; Ishaq, M.; Li, X.; Tang, R.; Zheng, Z.; Su, Z.; Fan, P.; Zhang, X.; Chen, S. Crystal Growth Promotion and Defects Healing Enable Minimum Open-Circuit Voltage Deficit in Antimony Selenide Solar Cells. Adv. Sci. 2022, 9, 2105142. [Google Scholar] [CrossRef]
- Wijesinghe, U.; Longo, G.; Hutter, O.S. Defect Engineering in Antimony Selenide Thin Film Solar Cells. Energy Adv. 2023, 2, 12–33. [Google Scholar] [CrossRef]
- Hobson, T.D.C.; Phillips, L.J.; Hutter, O.S.; Durose, K.; Major, J.D. Defect Properties of Sb2Se3 Thin Film Solar Cells and Bulk Crystals. Appl. Phys. Lett. 2020, 116, 261101. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, B.; Lian, W.; Wu, C.; Wang, X.; Ju, H.; Zhu, C.; Fan, F.; Chen, T. Efficient Defect Passivation of Sb2Se3 Film by Tellurium Doping for High Performance Solar Cells. J. Mater. Chem. A Mater. 2020, 8, 6510–6516. [Google Scholar] [CrossRef]
- Hu, X.; Tao, J.; Weng, G.; Jiang, J.; Chen, S.; Zhu, Z.; Chu, J. Investigation of Electrically-Active Defects in Sb2Se3 Thin-Film Solar Cells with up to 5.91% Efficiency via Admittance Spectroscopy. Sol. Energy Mater. Sol. Cells 2018, 186, 324–329. [Google Scholar] [CrossRef]
- Cifuentes, N.; Ghosh, S.; Shongolova, A.; Correia, M.R.; Salomé, P.M.P.; Fernandes, P.A.; Ranjbar, S.; Garud, S.; Vermang, B.; Ribeiro, G.M.; et al. Electronic Conduction Mechanisms and Defects in Polycrystalline Antimony Selenide. J. Phys. Chem. C 2020, 124, 7677–7682. [Google Scholar] [CrossRef]
- Dong, J.; Liu, Y.; Wang, Z.; Zhang, Y. Boosting VOC of Antimony Chalcogenide Solar Cells: A Review on Interfaces and Defects. Nano Sel. 2021, 2, 1818–1848. [Google Scholar] [CrossRef]
- Karade, V.C.; Jang, J.S.; Kumbhar, D.; Rao, M.; Pawar, P.S.; Kim, S.; Gour, K.S.; Park, J.; Heo, J.; Dongale, T.D.; et al. Combating Open Circuit Voltage Loss in Sb2Se3 Solar Cell with an Application of SnS as a Back Surface Field Layer. Sol. Energy 2022, 233, 435–445. [Google Scholar] [CrossRef]
- Liang, G.-X.; Luo, Y.-D.; Chen, S.; Tang, R.; Zheng, Z.-H.; Li, X.-J.; Liu, X.-S.; Liu, Y.-K.; Li, Y.-F.; Chen, X.-Y.; et al. Sputtered and Selenized Sb2Se3 Thin-Film Solar Cells with Open-Circuit Voltage Exceeding 500 MV. Nano Energy 2020, 73, 104806. [Google Scholar] [CrossRef]
- Li, S.; Shen, H.; Chen, J.; Jiang, Y.; Sun, L.; Raza, A.; Xu, Y. Effect of Selenization Temperature on the Properties of Sb2Se3 Thin Films and Solar Cells by Two-Step Method. J. Mater. Sci. Mater. Electron. 2019, 30, 19871–19879. [Google Scholar] [CrossRef]
- Cao, R.; Cai, H.; Lian, W.; Tang, R.; Xiang, Y.; Wang, Y.; Chen, T. Revealing the Chemical Structure-Dependent Carrier Trapping in One-Dimensional Antimony Selenide Photovoltaic Materials. J. Mater. Chem. A Mater. 2022, 10, 20482–20488. [Google Scholar] [CrossRef]
- Chen, C.; Tang, J. Open-Circuit Voltage Loss of Antimony Chalcogenide Solar Cells: Status, Origin, and Possible Solutions. ACS Energy Lett. 2020, 5, 2294–2304. [Google Scholar] [CrossRef]
- Madelung, O. Semiconductors: Data Handbook; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-642-62332-5. [Google Scholar]
- Li, Y.; Zhou, Y.; Luo, J.; Chen, W.; Yang, B.; Wen, X.; Lu, S.; Chen, C.; Zeng, K.; Song, H.; et al. The Effect of Sodium on Antimony Selenide Thin Film Solar Cells. RSC Adv. 2016, 6, 87288–87293. [Google Scholar] [CrossRef]
- Liang, G.; Chen, X.; Ren, D.; Jiang, X.; Tang, R.; Zheng, Z.; Su, Z.; Fan, P.; Zhang, X.; Zhang, Y.; et al. Ion Doping Simultaneously Increased the Carrier Density and Modified the Conduction Type of Sb2Se3 Thin Films towards Quasi-Homojunction Solar Cell. J. Mater. 2021, 7, 1324–1334. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Z.; Wang, X.; Cang, Q.; Jia, X.; Ma, C.; Yuan, N.; Ding, J. Enhancement in the Efficiency of Sb2Se3 Thin-Film Solar Cells by Increasing Carrier Concertation and Inducing Columnar Growth of the Grains. Sol. RRL 2019, 3, 1800224. [Google Scholar] [CrossRef]
- Zhou, Y.; Leng, M.; Xia, Z.; Zhong, J.; Song, H.; Liu, X.; Yang, B.; Zhang, J.; Chen, J.; Zhou, K.; et al. Solution-Processed Antimony Selenide Heterojunction Solar Cells. Adv. Energy Mater. 2014, 4, 1301846. [Google Scholar] [CrossRef]
- Chen, C.; Bobela, D.C.; Yang, Y.; Lu, S.; Zeng, K.; Ge, C.; Yang, B.; Gao, L.; Zhao, Y.; Beard, M.C.; et al. Characterization of Basic Physical Properties of Sb2Se3 and Its Relevance for Photovoltaics. Front. Optoelectron. 2017, 10, 18–30. [Google Scholar] [CrossRef]
- Hsiao, K.-J.; Liu, J.-D.; Hsieh, H.-H.; Jiang, T.-S. Electrical Impact of MoSe2 on CIGS Thin-Film Solar Cells. Phys. Chem. Chem. Phys. 2013, 15, 18174. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, G.; Chen, S.; Ahmad, N.; Azam, M.; Zheng, Z.; Su, Z.; Cathelinaud, M.; Ma, H.; Chen, Z.; et al. Carrier Transport Enhancement Mechanism in Highly Efficient Antimony Selenide Thin-Film Solar Cell. Adv. Funct. Mater. 2023, 33, 2213941. [Google Scholar] [CrossRef]
- Lin, J.; Chen, G.; Ahmad, N.; Ishaq, M.; Chen, S.; Su, Z.; Fan, P.; Zhang, X.; Zhang, Y.; Liang, G. Back Contact Interfacial Modification Mechanism in Highly-Efficient Antimony Selenide Thin-Film Solar Cells. J. Energy Chem. 2023, 80, 256–264. [Google Scholar] [CrossRef]
- Amin, A.; Li, D.; Duan, X.; Vijayaraghavan, S.N.; Menon, H.G.; Wall, J.; Weaver, M.; Cheng, M.M.; Zheng, Y.; Li, L.; et al. Enhanced Efficiency and Stability in Sb2S3 Seed Layer Buffered Sb2Se3 Solar Cells. Adv. Mater. Interfaces 2022, 9, 2200547. [Google Scholar] [CrossRef]
- Phillips, L.J.; Yates, P.; Hutter, O.S.; Baines, T.; Bowen, L.; Durose, K.; Major, J.D. Close-Spaced Sublimation for Sb2Se3 Solar Cells. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 1445–1448. [Google Scholar]
- Zhang, J.; Kondrotas, R.; Lu, S.; Wang, C.; Chen, C.; Tang, J. Alternative Back Contacts for Sb2Se3 Solar Cells. Sol. Energy 2019, 182, 96–101. [Google Scholar] [CrossRef]
- Akari, S.; Chantana, J.; Nakatsuka, S.; Nose, Y.; Minemoto, T. ZnSnP2 Solar Cell with (Cd,Zn)S Buffer Layer: Analysis of Recombination Rates. Sol. Energy Mater. Sol. Cells 2018, 174, 412–417. [Google Scholar] [CrossRef]
- Tao, J.; Hu, X.; Guo, Y.; Hong, J.; Li, K.; Jiang, J.; Chen, S.; Jing, C.; Yue, F.; Yang, P.; et al. Solution-Processed SnO2 Interfacial Layer for Highly Efficient Sb2Se3 Thin Film Solar Cells. Nano Energy 2019, 60, 802–809. [Google Scholar] [CrossRef]
- Mendes, J.O.; Della Gaspera, E.; van Embden, J. High-Resistance Metal Oxide Window Layers for Optimal Front Contact Interfaces in Sb2Se3 Solar Cells. Sol. RRL 2022, 6, 2200265. [Google Scholar] [CrossRef]
- Pan, A.; Zhu, X. Optoelectronic Properties of Semiconductor Nanowires. In Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications; Woodhead Publishing: Cambridge, UK, 2015; pp. 327–363. [Google Scholar] [CrossRef]
- Sivaraman, T.; Narasimman, V.; Nagarethinam, V.S.; Balu, A.R. Effect of Chlorine Doping on the Structural, Morphological, Optical and Electrical Properties of Spray Deposited CdS Thin Films. Prog. Nat. Sci. Mater. Int. 2015, 25, 392–398. [Google Scholar] [CrossRef]
- Ramanujam, J.; Singh, U.P. Copper Indium Gallium Selenide Based Solar Cells—A Review. Energy Environ. Sci. 2017, 10, 1306–1319. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.S.R.K. Physics and Chemistry of CdTe/CdS Thin Film Heterojunction Photovoltaic Devices: Fundamental and Critical Aspects. Energy Environ. Sci. 2014, 7, 45–102. [Google Scholar] [CrossRef]
- Shiel, H.; Hutter, O.S.; Phillips, L.J.; Swallow, J.E.N.; Jones, L.A.H.; Featherstone, T.J.; Smiles, M.J.; Thakur, P.K.; Lee, T.-L.; Dhanak, V.R.; et al. Natural Band Alignments and Band Offsets of Sb2Se3 Solar Cells. ACS Appl. Energy Mater. 2020, 3, 11617–11626. [Google Scholar] [CrossRef]
- Li, G.; Li, Z.; Liang, X.; Guo, C.; Shen, K.; Mai, Y. Improvement in Sb2Se3 Solar Cell Efficiency through Band Alignment Engineering at the Buffer/Absorber Interface. ACS Appl. Mater. Interfaces 2019, 11, 828–834. [Google Scholar] [CrossRef]
- Krautmann, R.; Spalatu, N.; Gunder, R.; Abou-Ras, D.; Unold, T.; Schorr, S.; Krunks, M.; Oja Acik, I. Analysis of Grain Orientation and Defects in Sb2Se3 Solar Cells Fabricated by Close-Spaced Sublimation. Sol. Energy 2021, 225, 494–500. [Google Scholar] [CrossRef]
- Li, K.; Chen, C.; Lu, S.; Wang, C.; Wang, S.; Lu, Y.; Tang, J. Orientation Engineering in Low-Dimensional Crystal-Structural Materials via Seed Screening. Adv. Mater. 2019, 31, e1903914. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, X.; Chen, H.; Tang, Z.; Meng, D.; Chi, K.; Cai, Y.; Song, G.; Cao, Y.; Hu, Z. Dual-Function of CdCl2 Treated SnO2 in Sb2Se3 Solar Cells. Appl. Surf. Sci. 2020, 534, 147632. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, H.; Ma, C.; Wang, X.; Jia, X.; Yuan, N.; Ding, J. Efficiency Improvement of Sb2Se3 Solar Cells Based on La-Doped SnO2 Buffer Layer. Sol. Energy 2019, 187, 404–410. [Google Scholar] [CrossRef]
- Li, K.; Kondrotas, R.; Chen, C.; Lu, S.; Wen, X.; Li, D.; Luo, J.; Zhao, Y.; Tang, J. Improved Efficiency by Insertion of Zn1−xMgxO through Sol-Gel Method in ZnO/Sb2Se3 Solar Cell. Sol. Energy 2018, 167, 10–17. [Google Scholar] [CrossRef]
- Cai, Z.; Chen, S. Extrinsic Dopants in Quasi-One-Dimensional Photovoltaic Semiconductor Sb2S3: A First-Principles Study. J. Appl. Phys. 2020, 127, 183101. [Google Scholar] [CrossRef]
- Ishaq, M.; Deng, H.; Farooq, U.; Zhang, H.; Yang, X.; Shah, U.A.; Song, H. Efficient Copper-Doped Antimony Sulfide Thin-Film Solar Cells via Coevaporation Method. Sol. RRL 2019, 3, 1900305. [Google Scholar] [CrossRef]
- Hobson, T.D.C.; Phillips, L.J.; Hutter, O.S.; Shiel, H.; Swallow, J.E.N.; Savory, C.N.; Nayak, P.K.; Mariotti, S.; Das, B.; Bowen, L.; et al. Isotype Heterojunction Solar Cells Using N-Type Sb2Se3 Thin Films. Chem. Mater. 2020, 32, 2621–2630. [Google Scholar] [CrossRef]
- Jiang, C.; Tang, R.; Wang, X.; Ju, H.; Chen, G.; Chen, T. Alkali Metals Doping for High-Performance Planar Heterojunction Sb2S3 Solar Cells. Sol. RRL 2019, 3, 1800272. [Google Scholar] [CrossRef]
- Liu, X.; Chen, C.; Wang, L.; Zhong, J.; Luo, M.; Chen, J.; Xue, D.-J.; Li, D.; Zhou, Y.; Tang, J. Improving the Performance of Sb2Se3 Thin Film Solar Cells over 4% by Controlled Addition of Oxygen during Film Deposition. Prog. Photovolt. Res. Appl. 2015, 23, 1828–1836. [Google Scholar] [CrossRef]
- Cai, Z.; Dai, C.-M.; Chen, S. Intrinsic Defect Limit to the Electrical Conductivity and a Two-Step P-Type Doping Strategy for Overcoming the Efficiency Bottleneck of Sb2S3 -Based Solar Cells. Sol. RRL 2020, 4, 1900503. [Google Scholar] [CrossRef]
- Rau, U.; Schock, H.W. Electronic Properties of Cu(In,Ga)Se2 Heterojunction Solar Cells-Recent Achievements, Current Understanding, and Future Challenges. Appl. Phys. A Mater. Sci. Process. 1999, 69, 131–147. [Google Scholar] [CrossRef]
- Scheer, R.; Schock, H.-W. Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-3-527-31459-1. [Google Scholar]
- Bérubé, L.P.; L’Espérance, G. A Quantitative Method of Determining the Degree of Texture of Zinc Electrodeposits. J. Electrochem. Soc. 1989, 136, 2314–2315. [Google Scholar] [CrossRef]
- Park, S.-N.; Kim, S.-Y.; Lee, S.-J.; Sung, S.-J.; Yang, K.-J.; Kang, J.-K.; Kim, D.-H. Controlled Synthesis of (Hk1) Preferentially Oriented Sb2Se3 Rod Arrays by Co-Evaporation for Photovoltaic Applications. J. Mater. Chem. A Mater. 2019, 7, 25900–25907. [Google Scholar] [CrossRef]
- Rijal, S.; Li, D.; Awni, R.A.; Xiao, C.; Bista, S.S.; Jamarkattel, M.K.; Heben, M.J.; Jiang, C.; Al-Jassim, M.; Song, Z.; et al. Templated Growth and Passivation of Vertically Oriented Antimony Selenide Thin Films for High-Efficiency Solar Cells in Substrate Configuration. Adv. Funct. Mater. 2022, 32, 2110032. [Google Scholar] [CrossRef]
- Amin, A.; Duan, X.; Wall, J.; Khawaja, K.A.; Xiang, W.; Li, L.; Yan, F. Heterostructured CdS Buffer Layer for Sb2Se3 Thin Film Solar Cell. Sol. RRL 2023, 7, 2300417. [Google Scholar] [CrossRef]
- Hu, X.; Tao, J.; Wang, Y.; Xue, J.; Weng, G.; Zhang, C.; Chen, S.; Zhu, Z.; Chu, J. 5.91%-Efficient Sb2Se3 Solar Cells with a Radio-Frequency Magnetron-Sputtered CdS Buffer Layer. Appl. Mater. Today 2019, 16, 367–374. [Google Scholar] [CrossRef]
- Deng, H.; Zeng, Y.; Ishaq, M.; Yuan, S.; Zhang, H.; Yang, X.; Hou, M.; Farooq, U.; Huang, J.; Sun, K.; et al. Quasiepitaxy Strategy for Efficient Full-Inorganic Sb2S3 Solar Cells. Adv. Funct. Mater. 2019, 29, 1901720. [Google Scholar] [CrossRef]
- Li, K.; Wang, S.; Chen, C.; Kondrotas, R.; Hu, M.; Lu, S.; Wang, C.; Chen, W.; Tang, J. 7.5% n–i–p Sb2Se3 Solar Cells with CuSCN as a Hole-Transport Layer. J. Mater. Chem. A Mater. 2019, 7, 9665–9672. [Google Scholar] [CrossRef]
- Choi, Y.C.; Mandal, T.N.; Yang, W.S.; Lee, Y.H.; Im, S.H.; Noh, J.H.; Seok, S. Il Sb2Se3 -Sensitized Inorganic-Organic Heterojunction Solar Cells Fabricated Using a Single-Source Precursor. Angew. Chem. Int. Ed. 2014, 53, 1329–1333. [Google Scholar] [CrossRef]
- Wang, X.; Tang, R.; Yin, Y.; Ju, H.; Li, S.; Zhu, C.; Chen, T. Interfacial Engineering for High Efficiency Solution Processed Sb2Se3 Solar Cells. Sol. Energy Mater. Sol. Cells 2019, 189, 5–10. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Chaoping, L.; Yishu, F.; Farid Ul Islam, A.K.M.; Zapien, J.A. Atmospheric Annealing Effect on TiO2/Sb2S3/P3HT Heterojunction Hybrid Solar Cell Performance. RSC Adv. 2016, 6, 99282–99290. [Google Scholar] [CrossRef]
- Dhere, R.G.; Albin, D.S.; Rose, D.H.; Asher, S.E.; Jones, K.M.; Al-Jassim, M.M.; Moutinho, H.R.; Sheldon, P. Intermixing at the CdS/CdTe Interface and Its Effect on Device Performance. MRS Proc. 1996, 426, 361. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, Y.; Li, G.; Lian, W.; Zhang, J.; Tang, R.; Ju, H.; Chen, T. Aqueous Solution Processed MoS3 as an Eco-Friendly Hole-Transport Layer for All-Inorganic Sb2Se3 Solar Cells. Chem. Commun. 2020, 56, 15173–15176. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Ding, H.; Hu, J.; Liu, Y.; Zhu, J.; Kondrotas, R.; Chen, C.; Tang, J. In Situ Investigation of Interfacial Properties of Sb2Se3 Heterojunctions. Appl. Phys. Lett. 2020, 116, 241602. [Google Scholar] [CrossRef]
- Wang, X.; Guo, H.; Chen, Z.; Ma, C.; Fang, X.; Jia, X.; Yuan, N.; Ding, J. Enhancement of Sb2Se3 Thin-Film Solar Cell Photoelectric Properties by Addition of Interlayer CeO2. Sol. Energy 2019, 188, 218–223. [Google Scholar] [CrossRef]
- Wang, C.; Lu, S.; Li, S.; Wang, S.; Lin, X.; Zhang, J.; Kondrotas, R.; Li, K.; Chen, C.; Tang, J. Efficiency Improvement of Flexible Sb2Se3 Solar Cells with Non-Toxic Buffer Layer via Interface Engineering. Nano Energy 2020, 71, 104577. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, T.; Wang, D.; Xiong, X.; Li, B. Preparation and Characterization of Pulsed Laser Deposited CdSe Window Layer for Sb2Se3 Thin Film Solar Cell. J. Mater. Sci. Mater. Electron. 2020, 31, 13947–13956. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, B.; Ranjit, S.; Wall, J.; Saurav, S.; Hauser, A.J.; Xing, G.; Li, L.; Qian, X.; Yan, F. Interface Engineering via Sputtered Oxygenated CdS:O Window Layer for Highly Efficient Sb2Se3 Thin-Film Solar Cells with Efficiency Above 7%. Sol. RRL 2019, 3, 1900225. [Google Scholar] [CrossRef]
- Han, J.; Pu, X.; Zhou, H.; Cao, Q.; Wang, S.; He, Z.; Gao, B.; Li, T.; Zhao, J.; Li, X. Synergistic Effect through the Introduction of Inorganic Zinc Halides at the Interface of TiO2 and Sb2S3 for High-Performance Sb2S3 Planar Thin-Film Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 44297–44306. [Google Scholar] [CrossRef]
- Dong, Y.; Huang, L.; Wang, H.; Peng, X.; Wang, Y.; Tang, R.; Zhu, C.; Chen, T. Zinc Chloride-Treated Indium Sulfide as Buffer Layer for Cd-Free Antimony Selenide Solar Cells. Sol. RRL 2023, 7, 2300440. [Google Scholar] [CrossRef]
- Tiwari, K.J.; Neuschitzer, M.; Espíndola-Rodriguez, M.; Sánchez, Y.; Jehl, Z.; Vidal-Fuentes, P.; Saucedo, E.; Malar, P. Efficient Sb2Se3/CdS Planar Heterojunction Solar Cells in Substrate Configuration with (Hk0) Oriented Sb2Se3 Thin Films. Sol. Energy Mater. Sol. Cells 2020, 215, 110603. [Google Scholar] [CrossRef]
- Ríos-Ramirez, B.; Nair, P.K. On the Stability of Operation of Antimony Sulfide Selenide Thin Film Solar Cells under Solar Radiation. Phys. Status Solidi (A) Appl. Mater. Sci. 2018, 215, 1800479. [Google Scholar] [CrossRef]
- Pan, Y.; Pan, X.; Wang, R.; Hu, X.; Chen, S.; Tao, J.; Yang, P.; Chu, J. Vapor Transport Deposition of Sb2(S,Se)3 Solar Cells with Continuously Tunable Band Gaps. ACS Appl. Energy Mater. 2022, 5, 7240–7248. [Google Scholar] [CrossRef]
- Pan, Y.; Hu, X.; Guo, Y.; Pan, X.; Zhao, F.; Weng, G.; Tao, J.; Zhao, C.; Jiang, J.; Chen, S.; et al. Vapor Transport Deposition of Highly Efficient Sb2(S,Se)3 Solar Cells via Controllable Orientation Growth. Adv. Funct. Mater. 2021, 31, 2101476. [Google Scholar] [CrossRef]
- Amin, A.; Guo, L.; Vijayaraghavan, S.N.; Li, D.; Duan, X.; Menon, H.G.; Wall, J.; Gupta, S.; Ming-Cheng Cheng, M.; Zheng, Y.; et al. Solution-Processed Vanadium Oxides as a Hole-Transport Layer for Sb2Se3 Thin-Film Solar Cells. Sol. Energy 2022, 231, 1–7. [Google Scholar] [CrossRef]
- Guo, L.; Vijayaraghavan, S.N.; Duan, X.; Menon, H.G.; Wall, J.; Kong, L.; Gupta, S.; Li, L.; Yan, F. Stable and Efficient Sb2Se3 Solar Cells with Solution-Processed NiOx Hole-Transport Layer. Sol. Energy 2021, 218, 525–531. [Google Scholar] [CrossRef]
- Luo, Y.D.; Tang, R.; Chen, S.; Hu, J.G.; Liu, Y.K.; Li, Y.F.; Liu, X.S.; Zheng, Z.H.; Su, Z.H.; Ma, X.F.; et al. An Effective Combination Reaction Involved with Sputtered and Selenized Sb Precursors for Efficient Sb2Se3 Thin Film Solar Cells. Chem. Eng. J. 2020, 393, 124599. [Google Scholar] [CrossRef]
- Tang, R.; Chen, X.; Luo, Y.; Chen, Z.; Liu, Y.; Li, Y.; Su, Z.; Zhang, X.; Fan, P.; Liang, G. Controlled Sputtering Pressure on High-Quality Sb2Se3 Thin Film for Substrate Configurated Solar Cells. Nanomaterials 2020, 10, 574. [Google Scholar] [CrossRef]
- Chen, S.; Hu, X.; Tao, J.; Xue, J.; Weng, G.; Jiang, J.; Shen, X.; Chen, S. Effects of Substrate Temperature on Material and Photovoltaic Properties of Magnetron-Sputtered Sb2Se3 Thin Films. Appl. Opt. 2019, 58, 2823. [Google Scholar] [CrossRef]
- Yang, K.; Li, B.; Zeng, G. Effects of Substrate Temperature and SnO2 High Resistive Layer on Sb2Se3 Thin Film Solar Cells Prepared by Pulsed Laser Deposition. Sol. Energy Mater. Sol. Cells 2020, 208, 110381. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, L.; Ding, H.; Ju, H.; Jin, X.; Wang, X.; Zhu, C.; Chen, T. Direct Solution Deposition of Device Quality Sb2S3−xSex Films for High Efficiency Solar Cells. Sol. Energy Mater. Sol. Cells 2018, 183, 52–58. [Google Scholar] [CrossRef]
- Mane, R.S.; Lokhande, C.D. Chemical Deposition Method for Metal Chalcogenide Thin Films. Mater. Chem. Phys. 2000, 65, 1–31. [Google Scholar] [CrossRef]
- Deo, S.R.; Singh, A.K.; Deshmukh, L.; Abu Bin Hasan Susan, M. Metal Chalcogenide Nanocrystalline Solid Thin Films. J. Electron. Mater. 2015, 44, 4098–4127. [Google Scholar] [CrossRef]
- Bhattacharya, R.N.; Pramanik, P. A Photoelectrochemical Cell Based on Chemically Deposited Sb2Se3 Thin Film Electrode and Dependence of Deposition on Various Parameters. Sol. Energy Mater. 1982, 6, 317–322. [Google Scholar] [CrossRef]
- Kuruvilla, A.; Francis, M.; Lakshmi, M. Effect of Selenisation on the Properties of Antimony Selenide Thin Films. IOP Conf. Ser. Mater. Sci. Eng. 2020, 872, 012151. [Google Scholar] [CrossRef]
Device Architecture | Voc (mV) | Jsc (mA·cm−2) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|
FTO/ZnO/Sb2Se3/Au (Superstrate) | 391 | 26.2 | 58 | 5.93 | [74] |
FTO/TiO2/Sb2Se3/PbS/Au (Superstrate) | 386 | 32.6 | 61 | 7.62 | [147] |
FTO/ZnO/ZnMgO/Sb2Se3/Au (Superstrate) | 360 | 26.2 | 48 | 4.45 | [150] |
FTO/SnO2/Sb2Se3/P3HT/C (Superstrate) | 354 | 23.6 | 57 | 4.76 | [148] |
ZnO:Al/ZnO/CdxZn1−xS/Sb2Se3/Mo (Substrate) | 403 | 25.7 | 65 | 6.71 | [145] |
Substrate Solar Cells | |||||||
---|---|---|---|---|---|---|---|
Structure | Deposition Techniques | TChkl | Voc [mV] | Jsc [mA/cm2] | FF [%] | PCE [%] | Ref. |
Mo/Sb2Se3/CdS/ZnO/ZnO:Al/Au | CoE | (221) = 1.65 (211) = 1.58 | 376 | 25.4 | 47 | 4.51 | [160] |
Mo/Sb2Se3/CdS/ITO/Ag | RFMS | (221) = 0.89 (211) = 1.32 (002) = 2.36 | 494 | 25.9 | 48 | 6.06 | [111] |
Mo/Sb2Se3/CdS/ZnO/ZnO:Al | IVD | (221) = 1.85 (211) = 2.72 (002) = 9.74 | 488 | 30.9 | 67 | 10.12 | [60] |
Mo/Sb2Se3/CdS/ZnO/ZnO:Al/Ag | CSS | (221) = 1.34 (211) = 1.73 (002) = 2.11 | 505 | 27.7 | 61 | 8.5 | [161] |
Superstrate solar cells | |||||||
ITO/ZnO/CdS/ZnCdS/Sb2Se3/ Sb2Te3/Pt | CSS | (221) = 1.36 (211) = 1.60 (002) = 2.16 | 469 | 22.4 | 43 | 4.5 | [71] |
FTO/CdS/Sb2S3/Sb2Se3/ Spiro-OMeTAD/C | CSS | (221) = 1.25 (211) = 1.05 (002) = 1.28 | 410 | 31.4 | 58 | 7.44 | [134] |
FTO/CdS/Sb2Se3/ Spiro-OMeTAD/C | CSS | (221) = 1.31 (211) = 1.26 | 403 | 31.2 | 57 | 7.16 | [162] |
ITO/CdS/Sb2Se3/Au | VTD | (221) = 1.71 (211) = 0.96 | 379 | 27.9 | 56 | 5.91 | [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosio, A.; Foti, G.; Pasini, S.; Spoltore, D. A Review on the Fundamental Properties of Sb2Se3-Based Thin Film Solar Cells. Energies 2023, 16, 6862. https://doi.org/10.3390/en16196862
Bosio A, Foti G, Pasini S, Spoltore D. A Review on the Fundamental Properties of Sb2Se3-Based Thin Film Solar Cells. Energies. 2023; 16(19):6862. https://doi.org/10.3390/en16196862
Chicago/Turabian StyleBosio, Alessio, Gianluca Foti, Stefano Pasini, and Donato Spoltore. 2023. "A Review on the Fundamental Properties of Sb2Se3-Based Thin Film Solar Cells" Energies 16, no. 19: 6862. https://doi.org/10.3390/en16196862
APA StyleBosio, A., Foti, G., Pasini, S., & Spoltore, D. (2023). A Review on the Fundamental Properties of Sb2Se3-Based Thin Film Solar Cells. Energies, 16(19), 6862. https://doi.org/10.3390/en16196862