Forest Supply Chain for Bioenergy: An Approach for Biomass Study in the Framework of a Circular Bioeconomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Proposal
- (i.)
- The method was useful for replication in different native forest systems with the least amount of data and information (transitioning from arduous field work to prediction whenever possible [5,13,19]), to obtain comparative results in cross-sectional (between sites) and longitudinal (for a site over time) analyses.
- (ii.)
- A valid picture (“diagnosis”) could be obtained for the necessary dialogue between the multiple actors involved in forest value chains and the search for optimization of these systems [20].
- (iii.)
2.2. Biomass Quantification
2.2.1. Estimation of Residual Biomass from Production (RBP)
2.2.2. Estimation of Residual Biomass from First (RBFP) and Second Processing (RBSP)
2.3. Biomass Characterization
2.4. Theoretical and Technical Bioenergy Potential Estimation
2.5. Forest Value Chain: Biocircularity Analysis
2.6. Potential Chemical Applications of Biomass
3. Case Study Description
4. Results and Discussion
4.1. Forest Biomass, BioTP, and BioTA
- -
- BioTP: average value between the estimated maximum and minimum (in GJ/year).
- -
- BioTAt (thermal): average value between the three conversion efficiencies (75, 80, and 90%).
- -
- BioTAe (electrical): average value between the three conversion efficiencies (18, 20, and 25%).
4.2. Industrial Biomass, BioTP and BioTA
4.3. Biomass Use in the Forest Value Chain: Biocircularity
4.4. Biomass Use in the Forest Value Chain: Chemical Applications
4.5. Sustainable Forest Management and Circular Bioeconomy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Description of Scenarios
Scenario | Description and Assumptions |
---|---|
Current (SC0) | The industrial sector of wood in the province of Jujuy comprises two well-differentiated subsectors: (i) primary industrialization that processes the log and obtains the sawn wood and (ii) secondary industrialization that processes the log or directly the sawn wood for the production of packaging wood, openings, furniture and other carpentry products [15,16]. The raw material that enters the industrial process is BBP. There is very low transformation efficiency in the use of raw material. Old technology and in many cases, manual [12,49]. There is no energy use of biomass (BIO). If there is, it is isolated, reduced and not quantified. Only on certain occasions, the shorelines or solid remains are used for firewood, which is sold or given away. The BBP fraction that is considered at the beginning of stage 2 is only the one that is assumed to have been able to be transformed into new products. The forest residues generated in the value chains that have some alternative use are sawdust, which is sold or exchanged for bricks to those who manufacture it. Sawmills express concern that the sector has regarding the future availability of native wood logs [16]. This fraction is included within UF, and therefore assumes a recovery value of 10% of by-products between stages 1 and 2 (UF). Finally, a very high material loss fraction is considered, not returned to the atmosphere (NUF). More detail on the baseline scenario can be seen in Section 4.3. |
Change | |
The policy is introduced: regulation of logistics, commercialization, and use of residual biomass for energy purposes. Result: the scenarios from now on include bioenergy use (BIO), since this use is included in the forestry chain. | |
SCBI | The same as SC0 but with the use of bioenergy. Hypothesis: A raw material management policy is introduced that prohibits its uncontrolled burning or its disposal without it having entered a new stage of use in a circular scheme. Result: the unused fraction (NUF) is reduced by 31% and 5% (stage 1 and stage 2, respectively). A loss of 20% remains. |
SCBII | Same as SCBI plus a 15% efficiency improvement (BBP fraction) in stage 1. Hypothesis: a technology park renewal policy and cooperative organization of activity are introduced. Result: efficiency is improved in the first stage of the forestry chain and the raw material is better used, reducing waste. |
SCBIII | Same as SCBII plus a halving of NUF in stage 1 and 2. Hypothesis: a training policy is introduced in management of the use of raw materials and by-products. Result: in addition to the previous one, the reduction of waste (NUF) by use (bioenergy) is achieved in both stages of the chain. |
SCBIV | Same as SCBIII plus the addition of stage 3: recovery of wood for other uses and bioenergy. Hypothesis: a policy is introduced that defines a comprehensive solid waste management plan, with planning at the territorial level. Result: a new stage is added in the cascade scheme of the chain, where there is recovery of already used wood, in addition to the use of bioenergy. |
Scenario | BI | PE | BUF Partial | BUF Final |
---|---|---|---|---|
SC0 | 1 | 0.486 | 0.486 | |
0.436 | 0.75 | 0.81 | ||
SCBI | 1 | 0.8 | 0.8 | |
0.436 | 0.8 | 1.15 | ||
SCBII | 1 | 0.8 | 0.8 | |
0.587 | 0.8 | 1.27 | ||
SCBIII | 1 | 0.9 | 0.9 | |
0.587 | 0.9 | 1.43 | ||
SCBIV | 0.7 | 0.13 | 1.519 |
Appendix B. Details of the BUE Method
BUES (%) | E (%) | BUEH (%) | HHVp (kJ/g) | BUEE (%) | |
---|---|---|---|---|---|
Biomethane | 34.3 | 59 [65] | 20.3 | 50 | 60.1 |
Bioethanol | 56.8 | 61 [66,67,68] | 34.6 | 29.7 | 61.1 |
BTL | 34.6 | 35 [69] | 12.1 | 49.5 | 21.3 |
Biodiesel | 42.3 | 72 [70,71] | 30.5 | 38 | 68.7 |
Vanillin | 70.8 | 23 [72,73] | 16.8 | 26 | 25.1 |
Furfural | 60.4 | 75 [74,75] | 45.8 | 16 | 43.4 |
Lactic acid | 90 | 82 [76,77,78] | 74.2 | 17.5 | 29.7 |
References
- IEA (International Energy Agency). WEO—World Energy Outlook. 2022. Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 21 August 2023).
- WBA (World Bioenergy Association). Global Bioenergy Statistics 2019. Available online: https://worldbioenergy.org/uploads/191129%20WBA%20GBS%202019_LQ.pdf (accessed on 20 August 2023).
- Verkerk, P.J.; Hassegawa, M.; Van Brusselen, J.; Cramm, M.; Chen, X.; Maximo, Y.I.; Koç, M.; Lovrić, M.; Tegegne, Y.T. The Role of Forest Products in the Global Bioeconomy–Enabling Substitution by Wood-Based Products and Contributing to the Sustainable Development Goals; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Dammer, L.; Bowyer, C.; Breitmayer, E.; Nanni, S.; Carus, M.; Essel, R. Mapping Study on Cascading Use of Wood Products. WWF. 2016. Available online: https://ieep.eu/uploads/articles/attachments/92d39e3e-7713-4756-90c3-f1e8c232c5e7/wwf_mondi_cascading_use_of_wood_final_web.pdf (accessed on 5 September 2023).
- IRENA (International Renewable Energy Agency). Bioenergy from Forests. Sustainable, Efficient, Modern Use of Wood. 2018. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Mar/IRENA_Bioenergy_from_Finnish_forests_2018.pdf?rev=3f509dc7c57d433ca9e01d8a694422e0 (accessed on 2 August 2023).
- Jarre, M.; Petit-Boix, A.; Priefer, C.; Meyer, R.; Leipold, S. Transforming the bio-based sector towards a circular economy: What can we learn from wood cascading? For. Policy Econ. 2020, 110, 101872. [Google Scholar] [CrossRef]
- IEA (International Energy Agency). Technology Roadmap Bioenergy. 2017. Available online: https://www.ieabioenergy.com/bioenergy-a-sustainable-solution/ (accessed on 16 July 2023).
- Locoh, A.; Thiffault, É.; Barnabé, S. Sustainability Impact Assessment of Forest Bioenergy Value Chains in Quebec (Canada)—A ToSIA Approach. Energies 2022, 15, 6676. [Google Scholar] [CrossRef]
- Kazimierski, M. La energía distribuida como modelo post-fósil en Argentina. Econ. Soc. Territ. Versión 2020, 20, 63. [Google Scholar] [CrossRef]
- Schipfer, F.; Pfeiffer, A.; Hoefnagels, R. Strategies for the Mobilization and Deployment of Local Low-Value, Heterogeneous Biomass Resources for a Circular Bioeconomy. Energies 2022, 15, 433. [Google Scholar] [CrossRef]
- MEN (Ministerio de Economía de la Nación Argentina). Cadenas Productivas Argentinas. Secretaría de Política Económica. Mayo 2022, 77 pag. Available online: https://www.argentina.gob.ar/sites/default/files/cadenasproductivasargentinas_trabajomadre_mayo2022.pdf (accessed on 13 August 2023).
- MEN (Ministerio de Economía de la Nación Argentina). La Foresto-Industria en Argentina. Oportunidades, Desafíos y Líneas de Acción Para una Estrategia Productiva Sectorial. Secretaría de Industria y Desarrollo Productivo. L.M.Alfonsín. Marzo 2023. 88 pág. 88p. Available online: https://www.argentina.gob.ar/sites/default/files/38_-_foresto-industria_1.pdf (accessed on 28 July 2023).
- FAO (Food and Agriculture Organization of the United Nations). Actualización del Balance de Biomasa con Fines Energéticos en la Argentina; Colección Documentos Técnicos N° 19; FAO: Buenos Aires, Argentina, 2020. [Google Scholar] [CrossRef]
- Raison, R.J. Opportunities and impediments to the expansion of forest bioenergy in Australia. Biomass Bioenergy 2006, 30, 1021–1024. [Google Scholar] [CrossRef]
- SAyDS (Secretaría de Ambiente y Desarrollo Sustentable de la Nación). Plan Estratégico de Gestión Forestal de la Cuenca Caimancito, Jujuy. 2019; 95pp. Available online: https://www.ambientejujuy.gob.ar/wp-content/uploads/2020/06/plan_estrategico_forestal_cuenca_caimancito_Jujuy-1.pdf (accessed on 19 September 2023).
- MINAGRO (Ministerio de Agroindustria Argentino). Censo Nacional de Aserraderos. Informe del Relevamiento Censal en la Provincia de Jujuy- Región NOA. Subsecretaría de Desarrollo Foresto Industrial de la Nación. 2017; 94pp. Available online: https://www.agroindustria.gob.ar/sitio/areas/ss_desarrollo_foresto_industrial/censos_inventario/_archivos/censo/000000_Informe%20Nacional%20de%20Aserraderos%202015.pdf (accessed on 21 August 2023).
- Manrique, S. Native forests in agricultural landscapes: An option for sustainability. In Natural Resource Conservation and Advances for Sustainability; Jhariya, M.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 353–377. ISBN 978-0-12-822976-7. [Google Scholar] [CrossRef]
- Manrique, S.M. Strategies for ecosystem biomass conservation: Review, analysis, and evaluation. In Ecorestoration for Environmental Sustainability; Banerjee, A., Kumar, M., Singh, S., Palit, D., Eds.; Wiley-Scrivener Editorial: Beverly, MA, USA, 2023; pp. 167–209. ISBN 9781119879954. [Google Scholar] [CrossRef]
- Picard, N.; Saint-André, L.; Henry, M. Manual de Construcción de Ecuaciones Alométricas para Estimar el Volumen y la Biomasa de los Árboles: Del Trabajo de Campo a la Predicción; FAO and Centre de Coopération Internationale en Recherche Agronomique pour le Développement: Montpellier, France, 2012; 223p. [Google Scholar]
- Manrique, S.M.; Franco, J. Assessing the Sustainability of Bioenergy Systems. In Bioenergy Systems, Biological Sources and Environmental Impact; Allard, M.C., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2013; pp. 1–40. ISBN 978-1-62417-331-8. [Google Scholar]
- McDermott, C.; Cashore, B.V.; Kanowski, P. Global Environmental Forest Policies: An International Comparison; The Earthscan Forest Library: London, UK, 2010; pp. 1–392. [Google Scholar]
- Mantau, U. Wood flow analysis: Quantification of resource potentials, cascades, and carbon effects. Biomass Bioenergy 2015, 79, 28–38. [Google Scholar] [CrossRef]
- Gursel, V.; Elbersen, B.; Meesters, K.P.H. Monitoring circular biobased economy–Systematic review of circularity indicators at the micro level, Resources. Conserv. Recycl. 2023, 197, 107104. [Google Scholar] [CrossRef]
- Sikkema, R.; Junginger, M.; Van Dam, J.; Stegeman, G.; Durrant, D.; Faaij, A. Legal Harvesting, Sustainable Sourcing and Cascaded Use of Wood for Bioenergy: Their Coverage through Existing Certification Frameworks for Sustainable Forest Management. Forests 2014, 5, 2163–2211. [Google Scholar] [CrossRef]
- Bourguignon, D. Closing the Loop–New Circular Economy Package. Briefing from the European Parliament Research Service. January 2016. Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2016)573899 (accessed on 17 August 2023).
- Keegan, D.; Kretschmer, B.; Elbersen, B.; Panoutsou, C. Cascading use: A systematic approach to biomass beyond the energy sector. Biofuels Bioprod. Biorefining 2013, 7, 193–206. [Google Scholar] [CrossRef]
- vom Berg, C.; Carus, M.; Piltz, G.; Dammer, L.; Breitmayer, E.; Essel, R. The Biomass Utilisation Factor (BUF). Ind. Biotechnol. 2023, 19, 49–61. [Google Scholar] [CrossRef]
- Corona, B.; Hoefnagels, R.; Vural Gürsel, I.; Moretti, C.; van Veen, M.; Junginger, M. Metrics for minimising environmental impacts while maximising circularity in biobased products: The case of lignin-based asphalt. J. Clean. Prod. 2022, 379, 134829. [Google Scholar] [CrossRef]
- Iffland, K.; Sherwood, J.; Carus, M.; Raschka, A.; Farmer, T.; Clark, J. Definition, Calculation and Comparison of the “Biomass Utilization Efficiency (BUE)” of Various Bio-based Chemicals, Polymers and Fuels. Nova Paper #8. 2015. 26p. Available online: www.bio-based.eu/nova-papers (accessed on 3 August 2023).
- Text Data. Making the Most of Sustainable Biomass–Certification Schemes and Labels Developed in New EU Research Projects. Available online: https://www.texdata.com/news/Research&Development/17423.html (accessed on 29 September 2022).
- FAO (Food and Agriculture Organization). Análisis del Balance de Energía derivada de la Biomasa en Argentina; Forests and Energy Working Paper; FAO: Buenos Aires, Argentina, 2009; 118p, Available online: https://www.fao.org/publications/card/es/c/b51e4b7a-8d05-59fb-a29c-eee32a659b58/ (accessed on 7 September 2023).
- Tauro, R.; Manrique, S.; Franch-Pardo, I.; Charre-Medellin, J.F.; Ortega-Riascos, C.E.; Soria-González, J.A.; Armendáriz-Arnez, C. Spatial expansion of avocado in Mexico: Could the energy use of pruning residues offset orchard GHG emissions? Environ. Dev. Sustain. 2023, 26–39. [Google Scholar] [CrossRef]
- Purohit, A.N.; Nautiyal, A.R. Fuelwood value index of Indian mountain tree species. Int. Tree Crops J. 1987, 4, 177–182. [Google Scholar] [CrossRef]
- WEC (World Energy Council). New Renewable Energy Sources. In A Guide to the Future; World Energy Council/Kogan Page Limited: London, UK, 1994. [Google Scholar]
- Hoogwijk, M. On the Global and Regional Potential of Renewable Energy Sources. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2004; p. 256. [Google Scholar]
- Smeets, E.M.W.; Faaij, A.P.C.; Lewandowski, I.M.; Turkenburg, W.C. A bottom-up assessment and review of global bio-energy potentials to 2050. Prog. Energy Combust. Sci. 2007, 33, 56–106. [Google Scholar] [CrossRef]
- Long, H.; Li, X.; Wang, H.; Jia, J. Biomass resources and their bioenergy potential estimation: A review. Renew. Sustain. Energy Rev. 2013, 26, 344–352. [Google Scholar] [CrossRef]
- vom Berg, C.; Carus, M.; Piltz, G.; Dammer, L.; Breitmayer, E.; Essel, R. The Biomass Utilisation Factor (BUF). A New Metric Combining Cascading Use and Production Efficiency Into One Indicator for the Circular Bioeconomy; Nova-Paper #16; Nova Institute EU: Hürth, Germany, 2022; 62p, Available online: https://renewable-carbon.eu/publications/product/biomass-utilisation-factor-buf/ (accessed on 16 October 2023).
- Sherwood, J. The significance of biomass in a circular economy. Bioresour. Technol. 2020, 300, 122755. [Google Scholar] [CrossRef]
- Cuong, T.T.; Le, H.A.; Khai, N.M.; Hung, P.A.; Linh, L.T.; Thanh, N.V.; Tri, N.D.; Huan, N.X. Renewable energy from biomass surplus resource: Potential of power generation from rice straw in Vietnam. Sci. Rep. 2021, 11, 792. [Google Scholar] [CrossRef]
- Moraga, G.; Huysveld, S.; Mathieux, F.; Blengini, G.A.; Alaerts, L.; Van Acker, K.; de Meester, S.; Dewulf, J. Circular economy indicators: What do they measure? Resour. Conserv. Recycl. 2019, 146, 452–461. [Google Scholar] [CrossRef]
- COFEMA (Consejo Federal del Medio Ambiente). Resolution N°360/2018. Available online: https://argentinambiental.com/legislacion/nacional/resolucion-36018-bosques-nativos/ (accessed on 2 July 2023).
- INDEC (Instituto Nacional de Estadística y Censos). Estadísticas. 2010. Available online: http://www.Indec.Gov.Ar/Webcenso/Index.Asp (accessed on 22 August 2023).
- DiPPEC/PROFIP. Proyecto Fortalecimiento; Dirección Provincial de Planeamiento, Estadística y Censos (DiPPEC); Ministerio de Economía y Finanzas Públicas de la Nación: Buenos Aires, Argentina, 2010; 519p.
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef]
- Buitrago, L.G. El Clima de la Provincia de Jujuy, 2nd ed.; Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy: San Salvador de Jujuy, Argentina, 2000; 63p. [Google Scholar]
- MPyMA (Ministerio de Producción y Medio Ambiente de Jujuy). Resolución N° 081/2009. Secretaría de Gestión Ambiental. Jujuy, Argentina. Available online: https://www.magyp.gob.ar/sitio/areas/producciones_sostenibles/legislacion/provincial/_archivos/000005-Legislaci%C3%B3n%20Ambiental%20General/000010-Jujuy/008109-Resolucion%2081-09%20SGA%20EIA%20manejo%20bosques.pdf (accessed on 4 September 2023).
- MINAGRO (Ministerio de Agroindustria Argentino). Informe Nacional del Relevamiento Censal de Aserraderos. Dirección Nacional de Desarrollo Foresto Industrial (DNDFI). 2015; 94p. Available online: https://www.magyp.gob.ar/sitio/areas/desarrollo-foresto-industrial/foresto-industria/_archivos//000002_Censo%20Nacional%20de%20Aserraderos%202015/000000_Informe%20Nacional%20del%20Censo%20de%20Aserradores%202015.pdf (accessed on 6 August 2023).
- Ortiz, G. Caracterización y Perspectivas de la Foresto Industria en la Provincia de Jujuy; Unidad para el Cambio Rural, UCAR; Ministerio de Agricultura, Ganadería y Pesca de la Nación: Buenos Aires, Argentina, 2015; 70p, ISBN 978-987-1873-36-4.
- Restor (Restauración de Ecosistemas). Available online: https://restor.eco/es/platform/ (accessed on 3 May 2023).
- Walker, W.S.; Gorelik, S.R.; Cook-Patton, S.C.; Baccini, A.; Farina, M.K.; Solvik, K.K.; Ellis, P.W.; Sanderman, J.; Houghton, R.A.; Leavitt, S.M.; et al. The global potential for increased storage of carbon on land. Proc. Natl. Acad. Sci. USA 2022, 119, e2111312119. [Google Scholar] [CrossRef]
- Grulke, M.; Brassiolo, M. Manejo de Bosques Nativos de Las Yungas. Fichas Técnicas. Universidad Nacional de Santiago del Estero. 2015. Available online: https://fcf.unse.edu.ar/archivos/publicaciones/Manejo%20de%20bosques%20nativos%20de%20las%20Yungas%20-%20GRULKE%20-%20BRASSIOLO.pdf (accessed on 10 August 2023).
- Manrique, S.; Franco, J.; Núñez, V.; Seghezzo, L. Potential of native forests for the mitigation of greenhouse gases in Salta, Argentina. Biomass Bioenergy 2011, 35, 2184–2193. [Google Scholar] [CrossRef]
- IDAE (Instituto para la Diversificación y Ahorro de la Energía). Manuales de Energía Renovable 2. ISBN: 978-84-96680-15-9. Available online: https://www.idae.es/sites/default/files/documentos/publicaciones_idae/documentos_10374_energia_de_la_biomasa_07_b954457c.pdf (accessed on 2 September 2023).
- Portugal-Pereira, J.; Soria, R.; Rathmann, R.; Schaeffer, R.; Szklo, A. Agricultural and agro-industrial residues-to-energy: Techno-economic and environmental assessment in Brazil. Biomass Bioenergy 2015, 81, 521–533. [Google Scholar] [CrossRef]
- Singh, J. Overview of electric power potential of surplus agricultural biomass from economic, social, environmental and technical perspective—A case study of Punjab. Renew. Sustain. Energy Rev. 2015, 42, 286–297. [Google Scholar] [CrossRef]
- Kożuch, A.; Cywicka, D.; Adamowicz, K.; Wieruszewski, M.; Wysocka-Fijorek, E.; Kiełbasa, P. The Use of Forest Biomass for Energy Purposes in Selected European Countries. Energies 2023, 16, 5776. [Google Scholar] [CrossRef]
- Woo, H.; Turner, P. A review of recent research on carbon neutrality in forest bioenergy feedstocks. Int. J. Environ. Sci. Nat. Res. 2019, 19, 80–83. [Google Scholar]
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef]
- Alanya-Rosenbaum, S.; Bergman, R.D.; Ganguly, I.; Pierobon, F. A comparative life-cycle assessment of briquetting logging residues and lumber manufacturing coproducts in Western United States. Am. Soc. Agric. Biol. Eng. 2018, 34, 11–24. [Google Scholar]
- Kovacic, Z. Contradictions and promises of circular economy. Oikonomics 2021, 16, 1–8. [Google Scholar]
- Suárez Eiroa, B. Hacia una circularidad justa y sostenible: Una aproximación a la economía circular desde la economía ecológica y la ecología política. TERRA Rev. Desarro. Local 2023, 12, 56–75. [Google Scholar] [CrossRef]
- Humano, C.A. Growth modeling of native tree species of the Yunga Pedemontane forest, Argentina. Quebracho-Rev. De Cienc. For. 2020, 28, 5–19. [Google Scholar]
- Pan, X.; Gilkes, N.; Kadla, J.; Pye, K.; Saka, S.; Gregg, D.; Ehara, K.; Xie, D.; Lam, D.; Saddler, J. Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnol. Bioeng. 2006, 94, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, B.; Wedwitschka, H.; Hofmann, J.; Denysenko, V.; Lorenz, H.; Liebetrau, J. Disintegration in the biogas sector—Technologies and effects. Bioresour. Technol. 2014, 168, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Kamm, B.; Gruber, P.R.; Kamm, M. Biorefineries–industrial processes and products. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Yamada, R.; Nakatani, Y.; Ogino, C.; Kondo, A. Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharomyces cerevisiae. AMB Express 2013, 3, 34. [Google Scholar] [CrossRef]
- Pulidindi, I.N.; Kimchi, B.B.; Gedanken, A. Can cellulose be a sustainable feedstock for bioethanol production? Renew. Energy 2014, 71, 77–80. [Google Scholar] [CrossRef]
- Noureldin, M.M.; Bao, B.; Elbashir, N.O.; El-Halwagi, M.M. Benchmarking, insights, and potential for improvement of Fischer–Tropsch-based biomass-to-liquid technology. Clean Technol. Environ. Policy 2014, 16, 37–44. [Google Scholar] [CrossRef]
- Peng, B. Transformation of Triglycerides and Fatty Acids into Biofuels with Sulfur-Free Catalysts. Ph.D. Thesis, Universität München, München, Germany, 2012. Available online: https://d-nb.info/1021422274/34 (accessed on 21 August 2023).
- Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 2009, 50, 14–34. [Google Scholar] [CrossRef]
- Araújo, J.D.; Grande, C.A.; Rodrigues, A.E. Vanillin production from lignin oxidation in a batch reactor. Chem. Eng. Res. Des. 2010, 88, 1024–1032. [Google Scholar] [CrossRef]
- Araújo, J.D.P. Production of vanillin from lignin present in the Kraft black liquor of the pulp and paper industry. Adv. Plant Biol. 2014, 4, 277–289. [Google Scholar]
- Liu, C.; Wyman, C.E. Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 2005, 96, 1978–1985. [Google Scholar] [CrossRef]
- Mittal, A.; Vinzant, T.B.; Brunecky, R.; Black, S.K.; Pilath, H.M.; Himmel, M.E.; Johnson, D.K. Investigation of the role of lignin in biphasic xylan hydrolysis during dilute acid and organosolv pretreatment of corn stover. Green Chem. 2015, 17, 1546–1558. [Google Scholar] [CrossRef]
- Endres, H.J. Biopolymers—Facts and Statistics. 2013. Available online: https://www.ifbb-hannover.de/de/facts-and-statistics.html (accessed on 28 August 2023).
- Harmsen, P.F.; Hackmann, M.M.; Bos, H.L. Green building blocks for bio-based plastics. Biofuels Bioprod. Biorefining 2014, 8, 306–324. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Wang, D.; Xing, J. Improving the lactic acid production of Actinobacillus succinogenes by using a novel fermentation and separation integration system. Process Biochem. 2014, 44, 23–33. [Google Scholar] [CrossRef]
Acronym | Meaning | Unit | Value | Reference |
---|---|---|---|---|
Stage 1 (biomass production) | ||||
A | Forested area in the basin | ha | 518,000 | [15] |
AGB | Aboveground wood biomass | t/ha | 138.82 | [50,51] |
AAI min | Average annual increase (minimum rate) | t/ha·year | 2.78 | [13,31] |
AAI max | Average annual increase (maximum rate) | t/ha·year | 5.55 | [13,31] |
Wood consumption | Amount of raw material (wood) consumed by the forestry industry | m3/year | 13,801 * | [16] |
DF | Dendroenergetic factor | adim | 0.85 | [13,31] |
UF | Utilization factor | % | 0.5 | [52] |
CF | Caution factor | % | 50 | This work |
BAAIm | Minimum amount of biomass grown annually | t/year | 603,880 | This work |
BAAIx | Maximum amount of biomass grown annually | t/year | 1,215,089 | This work |
RBP min | Residual biomass from production (minimum) | t/year | 301,939 | This work |
RBP max | Residual biomass from production (maximum) | t/year | 607,545 | This work |
LHV20% | Lower heating value, on wet basis (20%) | GJ/t | 14.644 | [53] |
Stage 2 (industry) | ||||
Vw | Biomass processed (wood volume) | m3/year | 13,801 | [16] |
Production | Sum of the volume produced of the different wood products sawn and manufactured by each establishment in the forest basin | m3/year | 6021 | [16] |
Y | yield | % | 43.6 | [16] |
WWF | wood waste format | format | α = sawdust, β = chips/crushed fuels, γ = wood trimmings and δ = shavings | (Table S1) |
RBFP + RBSP | first and second processing residual biomass | t/year | 2370 | This work |
LHV0% | Lower heating value, on dry basis (0%). | GJ/t | 16.35 | This work |
A | Ash | g/g | 0.030 | This work |
W | Moisture | g/g | 0.105 | This work |
Format (Type) | Nomenclature | Comes From | Size | Participation | Bulk Density | Quantity | Fuelwood Value Index |
---|---|---|---|---|---|---|---|
S | P | BD | Q | FVI | |||
mm | (%) | (tDM/m3 Apparent) | (tDM/year) | (kJ/cm3) | |||
Sawdust | α | Cut with sharp tools | 1–5 mm | 67 | 0.300 | 1563.8 | 1557 |
Chips/crushed wood fuels | β | Cut with sharp tools or shredded | 5–100 mm | 12 | 0.250 | 233.4 | 1298 |
Wood trimmings | γ | Cut with sharp tools | 50–150 mm | 17 | 0.380 | 502.58 | 1972 |
Shavings | δ | Wood planing with sharp tools | 1–30 mm | 4 | 0.225 | 70.02 | 1168 |
SC0 | SCBI | SCBII | SCBIII | SCBIV | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Unit | Value | Unit | Value | Unit | Value | Unit | Value | Unit | Value | |
Stage 1 | ||||||||||
BBP | % | 43.7 | % | 43.7 | % | 58.7 | % | 58.7 | % | 58.7 |
BIO | % | 0 | % | 31.3 | % | 16.30 | % | 26.3 | % | 26.3 |
UF | % | 5 | % | 5 | % | 5 | % | 5 | % | 5 |
NUF | % | 51 | % | 20 | % | 20 | % | 10 | % | 10 |
Stage 2 | ||||||||||
BBP | % | 70 | % | 70 | % | 70 | % | 70 | % | 70 |
BIO | % | 0 | % | 5 | % | 5 | % | 15 | % | 15 |
UF | % | 5 | % | 5 | % | 5 | % | 5 | % | 5 |
NUF | % | 25 | % | 20 | % | 20 | % | 10 | % | 10 |
Stage 3 | ||||||||||
BBP | % | 8 | ||||||||
BIO | % | 5 | ||||||||
NUF | % | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manrique, S.M.; Subelza, C.R.; Toro, M.A.; Quintero Bertel, Q.R.; Tauro, R.J. Forest Supply Chain for Bioenergy: An Approach for Biomass Study in the Framework of a Circular Bioeconomy. Energies 2023, 16, 7140. https://doi.org/10.3390/en16207140
Manrique SM, Subelza CR, Toro MA, Quintero Bertel QR, Tauro RJ. Forest Supply Chain for Bioenergy: An Approach for Biomass Study in the Framework of a Circular Bioeconomy. Energies. 2023; 16(20):7140. https://doi.org/10.3390/en16207140
Chicago/Turabian StyleManrique, Silvina M., Carolina R. Subelza, María Antonia Toro, Quelbis R. Quintero Bertel, and Raúl J. Tauro. 2023. "Forest Supply Chain for Bioenergy: An Approach for Biomass Study in the Framework of a Circular Bioeconomy" Energies 16, no. 20: 7140. https://doi.org/10.3390/en16207140
APA StyleManrique, S. M., Subelza, C. R., Toro, M. A., Quintero Bertel, Q. R., & Tauro, R. J. (2023). Forest Supply Chain for Bioenergy: An Approach for Biomass Study in the Framework of a Circular Bioeconomy. Energies, 16(20), 7140. https://doi.org/10.3390/en16207140