Efficient Allocation and Sizing the PV-STATCOMs in Electrical Distribution Grids Using Mixed-Integer Convex Approximation
Abstract
:1. Introduction
1.1. General Context
1.2. Motivation
1.3. Literature Review
1.4. Contributions and Scope
- i.
- This study presents a reformulation of the exact MINLP model that represents the problem of optimally integrating PV-STATCOM devices in EDSs. The model uses a mixed-integer second-order cone programming approach, which offers the main advantage of analyzing radial and meshed grids. This eliminates the need for heuristic algorithms to decrease the size of the feasible region.
- ii.
- An analysis of the operation of the PV-STATCOM devices against PV sources that operate with a unitary power factor is presented. This analysis shows that PV-STATCOM devices minimize network operating costs by a higher percentage. This is because these devices dynamically inject active and reactive power based on grid requirements.
- (i)
- The research assumes that the information on constant power load behaviors (i.e., demand–load curves) and the expected behavior of PV generation plants is constant, without any uncertainties. The utility company in the area provides these curves that represent average behaviors based on multiple measurements taken throughout the year.
- (ii)
- In order to assess the feasibility of the proposed mixed-integer convex approximation on the exact MINLP model, the placement and sizing of PV-STATCOM devices were evaluated using the GAMS software 24.3.3 r48116. This evaluation was performed by treating the binary variables as constants, which transforms the MINLP programming into a nonlinear model equivalent that represents the daily operation of the network.
1.5. Document Structure
2. Mathematical Problem Formulation
2.1. Objective Function
2.2. Set of Constraints
2.2.1. Active and Reactive Energy Balance Equations
2.2.2. Active and Reactive Energy Flow Equations
2.2.3. Operating Regulations
2.2.4. Incorporation of PV-STATCOM Devices
2.3. Interpretation of the Optimization Model
3. Convex Reformulation
3.1. Convex Representation of the Active and Reactive Power Flow Equations
3.2. Proposed MI Convex Model
4. Test Systems
5. Numerical Implementation
- S1:
- The proposed optimization model was analyzed in the IEEE 33- and 69-EDSs with radial configurations.
- S2:
- The optimal integration of the PV-STATCOM devices was analyzed in the IEEE 33-EDS with a meshed topology.
5.1. Analysis of Case 1 (S1)
- i.
- Installing PV-STATCOM devices generates a greater reduction in the objective function values when compared to only installing PV systems, even though the investment costs are higher.
- ii.
- There is a more significant loss reduction with the installation of PV-STATCOMs in comparison with the exclusive use of PV devices. These reductions occur because PV-STATCOM devices can compensate for reactive power during utility operations.
- iii.
- For the IEEE 33-EDS, the costs of energy losses are reduced by USD 35,006.05 and 62,638.84 per year when PV and PV-STATCOM devices are installed, respectively. This indicates that the latter outperforms the PV systems by 24.87%, saving about USD 27,632.79 more in energy loss costs per year.
- iv.
- The energy loss costs for the IEEE 69-bus test system are reduced by USD 42,858.18 and 73,661.01 per year when the PV and PV-STATCOM devices are installed, respectively. This demonstrates that it is more efficient to install PV-STATCOM devices since they save USD 30,802.82 more per year than PV systems.
5.2. Analysis of Case 2 (S2)
- i.
- The installation of PV-STATCOM devices reduces the objective function in meshed topologies to a greater extent than the exclusive use of PV devices. PV-STATCOMs improve the objective function by 27.74%. Meanwhile, PV devices improve the objective function by 13.31%. This means that PV-STATCOM devices can reduce the objective function by 14.43% more than PV systems.
- ii.
- The optimal integration of PV-STATCOMs significantly reduces the costs of energy losses in the IEEE 33-EDS with a meshed configuration compared to PV devices. The values reported for this reduction are USD 22,816.18 and 37,697.25 per year for the PV and PV-STATCOM devices, respectively. Therefore, PV-STATCOMs can save USD 14,881.07 more per year.
5.3. Comparative Analysis
6. Conclusions and Future Works
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Parameters | |
Duration of a single time period. | |
Maximum number of PV-STATCOMs to be installed. | |
Conjugate of the complex number. | |
Imaginary part of the complex number. | |
Real part of the complex number. | |
Positive components of the A matrix. | |
Negative components of the A matrix. | |
C | Cost associated with energy loss. |
Cost associated with total energy losses in the EDS without PV-STATCOM devices. | |
Cost of installing a PV-STATCOM system. | |
Maximum possible costs of installing PV-STATCOM devices. | |
Cost of installing a photovoltaic system. | |
Cost of installing a photovoltaic system. | |
Maximum power flow in branch l. | |
Maximum apparent power of the PV-STATCOM device. | |
T | Number of days in a year. |
Maximum and minimum voltage permitted in an EDS. | |
Voltage at the slack node. | |
Admittance of the branch (or line) l. | |
Sets and indices | |
Set of branches (or lines). | |
Set of complex numbers. | |
Set of nodes. | |
Set of real numbers. | |
Set of time periods under analysis. | |
d | Demand index (). |
g | Generation index (). |
l | Branch index (). |
Node index (). | |
t | Time index (). |
Variables | |
Receiving active power flow in branch l, time t. | |
Sending active power flow in branch l, time t. | |
Active power demanded at node m and time t. | |
Active power generated at node m and time t. | |
Active power generated by PV-STATCOM device at node m, time t. | |
Receiving reactive power flow in branch l, time t. | |
Sending reactive power flow in branch l, time t. | |
Active power demanded at node m and time t. | |
Reactive power generated at node m and time t. | |
Reactive power delivered (or absorbed) by PV-STATCOM device at node | |
m, time t. | |
Optimal size for a PV-STATCOM device connected to node m. | |
Voltage squared at node m and time t. | |
Voltage at the node m (or k) at time t. | |
Voltage product in branch l at time t. | |
Objective related to annual energy loss costs. | |
Objective related to investment costs of the PV-STATCOM devices. | |
Binary variable that defines the installation of PV-STATCOM at node m. |
References
- Muros, F.J.; Saracho, D.; Maestre, J.M. Improving supply quality in distribution power networks: A game-theoretic planning approach. Electr. Power Syst. Res. 2022, 213, 108666. [Google Scholar] [CrossRef]
- Prettico, G.; Marinopoulos, A.; Vitiello, S. Guiding electricity distribution system investments to improve service quality: A European study. Util. Policy 2022, 77, 101381. [Google Scholar] [CrossRef]
- Lavorato, M.; Franco, J.F.; Rider, M.J.; Romero, R. Imposing Radiality Constraints in Distribution System Optimization Problems. IEEE Trans. Power Syst. 2012, 27, 172–180. [Google Scholar] [CrossRef]
- Chabanloo, R.M.; Maleki, M.G.; Agah, S.M.M.; Habashi, E.M. Comprehensive coordination of radial distribution network protection in the presence of synchronous distributed generation using fault current limiter. Int. J. Electr. Power Energy Syst. 2018, 99, 214–224. [Google Scholar] [CrossRef]
- Farrag, M.A.; Zahra, M.G.; Omran, S. Planning models for optimal routing of radial distribution systems. Int. J. Appl. Power Eng. 2021, 10, 108. [Google Scholar] [CrossRef]
- Celli, G.; Pilo, F.; Pisano, G.; Cicoria, R.; Iaria, A. Meshed vs. radial MV distribution network in presence of large amount of DG. In Proceedings of the IEEE PES Power Systems Conference and Exposition, New York, NY, USA, 10–13 October 2004. [Google Scholar] [CrossRef]
- Sirjani, R.; Jordehi, A.R. Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review. Renew. Sustain. Energy Rev. 2017, 77, 688–694. [Google Scholar] [CrossRef]
- Tolabi, H.B.; Ali, M.H.; Rizwan, M. Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach. IEEE Trans. Sustain. Energy 2014, 6, 210–218. [Google Scholar] [CrossRef]
- Mishra, S.; Das, D.; Paul, S. A comprehensive review on power distribution network reconfiguration. Energy Syst. 2016, 8, 227–284. [Google Scholar] [CrossRef]
- Grigoras, G.; Neagu, B.C.; Gavrilas, M.; Tristiu, I.; Bulac, C. Optimal Phase Load Balancing in Low Voltage Distribution Networks. Using a Smart Meter Data-Based Algorithm. Mathematics 2020, 8, 549. [Google Scholar] [CrossRef]
- Ehsan, A.; Yang, Q. Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Appl. Energy 2018, 210, 44–59. [Google Scholar] [CrossRef]
- Latreche, Y.; Bouchekara, H.R.E.H.; Kerrour, F.; Naidu, K.; Mokhlis, H.; Javaid, M.S. Comprehensive review on the optimal integration of distributed generation in distribution systems. J. Renew. Sustain. Energy 2018, 10, 055303. [Google Scholar] [CrossRef]
- Prakash, K.; Ali, M.; Siddique, M.N.I.; Chand, A.A.; Kumar, N.M.; Dong, D.; Pota, H.R. A review of battery energy storage systems for ancillary services in distribution grids: Current status, challenges and future directions. Front. Energy Res. 2022, 10, 971704. [Google Scholar] [CrossRef]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Téllez, A.Á.; López, G.; Isaac, I.; González, J. Optimal reactive power compensation in electrical distribution systems with distributed resources. Review. Heliyon 2018, 4, e00746. [Google Scholar] [CrossRef] [PubMed]
- Soma, G.G. Optimal Sizing and Placement of Capacitor Banks in Distribution Networks Using a Genetic Algorithm. Electricity 2021, 2, 187–204. [Google Scholar] [CrossRef]
- Mumtahina, U.; Alahakoon, S.; Wolfs, P. A Literature Review on the Optimal Placement of Static Synchronous Compensator (STATCOM) in Distribution Networks. Energies 2023, 16, 6122. [Google Scholar] [CrossRef]
- Adeagbo, A.P.; Ariyo, F.K.; Makinde, K.A.; Salimon, S.A.; Adewuyi, O.B.; Akinde, O.K. Integration of Solar Photovoltaic Distributed Generators in Distribution Networks Based on Site’s Condition. Solar 2022, 2, 52–63. [Google Scholar] [CrossRef]
- Nanibabu, S.; Shakila, B.; Prakash, M. Reactive Power Compensation using Shunt Compensation Technique in the Smart Distribution Grid. In Proceedings of the 2021 IEEE 6th International Conference on Computing, Communication and Security (ICCCS), Las Vegas, NV, USA, 4–6 October 2021. [Google Scholar] [CrossRef]
- Shao, B.; Xiao, Q.; Xiong, L.; Wang, L.; Yang, Y.; Chen, Z.; Blaabjerg, F.; Guerrero, J.M. Power coupling analysis and improved decoupling control for the VSC connected to a weak AC grid. Int. J. Electr. Power Energy Syst. 2023, 145, 108645. [Google Scholar] [CrossRef]
- Boghdady, T.A.; Mohamed, Y.A. Reactive power compensation using STATCOM in a PV grid connected system with a modified MPPT method. Ain Shams Eng. J. 2023, 14, 102060. [Google Scholar] [CrossRef]
- Shaheen, A.M.; El-Sehiemy, R.A.; Ginidi, A.; Elsayed, A.M.; Al-Gahtani, S.F. Optimal Allocation of PV-STATCOM Devices in Distribution Systems for Energy Losses Minimization and Voltage Profile Improvement via Hunter-Prey-Based Algorithm. Energies 2023, 16, 2790. [Google Scholar] [CrossRef]
- Sirjani, R. Optimal Placement and Sizing of PV-STATCOM in Power Systems Using Empirical Data and Adaptive Particle Swarm Optimization. Sustainability 2018, 10, 727. [Google Scholar] [CrossRef]
- Fardinfar, F.; Pour, M.J.K. Optimal placement of D-STATCOM and PV solar in distribution system using probabilistic load models. In Proceedings of the 2023 IEEE 10th Iranian Conference on Renewable Energy & Distributed Generation (ICREDG), Shahrood, Iran, 15–16 March 2023. [Google Scholar] [CrossRef]
- Kumar, P.; Bohre, A.K. Optimal allocation of Hybrid Solar-PV with STATCOM based on Multi-objective Functions using combined OPF-PSO Method. SSRN Electron. J. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Alves, Z.M.; Martins, R.M.; Marchesan, G.; Junior, G.C. Metaheuristic for the Allocation and Sizing of PV-STATCOMs for Ancillary Service Provision. Energies 2022, 16, 424. [Google Scholar] [CrossRef]
- Elshahed, M.; Tolba, M.A.; El-Rifaie, A.M.; Ginidi, A.; Shaheen, A.; Mohamed, S.A. An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems. Mathematics 2023, 11, 339. [Google Scholar] [CrossRef]
- De Koster, O.A.C.; Domínguez-Navarro, J.A. Multi-Objective Tabu Search for the Location and Sizing of Multiple Types of FACTS and DG in Electrical Networks. Energies 2020, 13, 2722. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, X.; Li, Z.; Abu-Siada, A.; Guo, Y. Optimum Location and Parameter Setting of STATCOM Based on Improved Differential Evolution Harmony Search Algorithm. IEEE Access 2020, 8, 87810–87819. [Google Scholar] [CrossRef]
- Luo, L.; Gu, W.; Zhang, X.P.; Cao, G.; Wang, W.; Zhu, G.; You, D.; Wu, Z. Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM). Appl. Energy 2018, 210, 1092–1100. [Google Scholar] [CrossRef]
- Zohrizadeh, F.; Josz, C.; Jin, M.; Madani, R.; Lavaei, J.; Sojoudi, S. A survey on conic relaxations of optimal power flow problem. Eur. J. Oper. Res. 2020, 287, 391–409. [Google Scholar] [CrossRef]
- Lavaei, J.; Tse, D.; Zhang, B. Geometry of Power Flows and Optimization in Distribution Networks. IEEE Trans. Power Syst. 2014, 29, 572–583. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient Integration of Fixed-Step Capacitor Banks and D-STATCOMs in Radial and Meshed Distribution Networks Considering Daily Operation Curves. Energies 2023, 16, 3532. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.; Restrepo-Cuestas, B.; Cortés-Caicedo, B.; Montano, J.; Rosales-Muñoz, A.; Rivera, M. Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review. Energies 2022, 16, 106. [Google Scholar] [CrossRef]
- Lofberg, J. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508), New Orleans, LA, USA, 26 April–1 May 2004; pp. 284–289. [Google Scholar]
- Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual: Gurobi Web Page; Gurobi Optimization, LLC: Beaverton, OR, USA, 2022; Available online: https://www.gurobi.com/documentation/current/refman/index.html (accessed on 16 July 2023).
Node | Node | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
() | () | (kW) | (kvar) | () | () | (kW) | (kvar) | ||||
1 | 2 | 0.0922 | 0.0477 | 100 | 60 | 17 | 18 | 0.7320 | 0.5740 | 90 | 40 |
2 | 3 | 0.4930 | 0.2511 | 90 | 40 | 2 | 19 | 0.1640 | 0.1565 | 90 | 40 |
3 | 4 | 0.3660 | 0.1864 | 120 | 80 | 19 | 20 | 1.5042 | 1.3554 | 90 | 40 |
4 | 5 | 0.3811 | 0.1941 | 60 | 30 | 20 | 21 | 0.4095 | 0.4784 | 90 | 40 |
5 | 6 | 0.8190 | 0.7070 | 60 | 20 | 21 | 22 | 0.7089 | 0.9373 | 90 | 40 |
6 | 7 | 0.1872 | 0.6188 | 200 | 100 | 3 | 23 | 0.4512 | 0.3083 | 90 | 50 |
7 | 8 | 1.7114 | 1.2351 | 200 | 100 | 23 | 24 | 0.8980 | 0.7091 | 420 | 200 |
8 | 9 | 1.0300 | 0.7400 | 60 | 20 | 24 | 25 | 0.8960 | 0.7011 | 420 | 200 |
9 | 10 | 1.0400 | 0.7400 | 60 | 20 | 6 | 26 | 0.2030 | 0.1034 | 60 | 25 |
10 | 11 | 0.1966 | 0.0650 | 45 | 30 | 26 | 27 | 0.2842 | 0.1447 | 60 | 25 |
11 | 12 | 0.3744 | 0.1238 | 60 | 35 | 27 | 28 | 1.0590 | 0.9337 | 60 | 20 |
12 | 13 | 1.4680 | 1.1550 | 60 | 35 | 28 | 29 | 0.8042 | 0.7006 | 120 | 70 |
13 | 14 | 0.5416 | 0.7129 | 120 | 80 | 29 | 30 | 0.5075 | 0.2585 | 200 | 600 |
14 | 15 | 0.5910 | 0.5260 | 60 | 10 | 30 | 31 | 0.9744 | 0.9630 | 150 | 70 |
15 | 16 | 0.7463 | 0.5450 | 60 | 20 | 31 | 32 | 0.3105 | 0.3619 | 210 | 100 |
16 | 17 | 1.2860 | 1.7210 | 60 | 20 | 32 | 33 | 0.3410 | 0.5302 | 60 | 40 |
12 | 22 | 2.0000 | 2.0000 | - | - | 18 | 33 | 0.5000 | 0.5000 | - | - |
25 | 29 | 0.5000 | 0.5000 | - | - | - | - | - | - | - | - |
Node | Node | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
() | () | (kW) | (kvar) | () | () | (kW) | (kvar) | ||||
1 | 2 | 0.0005 | 000012 | 0.00 | 0.00 | 3 | 36 | 0.0044 | 0.0108 | 26.00 | 18.55 |
2 | 3 | 0.0005 | 0.0012 | 0.00 | 0.00 | 36 | 37 | 0.0640 | 0.1565 | 26.00 | 18.55 |
3 | 4 | 0.0015 | 0.0036 | 0.00 | 0.00 | 37 | 38 | 0.1053 | 0.1230 | 0.00 | 0.00 |
4 | 5 | 0.0251 | 0.0294 | 0.00 | 0.00 | 38 | 39 | 0.0304 | 0.0355 | 24.00 | 17.00 |
5 | 6 | 0.3660 | 0.1864 | 2.60 | 2.20 | 39 | 40 | 0.0018 | 0.0021 | 24.00 | 17.00 |
6 | 7 | 0.3810 | 0.1941 | 40.40 | 30.00 | 40 | 41 | 0.7283 | 0.8509 | 1.20 | 1.00 |
7 | 8 | 0.0922 | 0.0470 | 75.00 | 54.00 | 41 | 42 | 0.3100 | 0.3623 | 0.00 | 0.00 |
8 | 9 | 0.0493 | 0.0251 | 30.00 | 22.00 | 42 | 43 | 0.0410 | 0.0478 | 6.00 | 4.30 |
9 | 10 | 0.8190 | 0.2707 | 28.00 | 19.00 | 43 | 44 | 0.0092 | 0.0116 | 0.00 | 0.00 |
10 | 11 | 0.1872 | 0.0619 | 145.00 | 104.00 | 44 | 45 | 0.1089 | 0.1373 | 39.22 | 26.30 |
11 | 12 | 0.7114 | 0.2351 | 145.00 | 104.00 | 45 | 46 | 0.0009 | 0.0012 | 29.22 | 26.30 |
12 | 13 | 1.0300 | 0.3400 | 8.00 | 5.00 | 4 | 47 | 0.0034 | 0.0084 | 0.00 | 0.00 |
13 | 14 | 1.0440 | 0.3450 | 8.00 | 5.50 | 47 | 48 | 0.0851 | 0.2083 | 79.00 | 56.40 |
14 | 15 | 1.0580 | 0.3496 | 0.00 | 0.00 | 48 | 49 | 0.2898 | 0.7091 | 384.70 | 274.50 |
15 | 16 | 0.1966 | 0.0650 | 45.50 | 30.00 | 49 | 50 | 0.0822 | 0.2011 | 384.70 | 274.50 |
16 | 17 | 0.3744 | 0.1238 | 60.00 | 35.00 | 8 | 51 | 0.0928 | 0.0473 | 40.50 | 28.30 |
17 | 18 | 0.0047 | 0.0016 | 60.00 | 35.00 | 51 | 52 | 0.3319 | 0.1114 | 3.60 | 2.70 |
18 | 19 | 0.3276 | 0.1083 | 0.00 | 0.00 | 9 | 53 | 0.1740 | 0.0886 | 4.35 | 3.50 |
19 | 20 | 0.2106 | 0.0690 | 1.00 | 0.60 | 53 | 54 | 0.2030 | 0.1034 | 26.40 | 19.00 |
20 | 21 | 0.3416 | 0.1129 | 114.00 | 81.00 | 54 | 55 | 0.2842 | 0.1447 | 24.00 | 17.20 |
21 | 22 | 0.0140 | 0.0046 | 5.00 | 3.50 | 55 | 56 | 0.2813 | 0.1433 | 0.00 | 0.00 |
22 | 23 | 0.1591 | 0.0526 | 0.00 | 0.00 | 56 | 57 | 1.5900 | 0.5337 | 0.00 | 0.00 |
23 | 24 | 0.3463 | 0.1145 | 28.00 | 20.00 | 57 | 58 | 0.7837 | 0.2630 | 0.00 | 0.00 |
24 | 25 | 0.7488 | 0.2475 | 0.00 | 0.00 | 58 | 59 | 0.3042 | 0.1006 | 100.00 | 72.00 |
25 | 26 | 0.3089 | 0.1021 | 14.00 | 10.00 | 59 | 60 | 0.3861 | 0.1172 | 0.00 | 0.00 |
26 | 27 | 0.1732 | 0.0572 | 14.00 | 10.00 | 60 | 61 | 0.5075 | 0.2585 | 1244.00 | 888.00 |
3 | 28 | 0.0044 | 0.0108 | 26.00 | 18.60 | 61 | 62 | 0.0974 | 0.0496 | 32.00 | 23.00 |
28 | 29 | 0.0640 | 0.1565 | 26.00 | 18.60 | 62 | 63 | 0.1450 | 0.0738 | 0.00 | 0.00 |
29 | 30 | 0.3978 | 0.1315 | 0.00 | 0.00 | 63 | 64 | 0.7105 | 0.3619 | 227.00 | 162.00 |
30 | 31 | 0.0702 | 0.0232 | 0.00 | 0.00 | 64 | 65 | 1.0410 | 0.5302 | 59.00 | 42.00 |
31 | 32 | 0.3510 | 0.1160 | 0.00 | 0.00 | 11 | 66 | 0.2012 | 0.0611 | 18.00 | 13.00 |
32 | 33 | 0.8390 | 0.2816 | 14.00 | 10.00 | 66 | 67 | 0.0470 | 0.0140 | 18.00 | 13.00 |
33 | 34 | 1.7080 | 0.5646 | 19.50 | 14.00 | 12 | 68 | 0.7394 | 0.2444 | 28.00 | 20.00 |
34 | 35 | 1.4740 | 0.4873 | 6.00 | 4.00 | 68 | 69 | 0.0047 | 0.0016 | 28.00 | 20.00 |
Parameter | Value | Unit | Parameter | Value | Unit |
---|---|---|---|---|---|
C | 0.1390 | USD/kWh | T | 365 | Days |
0.50 | h | 1.0365 | USD/MVA | ||
2.457 | USD/kVA | - | - | - |
Device | Location | Size (MVA) | z (Per-Unit/Year) | Reduction (%) | Loss Reduction (%) |
---|---|---|---|---|---|
IEEE 33-EDS | |||||
Benchmark case | - | - | 1 | - | - |
PV | [14, 17, 32] | [0.3657, 0.2089, 0.5091] | 0.8697 | 13.03 | 31.05 |
PV-STATCOM | [14, 30, 32] | [0.5491, 0.5001, 0.2948] | 0.6684 | 33.16 | 55.56 |
IEEE 69-EDS | |||||
Benchmark case | - | - | 1 | - | - |
PV | [61, 64, 65] | [0.8544, 0.2504, 0.0641] | 0.8407 | 15.92 | 35.80 |
PV-STATCOM | [21, 61, 61] | [0.1479, 0.9590, 0.3136] | 0.6219 | 37.81 | 61.53 |
Device | Location | Size (MVA) | z (Per-Unit/Year) | Reduction (%) | Loss Reduction (%) |
---|---|---|---|---|---|
IEEE 33-EDS | |||||
Benchmark case | - | - | 1 | - | - |
PV | [15, 30, 32] | [0.2671, 0.3407, 0.5343] | 0.9084 | 13.31 | 31.37 |
PV-STATCOM | [14, 30, 32] | [0.2867, 0.7058, 0.4530] | 0.7225 | 27.74 | 51.83 |
Method | Location | Size (MVA) | z (Per-Unit/Year) | Reduction (%) | Loss Reduction (%) |
---|---|---|---|---|---|
IEEE 33-EDS | |||||
Benchmark case | - | - | 1 | - | - |
DICOPT | [16, 25, 29] | [0.5039, 0.4781, 0.81175] | 0.6884 | 33.16 | 53.89 |
PV-STATCOM | [14, 30, 32] | [0.5491, 0.5001, 0.2948] | 0.6684 | 31.16 | 55.56 |
IEEE 33-EDS with meshed topology | |||||
Benchmark case | - | - | 1 | - | - |
DICOPT | [8, 17, 30] | [0.3029, 0.2082, 0.9531] | 0.7651 | 23.49 | 47.89 |
PV-STATCOM | [14, 30, 32] | [0.2867, 0.7058, 0.4530] | 0.7225 | 27.74 | 51.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido-Arévalo, V.M.; Gil-González, W.; Montoya, O.D.; Chamorro, H.R.; Mírez, J. Efficient Allocation and Sizing the PV-STATCOMs in Electrical Distribution Grids Using Mixed-Integer Convex Approximation. Energies 2023, 16, 7147. https://doi.org/10.3390/en16207147
Garrido-Arévalo VM, Gil-González W, Montoya OD, Chamorro HR, Mírez J. Efficient Allocation and Sizing the PV-STATCOMs in Electrical Distribution Grids Using Mixed-Integer Convex Approximation. Energies. 2023; 16(20):7147. https://doi.org/10.3390/en16207147
Chicago/Turabian StyleGarrido-Arévalo, Víctor M., Walter Gil-González, Oscar Danilo Montoya, Harold R. Chamorro, and Jorge Mírez. 2023. "Efficient Allocation and Sizing the PV-STATCOMs in Electrical Distribution Grids Using Mixed-Integer Convex Approximation" Energies 16, no. 20: 7147. https://doi.org/10.3390/en16207147
APA StyleGarrido-Arévalo, V. M., Gil-González, W., Montoya, O. D., Chamorro, H. R., & Mírez, J. (2023). Efficient Allocation and Sizing the PV-STATCOMs in Electrical Distribution Grids Using Mixed-Integer Convex Approximation. Energies, 16(20), 7147. https://doi.org/10.3390/en16207147