The Influence of the Type and Condition of Road Surfaces on the Exhaust Emissions and Fuel Consumption in the Transport of Timber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Objects
2.2. Measurement Equipment
2.3. The Test Route
3. Results and Discussion
3.1. Analysis of Vehicle Movement and Drive Unit Performance Parameters
3.2. Analysis of the Individual Steps in the Timber Transport Process
3.3. Analysis of Emissions of Harmful Compounds in the Process of Timber Transport
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 6 December 2022).
- Joint Research Centre, European Commission. The Future of Road Transport; EUR 29748 EN; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Merkisz, J.; Pielecha, J. Emisja Cząstek Stałych ze Źródeł Motoryzacyjnych; Wydawnictwo Politechniki Poznańskiej: Poznań, Poland, 2014. [Google Scholar]
- Leikauf, G.D.; Kim, S.H.; Jang, A.S. Mechanizmy skutków zdrowotnych układu oddechowego wywołanych najdrobniejszymi cząstkami. Exp. Mol. Med. 2020, 52, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www6.eea.com (accessed on 6 December 2022).
- Aminzadegan, S.; Shahriari, M.; Mehranfar, F.; Abramović, B. Factors affecting the emission of pollutants in different types of transportation: A literature review. Energy Rep. 2022, 8, 2508–2529. [Google Scholar] [CrossRef]
- Grieshop, A.P.; Lipsky, E.M.; Pekney, N.J.; Takahama, S.; Robinson, A.L. Fine particle emission factors from vehicles in a highway tunnel: Effects of fleet composition and season. Atmos. Environ. 2006, 40 (Suppl. S2), 287–298. [Google Scholar] [CrossRef]
- André, M.; Hammarström, U. Driving speeds in Europe for pollutant emissions estimation. Transp. Res. Part D Transp. Environ. 2000, 5, 321–335. [Google Scholar] [CrossRef]
- Kean, A.J.; Harley, R.A.; Kendall, G.R. Effects of Vehicle Speed and Engine Load on Motor Vehicle Emissions. Environ. Sci. Technol. 2003, 37, 3739–3746. [Google Scholar] [CrossRef]
- Zare, A.; Nabi, M.N.; Bodisco, T.A.; Hossain, F.M.; Rahman, M.M.; Van, T.C.; Ristovski, Z.D.; Brown, R.J. Diesel engine emissions with oxygenated fuels: A comparative study into cold-start and hot-start operation. J. Clean. Prod. 2017, 162, 997–1008. [Google Scholar] [CrossRef]
- Leblanc, M.; Noël, L.; R’Mili, B.; Boréave, A.; D’Anna, B.; Raux, S. Impact of Engine Warm-up and DPF Active Regeneration on Regulated & Unregulated Emissions of a Euro 6 Diesel SCR Equipped Vehicle. J. Earth Sci. Geotech. Eng. 2016, 6, 29–50. [Google Scholar]
- Weilenmann, M.; Favez, J.-Y.; Alvarez, R. Cold-Start Emissions of Modern Passenger Cars at Different Low Ambient Temperatures and Their Evolution over Vehicle Legislation Categories. Atmos. Environ. 2009, 43, 2419–2429. [Google Scholar] [CrossRef]
- Farrington, R.; Rugh, J. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2000. [Google Scholar]
- Amanatidis, S.; Ntziachristos, L.; Giechaskiel, B.; Bergmann, A.; Samaras, Z. Impact of Selective Catalytic Reduction on Exhaust Particle Formation over Excess Ammonia Events. Environ. Sci. Technol. 2014, 48, 11527–11534. [Google Scholar] [CrossRef]
- Gallus, J.; Kirchner, U.; Vogt, R.; Benter, T. Impact of driving style and road grade on gaseous exhaust emissions of passenger vehicles measured by a Portable Emission Measurement System (PEMS). Transp. Res. Part D Transp. Environ. 2017, 52, 215–226. [Google Scholar] [CrossRef]
- Merkisz, J.; Andrzejewski, M.; Pielecha, J. The effect of applying the eco-driving rules on the exhaust emissions. Combust. Engines 2013, 155, 66–74. [Google Scholar] [CrossRef]
- Dimaratos, A.; Giechaskiel, B.; Clairotte, M.; Fontaras, G. Impact of Active Diesel Particulate Filter Regeneration on Carbon Dioxide, Nitrogen Oxides and Particle Number Emissions from Euro 5 and 6 Vehicles under Laboratory Testing and Real-World Driving. Energies 2022, 15, 5070. [Google Scholar] [CrossRef]
- Huang, Y.; Ng, E.C.Y.; Surawski, N.C.; Zhou, J.L.; Wang, X.; Gao, J.; Lin, W.; Brown, R.J. Effect of diesel particulate filter regeneration on fuel consumption and emissions performance under real-driving conditions. Fuel 2022, 320, 123937. [Google Scholar] [CrossRef]
- Barrios, C.C.; Domínguez-Sáez, A.; Rubio, J.R.; Pujadas, M. Factors influencing the number distribution and size of the particles emitted from a modern diesel vehicle in real urban traffic. Atmos. Environ. 2012, 56, 16–25. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Riccobono, F.; Vlachos, T.; Mendoza-Villafuerte, P.; Suarez-Bertoa, R.; Fontaras, G.; Bonnel, P.; Weiss, M. Vehicle emission factors of solid nanoparticles in the laboratory and on the road using portable emission measurement systems (PEMS). Front. Environ. Sci. 2015, 3, 82. [Google Scholar] [CrossRef]
- Sokolnicka-Popis, B.; Szymlet, N.; Siedlecki, M.; Gallas, D. The impact of particulate filter substrate type on the gaseous exhaust components emission. Combust. Engines 2020, 183, 58–62. [Google Scholar] [CrossRef]
- Siedlecki, M.; Szymlet, N.; Sokolnicka, B. Influence of the Particulate Filter Use in the Spark Ignition Engine Vehicle on the Exhaust Emission in Real Driving Emission Test. J. Ecol. Eng. 2020, 21, 120–127. [Google Scholar] [CrossRef]
- Šarkan, B.; Jaśkiewicz, M.; Kubiak, P.; Tarnapowicz, D.; Loman, M. Exhaust Emissions Measurement of a Vehicle with Retrofitted LPG System. Energies 2022, 15, 1184. [Google Scholar] [CrossRef]
- Jaworski, A.; Lejda, K.; Lubas, J.; Mądziel, M. Comparison of exhaust emission from Euro 3 and Euro 6 motor vehicles fueled with petrol and LPG based on real driving conditions. Combust. Engines 2019, 178, 106–111. [Google Scholar] [CrossRef]
- Meneguzzer, C.; Gastaldi, M.; Rossi, R.; Gecchele, G.; Prati, M.V. Comparison of exhaust emissions at intersections under traffic signal versus roundabout control using an instrumented vehicle. Transp. Res. Procedia 2017, 25, 1597–1609. [Google Scholar] [CrossRef]
- Ziółkowski, A.; Fuć, P.; Lijewski, P.; Jagielski, A.; Bednarek, M.; Kusiak, W. Analysis of Exhaust Emissions from Heavy-Duty Vehicles on Different Applications. Energies 2022, 15, 7886. [Google Scholar] [CrossRef]
- Lijewski, P.; Merkisz, J.; Fuć, P.; Ziółkowski, A.; Rymaniak, L.; Kusiak, W. Zużycie paliwa i emisja spalin w procesie zmechanizowanego pozyskiwania i transportu drewna. Eur. J. Za. Rez. 2017, 136, 153–160. [Google Scholar] [CrossRef]
- Hong, B.; Lü, L. Assessment of Emissions and Energy Consumption for Construction Machinery in Earthwork Activities by Incorporating Real-World Measurement and Discrete-Event Simulation. Sustainability 2022, 14, 5326. [Google Scholar] [CrossRef]
- Triantafyllopoulos, G.; Dimaratos, A.; Ntziachristos, L.; Bernard, Y.; Dornoff, J.; Samaras, Z. A study on the CO2 and NOx emissions performance of Euro 6 diesel vehicles under various chassis dynamometer and on-road conditions including latest regulatory provisions. Sci. Total Environ. 2019, 666, 337–346. [Google Scholar] [CrossRef]
- Press Materials. Available online: https://www.globalmrv.com (accessed on 13 January 2023).
- Giechaskiel, B.; Gioria, R.; Carriero, M.; Lähde, T.; Forloni, F.; Perujo, A.; Martini, G.; Bissi, L.M.; Terenghi, R. Emission Factors of a Euro VI Heavy-duty Diesel Refuse Collection Vehicle. Sustainability 2019, 11, 1067. [Google Scholar] [CrossRef]
- Zhang, Y.; Lou, D.; Tan, P.; Hu, Z.; Fang, L. Effect of SCR downsizing and ammonia slip catalyst coating on the emissions from a heavy-duty diesel engine. Energy Rep. 2022, 8, 749–757. [Google Scholar] [CrossRef]
- Leskovjan, M.; Kočí, P.; Maunula, T. Simulation of diesel exhaust aftertreatment system DOC—pipe—SCR: The effects of Pt loading, PtOx formation and pipe configuration on the deNOx performance. Chem. Eng. Sci. 2018, 189, 179–190. [Google Scholar] [CrossRef]
- Varella, R.; Faria, M.; Mendoza-Villafuerte, P.; Baptista, P.C.; Sousa, L.; Duarte, G.O. Assessing the influence of boundary conditions, driving behavior and data analysis methods on real driving CO2 and NOx emissions. Sci. Total Environ. 2019, 658, 879–894. [Google Scholar] [CrossRef]
- Sala, R.; Krasowski, J.; Dzida, J. Selective Catalytic Reduction of Nitrogen Oxides in Vehicles Complaint to Euro VI Emission Limit, Autobusy: Technika, Eksploatacji, Systemy Transportwoe; Instytut Naukowo-Wydawniczy Spatium: Radom, Poland, 2017; pp. 1052–1056. [Google Scholar]
- Li, P.; Lü, L. Evaluating the Real-World NOx Emission from a China VI Heavy-Duty Diesel Vehicle. Appl. Sci. 2021, 11, 1335. [Google Scholar] [CrossRef]
- Drywa, M. Wpływ nawierzchni jezdni na zużycie paliwa. Autobusy. Tech. Eksploat. Syst. Transp. 2014, 10, 10. [Google Scholar]
- Kokoszka, S.; Kuboń, M. A Comperative Analysis of the Roads for Agriculture Transport on Plain and Piedmont Areas; Inżynieria Rolnicza: Cracov, Poland, 2004; pp. 253–261. [Google Scholar]
- Merkisz, J.; Kozak, M.; Molik, P.; Nijak, D.; Andrzejewski, M.; Nowak, M.; Rymaniak, Ł.; Ziółkowski, A. The analysis of the emission level from a heavy-duty truck in city traffic. Silniki Spalinowe 2012, 150, 80–88. [Google Scholar]
Parameter | Research Object |
---|---|
Engine type | Diesel |
Displacement | 12.4 dm3 |
Maximum power output @1900 rpm | 353 kW |
Number of cylinders | 6 |
Emission standard | Euro VI |
Aftertreatment | SCR, DPF, DOC |
Parameter | Measurement Method | Measurement Range | Measurement Accuracy |
---|---|---|---|
CO2 | Non-dispersive infrared | 0–16% | ±3% |
CO | Non-dispersive infrared | 0–10% | ±3% |
HC | Non-dispersive infrared | 0–2000 ppm | ±4% |
O2 | Electrochemical | 0–25% | ±1% |
NOx | Electrochemical | 0–5000 ppm | ±1% |
PM | Laser dispersion | 0–250 g/m3 | ±2% |
Index | Exhaust Component | |||
---|---|---|---|---|
CO | THC | NOx | CO2 | |
Road emission | 2.98 g/km | 0.10 g/km | 0.14 g/km | 1557.29 g/km |
Specific emission | 0.91 g/kWh | 0.03 g/kWh | 0.04 g/kWh | 477 g/kWh |
Stage | Fuel Consumption | |
---|---|---|
dm3/100 km × 1 m3 | dm3/1 km × 1 m3 | |
Stage 1 | 26.57 | 1.100 |
Stage 2 | 9.34 | 0.093 |
Stage 3 | 3.91 | 0.039 |
Stage 4 | 1.85 | 0.018 |
Entire test | 2.45 | 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziółkowski, A.; Fuć, P.; Lijewski, P.; Bednarek, M.; Jagielski, A.; Kusiak, W.; Igielska-Kalwat, J. The Influence of the Type and Condition of Road Surfaces on the Exhaust Emissions and Fuel Consumption in the Transport of Timber. Energies 2023, 16, 7257. https://doi.org/10.3390/en16217257
Ziółkowski A, Fuć P, Lijewski P, Bednarek M, Jagielski A, Kusiak W, Igielska-Kalwat J. The Influence of the Type and Condition of Road Surfaces on the Exhaust Emissions and Fuel Consumption in the Transport of Timber. Energies. 2023; 16(21):7257. https://doi.org/10.3390/en16217257
Chicago/Turabian StyleZiółkowski, Andrzej, Paweł Fuć, Piotr Lijewski, Maciej Bednarek, Aleks Jagielski, Władysław Kusiak, and Joanna Igielska-Kalwat. 2023. "The Influence of the Type and Condition of Road Surfaces on the Exhaust Emissions and Fuel Consumption in the Transport of Timber" Energies 16, no. 21: 7257. https://doi.org/10.3390/en16217257
APA StyleZiółkowski, A., Fuć, P., Lijewski, P., Bednarek, M., Jagielski, A., Kusiak, W., & Igielska-Kalwat, J. (2023). The Influence of the Type and Condition of Road Surfaces on the Exhaust Emissions and Fuel Consumption in the Transport of Timber. Energies, 16(21), 7257. https://doi.org/10.3390/en16217257