Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries
Abstract
:1. Introduction
2. Background to Analysis
2.1. The Current Trends in Green Energy Concepts
2.2. Barriers to Development of RESs
- Administrative obstacles, including protracted regulatory approvals and permitting processes: lengthy and complex administrative procedures can hinder the timely development of renewable energy projects.
- Lack of transparency and expensive procedures for connecting to the grid: the cost and complexity of connecting renewable projects to the grid can be a significant administrative barrier.
- Policy unpredictability characterized by abrupt policy shifts and inconsistent decision-making: frequent changes in government policies related to renewable energy can create uncertainty for investors and developers.
- Unstable political support and changing policies: inconsistent political backing for renewable energy projects can deter investment.
- Opposition from local communities and government bodies: resistance from local communities and municipal councils can pose political challenges.
- Dependence on regional governments: relying on regional authorities for support can result in varying priorities and inconsistent policies.
- High capital costs for renewable electricity projects: the initial investment required for renewable projects can be a barrier.
- Long payback periods: extended timeframes for recovering investments can discourage potential investors.
- Limited revenue/savings potential for renewable projects: concerns about the profitability of renewable energy projects can be a barrier.
- High operational and maintenance costs: ongoing expenses for renewable projects can affect their economic viability.
- Market structure issues hindering renewable integration: challenges in the market structure can impede the growth of renewable energy.
- The dominance of a few players in the market: market concentration can limit competition and innovation.
- Volatility in spot market prices: price fluctuations in energy markets can create uncertainty for investors.
- Limited availability of financial resources: a lack of accessible funding can be a market barrier.
- Grid connectivity limitations and insufficient grid capacity: inadequate grid infrastructure can limit the integration of renewable energy.
- Lengthy permit processing times for a large number of applications: delays in permitting can slow project development.
- Inadequate infrastructure to support renewable energy deployment: a lack of infrastructure can be an infrastructure barrier.
2.3. European Green Deal
3. Materials and Methods
- RQ1. How do political, administrative, grid, and socioeconomic barriers to renewable energy source implementation affect the development of renewable energy in the economy?
- RQ2. Are market economic factors a barrier to or a stimulus for increasing the level of RESs in energy consumption?
- RQ3. Do European Union member countries react in a uniform manner to the analyzed factors and barriers to the development of RESs?
4. Results of the Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Green Deal. Komunikat Komisji do Parlamentu Europejskiego, Rady Europejskiej, Rady, Komitetu Ekonomiczno-Społecznego i Komitetu Regionów, Bruksela 11.12.2019, COM(2019)640 Final. Available online: https://eur-lex.europa.eu/legal-content/pl/TXT/?uri=CELEX%3A52019DC0640 (accessed on 15 June 2021).
- Clean Energy for All Europeans—Unlocking Europe’s Growth Potential. IP_16_4009. European Commission, Brussel. 2016. Available online: https://europa.eu/rapid/press-release_IP-16-4009_en.htm (accessed on 15 April 2023).
- European Comisssion—Komunikat Prasowy (in Polish): Czysta Energia dla Wszystkich Europejczyków, Czyli jak Wyzwolić Potencjał Wzrostu Europy, Bruksela 30.11.2016. Available online: https://ec.europa.eu/commission/presscorner/detail/pl/ (accessed on 15 April 2023).
- Porozumienie Paryskie do Ramowej Konwencji Narodów Zjednoczonych w Sprawie Zmian Klimatu, Sporządzonej w Nowym Jorku Dnia 9 Maja 1992 r, Przyjęte w Paryżu Dnia 12 Grudnia 2015 r., Dz.U. 2017, poz. 36. Available online: https://www.consilium.europa.eu/pl/policies/climate-change/paris-agreement/ (accessed on 15 September 2023).
- Eurostat. 2019. Available online: https://ec.europa.eu/eurostat/documents/2995521/9571695/8-12022019-AP-EN.pdf/b7d237c1-ccea-4adc-a0ba-45e13602b428 (accessed on 15 September 2023).
- Dyrektywa UE, Grudzień. 2018. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A32018L2001 (accessed on 15 September 2023).
- Urbano, E.M.; Martinez-Viol, V.; Kampouropoulos, K.; Romeral, L. Future european energy markets and industry 4.0 potential in energy transition towards decarbonization. Renew. Energy Power Qual. J. 2020, 18, 190–195. [Google Scholar] [CrossRef]
- Matsunaga, F.; Zytkowski, V.; Valle, P.; Deschamps, F. Optimization of Energy Efficiency in Smart Manufacturing Through the Application of Cyber-Physical Systems and Industry 4.0 Technologies. J. Energy Resour. Technol. Trans. ASME 2022, 144, 102104. [Google Scholar] [CrossRef]
- Bernat, T.; Flaszewska, S.; Lisowski, B.; Lisowska, R.; Szymańska, K. Facing Environmental Goals for Energy-Efficiency Improvements in Micro and Small Enterprises Operating in the Age of Industry 4.0. Energies 2022, 15, 6577. [Google Scholar] [CrossRef]
- Wolniak, R.; Saniuk, S.; Grabowska, S.; Gajdzik, B. Identification of energy efficiency trends in the context of the development of industry 4.0 using the Polish steel sector as an example. Energies 2020, 13, 2867. [Google Scholar] [CrossRef]
- Strategic Energy Technology Plan. The SET Plan. EC. Brussel. 2007. Available online: https://setis.ec.europa.eu/implementing-actions_en (accessed on 20 September 2023).
- OECD. Greening Household Behaviour. The Role of Public Policy, p. 22. 2011. Available online: http://www.oecdilibrary.org/environment/greening-household-behaviour_9789264096875-en (accessed on 10 April 2023).
- Zhang, Z.; Zhu, W. Residential mobility and household energy-saving appliances purchasing behavior in urban areas: Evidence from China. Energy Rep. 2023, 9, 387–396. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/SDG_07_40__custom_7629467/default/table?lang=en (accessed on 10 September 2023).
- CORDIS. Europa. EU. Available online: https://cordis.europa.eu/article/id/401589-bringing-down-the-barriers-to-the-uptake-of-clean-energy-solutions-in-europe/pl (accessed on 15 September 2023).
- CORDIS. Europa. EU. Available online: https://cordis.europa.eu/project/rcn/303125/brief/pl (accessed on 15 September 2023).
- CORDIS. Available online: https://cordis.europa.eu/project/rcn/303126/brief/pl (accessed on 15 September 2023).
- CORDIS. Available online: https://cordis.europa.eu/project/rcn/200557/brief/pl (accessed on 15 September 2023).
- CORDIS. Available online: https://cordis.europa.eu/project/rcn/303124/brief/pl (accessed on 15 September 2023).
- CORDIS. Available online: https://cordis.europa.eu/project/rcn/303130/brief/pl (accessed on 15 September 2023).
- Namvar, A.; Salehi, J. Adaptive Residential Energy Hubs Scheduling Considering Renewable Sources. J. Oper. Autom. Power Eng. 2024, 12, 142–151. [Google Scholar]
- Eclareon. RES Policy Monitoring Database: Barriers and Best Practices for Wind and Solar Electricity in the EU27 and UK. European Climate Foundation. 2022. Available online: https://resmonitor.eu/en/categories/political-and-economic-framework/existence-of-res-support-scheme/barriers/ (accessed on 10 September 2023).
- Wiśniewski, G. Analiza barier w rozwoju energetyki odnawialnej w Polsce i propozycje rozwiązań systemowych, materiały z konferencji: Rozwój energetyki odnawialnej w Polsce”, Biuro Studiów i Ekspertyz Kancelarii Sejmu. Konf. I Semin. 1999, 2, 76. [Google Scholar]
- Wasiuta, A. Identification and assessment of barriers in renewable energy sources development. In Wybrane Problemy Administracji Publicznej Prawo—Zarządzanie—Polityka; Mikołajczewska, W., Kierończyk, P., Eds.; Wydawnictwo Gdańskiej Szkoły Wyższej: Gdańsk, Poland, 2015; pp. 153–170. [Google Scholar]
- Ekonomiczne i Prawne Aspekty Wykorzystania OZE w Polsce; Europejskie Centrum Energii Odnawialnej: Warsaw, Poland, 2000; Available online: http://www.pga.org.pl/prawo/ekonomiczne_i_prawne_aspekty.pdf (accessed on 10 September 2023).
- International Energy Agency. Enhancing the Market Deployment of Energy Technology; OECD/IEA: Paris, France, 1997; p. 47. [Google Scholar]
- Nasirov, S.; Silva, C.; Agostini, C.A. Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile. Energies 2015, 8, 3794–3814. [Google Scholar] [CrossRef]
- Lehmann, P.; Creutzig, F.; Ehlers, M.-H.; Friedrichsen, N.; Heuson, C.; Hirth, L.; Pietzcker, R. Carbon lock-out: Advancing renewable energy policy in Europe. Energies 2012, 5, 323–354. [Google Scholar] [CrossRef]
- Carfora, A.; Pansini, R.V.; Scandurra, G. The role of environmental taxes and public policies in supporting RES investments in EU countries: Barriers and mimicking effects. Energy Policy 2021, 149, 112044. [Google Scholar] [CrossRef]
- Byrnes, L.; Brown, C.; Foster, J.; Wagner, L. Australian renewable energy policy: Barriers and challenges. Renew. Energy 2013, 60, 711–721. [Google Scholar] [CrossRef]
- Foxon, T.J.; Gross, R.; Chase, A.; Howes, J.; Arnall, A.; Anderson, D. UK innovation systems for new and renewable energy technologies: Drivers, barriers and systems failures. Energy Policy 2005, 33, 2123–2137. [Google Scholar] [CrossRef]
- Streimikiene, D.; Baležentis, T.; Volkov, A.; Morkūnas, M.; Žičkienė, A.; Streimikis, J. Barriers and Drivers of Renewable Energy Penetration in Rural Areas. Energies 2021, 14, 6452. [Google Scholar] [CrossRef]
- Patel, S.; Parkins, J.R. Assessing motivations and barriers to renewable energy development: Insights from a survey of municipal decision-makers in Alberta, Canada. Energy Rep. 2023, 9, 5788–5798. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/NRG_INF_EPCRW__custom_7549063/default/table?lang=en (accessed on 10 September 2023).
- Pietzcker, R.C.; Osorio, S.; Rodrigues, R. Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonisation of the EU power sector. Appl. Energy 2021, 293, 116914. [Google Scholar] [CrossRef]
- Felea, A.I.; Felea, I.; Hoble, C.R. Multicriteria Quantification of the Compatibility of the Targets from Romania’s Relevant Strategies with the European Green Deal. Sustainability 2023, 15, 13386. [Google Scholar] [CrossRef]
- Czerwińska, K.; Pacana, A. Analysis of the implementation of the identification system for directly marked parts—DataMatrix Code. Prod. Eng. Arch. 2019, 23, 22–26. [Google Scholar] [CrossRef]
- Hutsol, T. European Green Deal: Improving the Efficiency of Using Planetary Hydraulic Machines. Energies 2023, 16, 6481. [Google Scholar] [CrossRef]
- Kukharets, V.; Hutsol, T.; Kukharets, S.; Glowacki, S.; Nurek, T.; Sorokin, D. European Green Deal: The Impact of the Level of Renewable Energy Source and Gross Domestic Product per Capita on Energy Import Dependency. Sustainability 2023, 15, 11817. [Google Scholar] [CrossRef]
- Kotseva-Tikova, M.; Dvorak, J. Climate Policy and Plans for Recovery in Bulgaria and Lithuania. Rom. J. Eur. Aff. 2022, 22, 79–99. [Google Scholar] [CrossRef]
- Grosse, C.; Mark, B. Does renewable electricity promote Indigenous sovereignty? Reviewing support, barriers, and recommendations for solar and wind energy development on Native lands in the United States. Energy Res. Soc. Sci. 2023, 104, 103243. [Google Scholar] [CrossRef]
- Pombo-Romero, J.; Langeveld, H.; Fernández-Redondo, M. Diffusion of renewable energy technology on Spanish farms: Drivers and barriers. Environ. Dev. Sustain. 2022, 25, 11769–11787. [Google Scholar] [CrossRef]
- Kryszk, H.; Kurowska, K.; Marks-Bielska, R.; Bielski, S.; Eźlakowski, B. Barriers and Prospects for the Development of Renewable Energy Sources in Poland during the Energy Crisis. Energies 2023, 16, 1724. [Google Scholar] [CrossRef]
- Chisale, S.W.; Lee, H.S. Evaluation of barriers and solutions to renewable energy acceleration in Malawi, Africa, using AHP and fuzzy TOPSIS approach. Energy Sustain. Dev. 2023, 76, 101272. [Google Scholar] [CrossRef]
- Pavlowsky, C.; Koch, J.; Gliedt, T. Place attachment and social barriers to large-scale renewable energy development: A social–ecological systems analysis of a failed wind energy project in the south-central United States. Socio-Ecol. Pract. Res. 2023, 5, 175–188. [Google Scholar] [CrossRef]
- Matallah, S.; Matallah, A.; Benlahcene, L.; Djelil, Z. The lure of oil rents and the lack of innovation: Barriers to the roll-out of renewable energy in oil-rich MENA countries. Fuel 2023, 341, 127651. [Google Scholar] [CrossRef]
- Abdul, D.; Wenqi, J.; Sameeroddin, M. Prioritization of ecopreneurship barriers overcoming renewable energy technologies promotion: A comparative analysis of novel spherical fuzzy and Pythagorean fuzzy AHP approach. Technol. Forecast. Soc. Chang. 2023, 186, 122133. [Google Scholar] [CrossRef]
- Othman, K.; Khallaf, R. Identification of the Barriers and Key Success Factors for Renewable Energy Public-Private Partnership Projects: A Continental Analysis. Buildings 2022, 12, 1511. [Google Scholar] [CrossRef]
- Barragán-Escandón, A.; Jara-Nieves, D.; Romero-Fajardoc, I.; Zalamea-Leónesteban, E.F.; Serrano-Guerrero, X. Barriers to renewable energy expansion: Ecuador as a case study. Energy Strategy Rev. 2022, 43, 100903. [Google Scholar] [CrossRef]
- Asante, D.; Ampah, J.D.; Afrane, S.; Adjei-Darko, P.; Asante, B.; Fosu, E.; Dankwah, D.A.; Amoh, P.O. Prioritizing strategies to eliminate barriers to renewable energy adoption and development in Ghana: A CRITIC-fuzzy TOPSIS approach. Renew. Energy 2022, 195, 47–65. [Google Scholar] [CrossRef]
- Shahzad, K.; Lu, B.; Abdul, D. Entrepreneur barrier analysis on renewable energy promotion in the context of Pakistan using Pythagorean fuzzy AHP method. Environ. Sci. Pollut. Res. 2022, 29, 54756–54768. [Google Scholar] [CrossRef]
- Sambodo, M.T.; Yuliana, C.I.; Hidayat, S.; Novandra, R.; Handoyo, F.W.; Farandy, A.R.; Inayah, I.; Yuniarti, P.I. Breaking barriers to low-carbon development in Indonesia: Deployment of renewable energy. Heliyon 2022, 8, e09304. [Google Scholar] [CrossRef] [PubMed]
- Adedoyin, F.F.; Erum, N.; Taşkin, D.; Chebab, D. Energy policy simulation in times of crisis: Revisiting the impact of renewable and non-renewable energy production on environmental quality in Germany. Energy Rep. 2023, 9, 4749–4762. [Google Scholar] [CrossRef]
- Zhu, T.; Curtis, J.; Clancy, M. Modelling barriers to low-carbon technologies in energy system analysis: The example of renewable heat in Ireland. Appl. Energy 2023, 330, 120314. [Google Scholar] [CrossRef]
- Kaznowski, R.; Sztafrowski, D. Electricity system based on renewable energy sources. Opportunities and barriers to development. Prz. Elektrotech. 2023, 99, 186–189. [Google Scholar]
- Kazemi, M.; Udall, J. Behavioral barriers to the use of renewable and energy-efficient technologies in residential buildings in Iran. Energy Effic. 2023, 16, 79. [Google Scholar] [CrossRef]
- Pacana, A.; Czerwińska, K. Indicator analysis of the technological position of a manufacturing company. Prod. Eng. Arch. 2023, 29, 22–26. [Google Scholar] [CrossRef]
- Pathak, S.K.; Sharma, V.; Chougule, S.S.; Goel, V. Prioritization of barriers to the development of renewable energy technologies in India using integrated Modified Delphi and AHP method. Sustain. Energy Technol. Assess. 2022, 50, 101818. [Google Scholar] [CrossRef]
- Juszczyk, O.; Juszczyk, J.; Juszczyk, S.; Takala, J. Barriers for Renewable Energy Technologies Diffusion: Empirical Evidence from Finland and Poland. Energies 2022, 15, 527. [Google Scholar] [CrossRef]
- Laldjebaev, M.; Isaev, R.; Saukhimov, A. Renewable energy in Central Asia: An overview of potentials, deployment, outlook, and barriers. Energy Rep. 2021, 7, 3125–3136. [Google Scholar] [CrossRef]
- Gajdzik, B.; Sroka, W.; Vveinhardt, J. Energy Intensity of Steel Manufactured Utilising EAF Technology as a Function of Investments Made: The Case of the Steel Industry in Poland. Energies 2021, 14, 5152. [Google Scholar] [CrossRef]
- Gajdzik, B.; Sroka, W. Resource Intensity vs. Investment in Production Installations-The Case of the Steel Industry in Poland. Energies 2021, 14, 443. [Google Scholar] [CrossRef]
- Gajdzik, B.; Jaciow, M.; Wolniak, R.; Wolny, R.; Grebski, W.W. Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data. Resources 2023, 12, 111. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R.; Grebski, W. Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry. Energies 2023, 16, 3384. [Google Scholar] [CrossRef]
- Takman, J.; Andersson-Sköld, Y. A framework for barriers, opportunities, and potential solutions for renewable energy diffusion: Exemplified by liquefied biogas for heavy trucks. Transp. Policy 2021, 110, 150–160. [Google Scholar] [CrossRef]
- Mahmud, H.; Roy, J. Barriers to overcome in accelerating renewable energy penetration in Bangladesh. Sustainability 2021, 13, 7694. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R. Digitalisation and Innovation in the Steel Industry in Poland—Selected Tools of ICT in an Analysis of Statistical Data and a Case Study. Energies 2021, 14, 3034. [Google Scholar] [CrossRef]
- Industry 4.0 Digitalisation for Productivity and Growth. EPRS_BRI(2015)568337_EN. European Parliament. September 2015. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2015/568337/EPRS_BRI(2015)568337_EN.pdf (accessed on 10 September 2023).
- Industry 5.0, a Transformative Vision for Europe. Directorate-General for Research and Innovation. 10 January 2022. Available online: https://research-and-innovation.ec.europa.eu/knowledge-publications-tools-and-data/publications/all-publications/industry-50-transformative-vision-europe_en (accessed on 20 September 2023).
- Nagaj, R.; Žuromskaitė, B. Young Travellers and Green Travel in the Post-COVID Era. Sustainability 2023, 15, 13822. [Google Scholar] [CrossRef]
- UNDP (United Nations Development Programme). Available online: https://hdr.undp.org/data-center/human-development-index#/indicies/HDI (accessed on 10 September 2023).
- Halkos, G.E.; Tsirivis, A.S. Electricity Production and Sustainable Development: The Role of Renewable Energy Sources and Specific Socioeconomic Factors. Energies 2023, 16, 721. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_08_10/default/table?lang=en (accessed on 10 September 2023).
- Bembenek, M.; Karwat, B.; Melnyk, V.; Mosora, Y. Research on the Impact of Supplying the Air-Cooled D21A1 Engine with RME B100 Biodiesel on Its Operating Parameters. Energies 2023, 16, 6430. [Google Scholar] [CrossRef]
- Rozwadowska, M.; Szymański, P. Barriers that Limit the ScalingRozwadowska Magdalena, Szymański Piotr: Of RES Projects in Polish Cities. In Vision 2025: Education Excellence and Management of Innovations through Sustainable Economic Competitive Advantage, Proceedings of the 34th International Business Information Management Association Conference (IBIMA), Madrid, Spain, 13–14 November 2019; Soliman, K.S., Ed.; International Business Information Management Association: Philadelphia, PA, USA; pp. 11583–11595. ISBN 9780999855133.
- Innis, P.G.; Assche, K. Permanent incompleteness: Slow electricity roll-out, infrastructure practices and strategy formation in Monrovia, Liberia. Energy Res. Soc. Sci. 2023, 99, 103056. [Google Scholar] [CrossRef]
- Maciulytie-Sniukiene, A.; Butkus, M. Does Infrastructure Development Contribute to EU Countries’ Economic Growth? Sustainability 2022, 14, 5610. [Google Scholar] [CrossRef]
- Grzybowska, K.; Gajdzik, B. Optymisation of equipment setup processes in enterprises. Metalurgija 2012, 51, 555–558. [Google Scholar]
- Gajdzik, B. Environmental aspects, strategies and waste logistic system based on the example of metallurgical company. Metalurgija 2009, 48, 63–67. [Google Scholar]
- Skjærseth, J.B.; Eikeland, P.O. Governing EU low-carbon innovation: From strategic energy technology plan to European green deal. In Handbook on European Union Climate Change Policy and Politics; Edward Elgar Publishing: Cheltenham, UK, 2023; pp. 259–273. [Google Scholar]
- Mandaroux, R.; Schindelhauer, K.; Basse Mama, H. How to reinforce the effectiveness of the EU emissions trading system in stimulating low-carbon technological change? Taking stock and future directions. Energy Policy 2023, 181, 113697. [Google Scholar] [CrossRef]
- Wilczyński, D.; Talaśka, K.; Wałęsa, K.; Wojtkowiak, D.; Bembenek, M. Experimental Study on the Cutting Process of Single Triticale Straws. Materials 2023, 16, 3943. [Google Scholar] [CrossRef] [PubMed]
- Price, L.; Worrell, E. International Industrial Sector Energy Efficiency Policies. 2000, LBNL 46274. Ernest Orlando Lawrence Berkeley National Laboratory. Available online: http://ies.lbl. gov/node/162 (accessed on 30 October 2008).
Year and Country | Authors | Category of Barrier | Description |
---|---|---|---|
1999 Poland | Wiśniewski [23] | Market |
|
Political |
| ||
2015 Poland | Wasiuta [24] and others [25] | Political |
|
Administrative |
| ||
Economic |
| ||
Infrastructure |
| ||
Market |
| ||
Gernarally | OECD/IEA, Paris 1997 [26] | Infrastructure | In a technical sense, the vast majority of the world’s small- and medium-scale RES technologies already enable relatively reliable and trouble-free operation of equipment at a fairly high efficiency. Hence, the main objective of further research and development should be to strive for lower investment costs, including mainly material costs, rather than to slightly increase efficiency with a disproportionate increase in costs (this is especially true for high-power wind power technologies, photovoltaic systems, and technologies for obtaining liquid fuels from biomass). |
2015 Chile | Nasirov et al. [27] | Economic |
|
Infrastructure |
| ||
Administrative |
| ||
Market |
| ||
2012 European Union | Lehmann et al. [28] | Administrative |
|
Infrastructure |
| ||
Economic |
| ||
Market |
| ||
2021 countries of European Union | Carfora et al. [29] | Political |
|
Market |
| ||
2013 Australia | Byrnes et al. [30] | Administrative and Political | Barriers in Australia:
|
Economic |
| ||
Market | |||
2005 United Kingdom | Foxon et al. [31] | Infrastructure |
|
Economic |
| ||
Administrative |
| ||
Market |
| ||
Intellectual Property (IP) Issues |
| ||
Expectations and Market Uncertainty |
| ||
Policy Framework |
| ||
Exit Strategies and Support Continuity |
| ||
Collaboration and Partnerships |
| ||
2021 European Union | Streimikiene [32] | Economic |
|
Administrative and Political |
| ||
Market |
| ||
2023 Canada | Patel and Parkins [33] | Economic |
|
Infrastructural |
| ||
Political |
|
Barriers to RES Installation | Strategies to Overcome Barriers |
---|---|
1. Regulatory Challenges | Harmonize EU-wide renewable energy regulations. Simplify and standardize permitting procedures. Promote regulatory predictability and stability. |
2. Lack of Financing | Provide financial incentives and grants for RES projects. Establish green investment banks and funds for sustainable financing. Encourage public–private partnerships for project funding. |
3. Grid Integration | Invest in advanced grid technologies and smart grids for RES integration. Upgrade transmission and distribution networks to handle intermittent energy sources. Implement demand response programs to balance supply and demand. |
4. NIMBYism (Not In My Backyard) | Engage local communities through public consultations and education. Offer community ownership options in RES projects to share benefits. Mitigate environmental and visual impacts through innovative designs. |
5. Technological Innovation | Allocate funding for research and development of next-gen RES technologies. Establish innovation hubs and clusters to accelerate technology advancement. Support technology transfer and collaboration with industry partners. |
6. Market Barriers | Phase out fossil fuel subsidies gradually to reduce market distortions. Implement carbon pricing mechanisms, such as carbon taxes and cap-and-trade systems. Promote energy efficiency measures to reduce overall energy demand. |
7. Interconnection Issues | Enhance cross-border energy infrastructure through EU projects and investments. Develop a common European electricity market to facilitate RES energy trading. Create a cooperative framework for balancing RES production and consumption. |
8. Public Resistance | Conduct public awareness campaigns highlighting the environmental and economic benefits of RESs. Involve citizens in decision-making processes through participatory forums. Provide transparency regarding project planning and environmental assessments. |
9. Land Use Conflicts | Implement zoning regulations that favor RES development in appropriate areas. Encourage the repurposing of degraded lands for RES projects. Promote mixed land use to reduce conflicts with agriculture and biodiversity conservation. |
10. Energy Storage Challenges | Invest in energy storage research and development. Establish incentive programs for grid-scale and distributed energy storage solutions. Develop a strategic plan for integrating energy storage into the grid. |
11. Permitting and Licensing Delays | Streamline and expedite permitting and licensing processes for RES projects. Create dedicated agencies or task forces to oversee approvals. Set clear timelines and benchmarks for permit reviews. |
Country | Spread of Administrative Barriers | Spread of Grid Barriers | Spread of Political Barriers | Administrative Barrier Index | Grid Barrier Index | Political Barrier Index | Change in Share of RESs in EE Consumption in 2004–2021 (p.p.) | Change in Share of RESs in Gross Final Energy Consumption in 2004–2021 (p.p.) |
---|---|---|---|---|---|---|---|---|
Austria | 3.35 | 3.29 | 3.40 | 0.87 | 0.95 | 0.74 | 14.56 | 13.89 |
Belgium | 3.33 | 3.44 | 3.20 | 0.84 | 0.94 | 0.84 | 24.30 | 11.10 |
Bulgaria | 2.80 | 3.60 | 2.86 | 0.84 | 0.95 | 0.95 | 10.43 | 7.78 |
Croatia | 3.00 | 3.50 | n.d. | 0.87 | 0.87 | n.d. | 18.44 | 7.93 |
Cyprus | 3.75 | n.d. | 3.75 | 0.87 | n.d. | 0.87 | 14.82 | 15.35 |
Czech Rep. | 3.33 | 2.50 | 3.40 | 0.95 | 0.76 | 0.87 | 10.85 | 10.89 |
Denmark | 3.13 | 3.17 | 2.50 | 0.87 | 0.76 | 0.76 | 38.89 | 19.88 |
Estonia | 3.29 | 2.25 | 2.67 | 0.98 | 0.76 | 0.76 | 28.79 | 19.59 |
Finland | 2.75 | 3.00 | 3.40 | 0.85 | 0.76 | 0.83 | 12.82 | 13.86 |
France | 3.09 | 3.29 | 5.00 | 0.85 | 0.76 | 0.84 | 11.23 | 10.02 |
Germany | 2.71 | 2.80 | 2.44 | 0.84 | 0.74 | 0.86 | 34.25 | 12.96 |
Greece | 3.17 | 3.50 | 3.00 | 0.87 | 0.98 | 0.76 | 28.09 | 14.77 |
Hungary | 3.80 | 4.25 | 4.80 | 1.00 | 1.00 | 0.99 | 11.44 | 9.75 |
Ireland | 3.63 | 3.64 | 4.20 | 1.00 | 0.86 | 0.75 | 30.37 | 10.17 |
Italy | 3.50 | 3.50 | 3.75 | 0.87 | 0.87 | 0.95 | 19.91 | 12.72 |
Latvia | 4.00 | 4.00 | 3.67 | 0.95 | 0.76 | 0.87 | 5.44 | 9.31 |
Lithuania | 3.22 | 3.00 | 3.25 | 0.96 | 0.75 | 0.96 | 17.69 | 11.01 |
Luxembourg | 3.00 | 3.00 | 3.00 | 0.75 | 0.86 | 0.65 | 11.45 | 10.84 |
Malta | 3.83 | 3.33 | n.d. | 0.97 | 0.86 | n.d. | 9.66 | 12.05 |
The Netherlands | 2.90 | 2.50 | 3.43 | 0.74 | 0.74 | 0.86 | 25.95 | 10.97 |
Poland | 2.89 | 2.83 | 3.27 | 1.00 | 0.65 | 0.87 | 15.12 | 8.74 |
Portugal | 3.32 | 2.50 | 5.00 | 0.97 | 0.65 | 0.85 | 31.04 | 14.78 |
Romania | 4.00 | 2.67 | 3.60 | 0.88 | 0.77 | 0.99 | 14.06 | 6.79 |
Slovakia | 2.75 | 3.00 | 4.00 | 0.88 | 0.77 | 0.66 | 6.97 | 11.02 |
Slovenia | 2.75 | 3.00 | 4.00 | 0.88 | 0.77 | 0.66 | 5.71 | 6.60 |
Spain | 3.90 | 3.50 | 3.60 | 0.86 | 0.84 | 0.74 | 26.94 | 12.38 |
Sweden | 3.45 | 3.33 | 5.00 | 0.86 | 0.75 | 0.84 | 24.51 | 24.15 |
Average | 3.28 | 3.17 | 3.61 | 0.89 | 0.81 | 0.83 | 18.66 | 12.20 |
Indicator | Spread of Administrative Barriers | Spread of Grid Barriers | Spread of Political Barriers | Administrative Barrier Index | Grid Barrier Index | Political Barrier Index |
---|---|---|---|---|---|---|
Share of RESs in EE consumption in 2021 (in %) | −0.19 | −0.11 | −0.12 | −0.59 | 0.02 | −0.31 |
Change in share of RESs in EE consumption in 2004–2021 (in p.p.) | −0.04 | −0.21 | −0.24 | −0.05 | −0.12 | −0.07 |
Country | Change in GDP per Capita (in %) | Change in HDI (in %) | Change in RES Production Capacity (p.p.) | Overcapacity in the Renewable Electricity Market in 2021 (%) (Standard Deviation in 2004–2021) |
---|---|---|---|---|
Austria | 11.30 | 3.39 | 10.92 | 14.69 (3.32) |
Belgium | 13.81 | 4.11 | 59.60 | 46.30 (11.87) |
Bulgaria | 79.59 | 5.16 | 25.07 | 30.10 (4.27) |
Croatia | 36.60 | 7.79 | −26.26 | 20.27 (11.14) |
Cyprus | 14.26 | 7.95 | 26.55 | 11.73 (3.68) |
Czech Rep. | 40.34 | 6.34 | 14.71 | 15.36 (1.67) |
Denmark | 16.59 | 4.64 | 45.42 | 15.04 (2.32) |
Estonia | 62.69 | 7.75 | 47.97 | 19.45 (5.61) |
Finland | 11.51 | 4.21 | 27.02 | 21.43 (4.08) |
France | 8.12 | 5.24 | 23.04 | 21.89 (3.88) |
Germany | 20.90 | 3.06 | 36.50 | 19.42 (2.77) |
Greece | −14.51 | 5.22 | 32.31 | 26.10 (1.64) |
Hungary | 44.01 | 5.62 | 37.02 | 26.56 (7.20) |
Ireland | 88.82 | 7.26 | 32.95 | 12.17 (1.75) |
Italy | −4.49 | 3.47 | 31.40 | 26.38 (3.24) |
Latvia | 76.84 | 8.01 | −11.14 | 11.43 (9.85) |
Lithuania | 103.85 | 8.16 | 41.43 | 35.61 (7.60) |
Luxembourg | 7.41 | 5.44 | 34.95 | 95.72 (11.64) |
Malta | 64.80 | 11.27 | 35.65 | 25.99 (8.71) |
The Netherlands | 18.01 | 4.91 | 78.20 | 56.81 (14.87) |
Poland | 89.93 | 8.28 | 34.43 | 25.21 (5.17) |
Portugal | 9.45 | 7.58 | 30.79 | 22.35 (3.76) |
Romania | 93.36 | 10.65 | 32.54 | 27.03 (5.83) |
Slovakia | 73.18 | 6.80 | 19.02 | 30.16 (3.91) |
Slovenia | 33.52 | 6.13 | 18.68 | 19.47 (5.07) |
Spain | 1.87 | 7.23 | 19.76 | 17.10 (2.89) |
Sweden | 22.11 | 5.22 | 21.38 | 3.05 (2.99) |
Country | GDP per Capita | HDI | Overcapacity in the Renewable Market |
---|---|---|---|
Austria | 0.7650 | 0.9196 | −0.7450 |
Belgium | 0.8401 | 0.9552 | 0.9875 |
Bulgaria | 0.8890 | 0.8930 | 0.6618 |
Croatia | 0.6731 | 0.9343 | −0.4086 |
Cyprus | 0.1008 | 0.9001 | 0.9514 |
Czech Rep. | 0.8010 | 0.9472 | 0.4232 |
Denmark | 0.7610 | 0.9705 | 0.0114 |
Estonia | 0.8220 | 0.9113 | 0.7400 |
Finland | 0.4563 | 0.9464 | 0.8602 |
France | 0.6495 | 0.9149 | 0.9538 |
Germany | 0.9275 | 0.9599 | 0.0901 |
Greece | −0.7853 | 0.9091 | 0.1680 |
Hungary | 0.8499 | 0.8366 | 0.9213 |
Ireland | 0.8510 | 0.9805 | −0.1048 |
Italy | −0.7752 | 0.8318 | 0.4675 |
Latvia | 0.7063 | 0.8420 | −0.9409 |
Lithuania | 0.9544 | 0.9564 | 0.9321 |
Luxembourg | 0.1122 | 0.7300 | 0.8388 |
Malta | 0.9510 | 0.9442 | 0.9854 |
The Netherlands | 0.7694 | 0.7582 | 0.9742 |
Poland | 0.9535 | 0.9730 | 0.8056 |
Portugal | 0.3403 | 0.9758 | −0.6290 |
Romania | 0.8478 | 0.7413 | 0.8069 |
Slovakia | 0.8999 | 0.8986 | 0.8640 |
Slovenia | 0.4663 | 0.7555 | 0.6744 |
Spain | −0.1800 | 0.9230 | −0.8069 |
Sweden | 0.8837 | 0.9224 | −0.7807 |
Country | R | GDP per Capita | HDI | Overcapacity in the Renewable Market |
---|---|---|---|---|
Austria | 0.9150 | - | b = 0.9150; p = 0.0000 | - |
Belgium | 0.9875 | - | - | b = 0.9875; p = 0.0000 |
Bulgaria | 0.9655 | b = 0.6386; p = 0.0003 | b = 0.7780; p = 0.0001 | b = −0.4992; p = 0.0024 |
Croatia | 0.9549 | - | b = 1.0843; p = 0.0000 | b = 0.2477; p = 0.0213 |
Cyprus | 0.9514 | - | - | b = 0.9514; p = 0.0000 |
Czech Rep. | 0.9472 | - | b = 0.9472; p = 0.0000 | - |
Denmark | 0.9705 | - | b = 0.9705; p = 0.0000 | - |
Estonia | 0.9113 | - | b = 0.9113; p = 0.0000 | - |
Finland | 0.9697 | - | b = 0.6955; p = 0.0000 | b = 0.3279; p = 0.0044 |
France | 0.9538 | - | - | b = 0.9538; p = 0.0000 |
Germany | 0.9795 | - | b = 1.0188; p = 0.0000 | b = −0.2041; p = 0.0019 |
Greece | 0.9091 | - | b = 0.9091; p = 0.0000 | - |
Hungary | 0.9776 | b = −0.6084; p = 0.0044 | b = 0.5613; p = 0.0000 | b = 1.0890; p = 0.0000 |
Ireland | 0.9805 | - | b = 0.9805; p = 0.0000 | - |
Italy | 0.9300 | b = −0.4799; p = 0.0005 | b = 0.5926; p = 0.0001 | - |
Latvia | 0.9409 | - | - | b = −0.9409; p = 0.0000 |
Lithuania | 0.9564 | - | b = 0.9564; p = 0.0000 | - |
Luxembourg | 0.8388 | - | - | b = 0.8388; p = 0.0000 |
Malta | 0.9854 | - | - | b = 0.9854; p = 0.0000 |
The Netherlands | 0.9800 | - | b = 0.1496; p = 0.0548 | b = 0.8695; p = 0.0000 |
Poland | 0.9864 | - | b = 0.8097; p = 0.0000 | b = 0.2298; p = 0.0017 |
Portugal | 0.9946 | b = −0.2253; p = 0.0000 | b = 1.0924; p = 0.0000 | - |
Romania | 0.8478 | b = 0.8478; p = 0.0000 | - | - |
Slovakia | 0.8999 | b = 0.8999; p = 0.0000 | - | - |
Slovenia | 0.7555 | - | b = 0.7555; p = 0.0002 | - |
Spain | 0.9864 | b = −0.3532; p = 0.0000 | b = 0.9852; p = 0.0000 | - |
Sweden | 0.9615 | b = 0.6553; p = 0.0000 | - | b = −0.4424; p = 0.0001 |
Country | Administrative Barriers | Grid Barriers | Political Barriers | GDP per Capita | HDI | Overcapacity in the Renewable Market |
---|---|---|---|---|---|---|
Austria | ++++ | +++++ | +++ | +++++ | ||
Belgium | ++++ | +++++ | ++++ | +++++ | ||
Bulgaria | ++++ | +++++ | +++++ | +++ | +++ | ++ |
Croatia | ++++ | ++++ | n.d. | +++++ | + | |
Cyprus | ++++ | n.d. | ++++ | +++++ | ||
Czech Rep. | +++++ | +++ | ++++ | +++++ | ||
Denmark | ++++ | +++ | +++ | +++++ | ||
Estonia | +++++ | +++ | +++ | +++++ | ||
Finland | ++++ | +++ | ++++ | +++ | ++ | |
France | ++++ | +++ | ++++ | +++++ | ||
Germany | ++++ | +++ | ++++ | +++++ | + | |
Greece | ++++ | +++++ | +++ | +++++ | ||
Hungary | +++++ | +++++ | +++++ | +++ | ++ | +++++ |
Ireland | +++++ | ++++ | +++ | +++++ | ||
Italy | ++++ | ++++ | +++++ | +++ | ++ | |
Latvia | +++++ | +++ | ++++ | +++++ | ||
Lithuania | +++++ | +++ | +++++ | +++++ | ||
Luxembourg | +++ | ++++ | +++ | ++++ | ||
Malta | +++++ | ++++ | n.d. | +++++ | ||
The Netherlands | +++ | +++ | ++++ | + | ++++ | |
Poland | +++++ | +++ | ++++ | ++++ | + | |
Portugal | +++++ | +++ | ++++ | + | +++++ | |
Romania | ++++ | +++ | +++++ | ++++ | ||
Slovakia | ++++ | +++ | +++ | ++++ | ||
Slovenia | ++++ | +++ | +++ | +++ | ||
Spain | ++++ | ++++ | +++ | ++ | +++++ | |
Sweden | ++++ | +++ | ++++ | +++ | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdzik, B.; Wolniak, R.; Nagaj, R.; Grebski, W.W.; Romanyshyn, T. Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries. Energies 2023, 16, 7364. https://doi.org/10.3390/en16217364
Gajdzik B, Wolniak R, Nagaj R, Grebski WW, Romanyshyn T. Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries. Energies. 2023; 16(21):7364. https://doi.org/10.3390/en16217364
Chicago/Turabian StyleGajdzik, Bożena, Radosław Wolniak, Rafał Nagaj, Wieslaw Wes Grebski, and Taras Romanyshyn. 2023. "Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries" Energies 16, no. 21: 7364. https://doi.org/10.3390/en16217364
APA StyleGajdzik, B., Wolniak, R., Nagaj, R., Grebski, W. W., & Romanyshyn, T. (2023). Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries. Energies, 16(21), 7364. https://doi.org/10.3390/en16217364