A Simple and Economical System for Automatic Near-Field Scanning for Power Electronics Converters
Abstract
:1. Introduction
2. Near-Field Scan Equipment
2.1. General Equipment Overview and Antenna Specifications
- ESRP7 Rohde & Schwarz Emi test receiver
- GPIB—USB—HS National Instruments GPIB to USB converter
- TDK-Lambda power supply
- Beehive Electronics near-field probes
2.2. Controller Board Description
2.3. Equipment Firmware Description
2.4. Equipment LABVIEW Software Description
- -
- the VISA address of the ESRP7 EMI test receiver;
- -
- the COM port of the Arduino Nano controller of the position equipment;
- -
- the X and Y dimensions of the scanning area;
- -
- the minimum step along the X and Y directions.
3. A Case Study: Bi-Directional GaN DC/DC Converter
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aswin, A.M.; Sundar, S. Electromagnetic Interference (EMI) and Electromagnetic Compatibility (EMC) in Real Time Applications–Survey. Int. J. Mech. Eng. Technol. 2018, 9, 474–482. [Google Scholar]
- Electromagnetic Compatibility (EMC) Directive. Available online: https://single-market-economy.ec.europa.eu/sectors/electrical-and-electronic-engineering-industries-eei/electromagnetic-compatibility-emc-directive_en (accessed on 23 September 2023).
- Paul, C.R. Introduction to Electromagnetic Compatibility, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Li, C.; Ma, Q.; Tong, Y.; Wang, J.; Xu, P. A survey of conductive and radiated EMI reduction techniques in power electronics converters across wide-bandgap devices. IET Power Electron. 2023, 16, 2121–2137. [Google Scholar] [CrossRef]
- Minardi, G.; Greco, G.; Vinci, G.; Rizzo, S.A.; Salerno, N.; Sorbello, G. Electromagnetic Simulation Flow for Integrated Power Electronics Modules. Electronics 2022, 11, 2498. [Google Scholar] [CrossRef]
- Wunsch, B.; Skibin, S.; Forsström, V.; Stevanovic, I. EMC Component Modeling and System-Level Simulations of Power Converters: AC Motor Drives. Energies 2021, 14, 1568. [Google Scholar] [CrossRef]
- Radchenko, A.; Khilkevich, V.; Bondarenko, N.; Pommerenke, D.; Gonser, M.; Hansen, J.; Keller, C. Transfer function method for predicting the emissions in a -cispr 25 test-setup. IEEE Trans. Electromagn. Compat. 2014, 56, 894–902. [Google Scholar] [CrossRef]
- Mariscotti, A.; Ogunsola, A.; Sandrolini, L. Survey of models and reference data for prediction of e.m. field emissions from electrical machinery. In Proceeding of 8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives (DEMPED), Bologna, Italy, 5–8 September 2011. [Google Scholar] [CrossRef]
- Rajagopal, N.; DiMarino, C.; DeBoi, B.; Lemmon, A.; Brovont, A. EMI Evaluation of a SiC MOSFET Module with Organic DBC Substrate. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Chen, H.; Liu, Q.; Li, Y.; Huang, C.; Zhang, H.; Xu, Y. Research on the Method of Near-Field Measurement and Modeling of Powerful Electromagnetic Equipment Radiation Based on Field Distribution Characteristics. Energies 2023, 16, 2005. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, S. A Survey of EMI Research in Power Electronics Systems With Wide-Bandgap Semiconductor Devices. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 626–643. [Google Scholar] [CrossRef]
- Chen, H.; Wang, T.; Feng, L.; Chen, G. Determining Far-Field EMI From Near-Field Coupling of a Power Converter. IEEE Trans. Power Electron. 2014, 29, 5257–5264. [Google Scholar] [CrossRef]
- Beehive ELECTRONICS 100 Series EMC Probes Datasheet. Available online: https://beehive-electronics.com/datasheets/100SeriesDatasheetCurrent.pdf (accessed on 23 November 2023).
- Scrimizzi, F.; Cammarata, F.; D’Agata, G.; Nicolosi, G.; Musumeci, S.; Rizzo, S.A. The GaN Breakthrough for Sustainable and Cost-Effective Mobility Electrification and Digitalization. Electronics 2023, 12, 1436. [Google Scholar] [CrossRef]
- Letellier, A.; Dubois, M.R.; Trovao, J.P.; Maher, H. Gallium Nitride Semiconductors in Power Electronics for Electric Vehicles: Advantages and Challenges. In Proceedings of the 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Montreal, QC, Canada, 19–22 October 2015. [Google Scholar]
- Musumeci, S.; Mandrile, F.; Barba, V.; Palma, M. Low-Voltage GaN FETs in Motor Control Application; Issues and Advantages: A Review. Energies 2021, 14, 6378. [Google Scholar] [CrossRef]
- Derkacz, P.B.; Schanen, J.-L.; Jeannin, P.-O.; Chrzan, P.J.; Musznicki, P.; Petit, M. EMI Mitigation of GaN Power Inverter Leg by Local Shielding Techniques. IEEE Trans. Power Electron. 2022, 37, 11996–12004. [Google Scholar] [CrossRef]
- Rajeswari, P.; Manikandan, V. Analysis of effects of MOSFET parasitic capacitance on non-synchronous buck converter elec-tromagnetic emission. Ain Shams Eng. J. 2023, 14. [Google Scholar] [CrossRef]
- Raciti, A.; Chimento, F.; Musumeci, S.; Privitera, G. A New Thermal Model for Power Mosfet Devices Accounting for the Behavior in Unclamped Inductive Switching. Microelectron. Reliab. 2016, 58, 3–11. [Google Scholar] [CrossRef]
- Middelstaedt, L.; Strauss, B.; Lindemann, A. Analyzing EMI issues in a DC/DC converter using GaN instead of Si power transistors. In Proceedings of the 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019-ECCE Asia), Busan, Republic of Korea, 27–30 May 2019. [Google Scholar]
Antenna Type | X | 3 dB Frequency (MHz) | First Resonance (MHz) |
---|---|---|---|
100C (large loop) | 85.1 | 50 | 500 |
100A (medium loop) | 65.2 | 1000 | 2600 |
100B (small loop) | 42.2 | 3100 | >6000 |
MS1 | MS2 | MS3 | Resolution | Excitation Mode |
---|---|---|---|---|
L | L | L | Full step | 2 Phase |
H | L | L | Half step | 1–2 Phase |
L | H | L | Quarter step | W1–2 Phase |
H | H | L | Eighth step | 2W1–2 Phase |
H | H | H | Sixteenth step | 4W1–2 Phase |
Command | {dir} | {Query} | {Value} | Short Description |
---|---|---|---|---|
STEP_SIZE_{dir}<space>{value} STEP_SIZE_{query} | X, Y | X?, Y? | nnn | Size of single step setting/query |
MOV_{dir}<space>{value} | X, Y, 0 | No query | +nnn, -nnn | Move to set position, “+” forward, “-“ back, “0” to the axis origin |
DELAY_{dir}<space>{value} DELAY_{query} | X, Y | X?, Y? | nnn | Set the speed of movement |
TRIM_XY<space>{value} TRIM_XY{query} | No dir | ? | nnn | Set a multiplication factor to adjust stem size |
MAX_{dir}<space>{value} MAX_{query} | X, Y | X?, Y? | nnn | Set maximum steps for each direction |
POS_{query} | No dir | X?, Y? | Ask for position as number of steps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasso, S.; Bellinvia, S.; Salerno, N.; Rizzo, S.A. A Simple and Economical System for Automatic Near-Field Scanning for Power Electronics Converters. Energies 2023, 16, 7868. https://doi.org/10.3390/en16237868
Grasso S, Bellinvia S, Salerno N, Rizzo SA. A Simple and Economical System for Automatic Near-Field Scanning for Power Electronics Converters. Energies. 2023; 16(23):7868. https://doi.org/10.3390/en16237868
Chicago/Turabian StyleGrasso, Sebastiano, Salvatore Bellinvia, Nunzio Salerno, and Santi Agatino Rizzo. 2023. "A Simple and Economical System for Automatic Near-Field Scanning for Power Electronics Converters" Energies 16, no. 23: 7868. https://doi.org/10.3390/en16237868
APA StyleGrasso, S., Bellinvia, S., Salerno, N., & Rizzo, S. A. (2023). A Simple and Economical System for Automatic Near-Field Scanning for Power Electronics Converters. Energies, 16(23), 7868. https://doi.org/10.3390/en16237868