Environmental Sustainability Implications and Economic Prosperity of Integrated Renewable Solutions in Urban Development
Abstract
:1. Introduction
- RQ1: What could be the challenges that hinder the adoption of renewable and sustainable energy in urban areas?
- RQ2: Which SDGs can be incorporated to overcome the challenges confronted towards renewable and sustainable energy integration in urban areas?
- RQ3: What are the practical implications and policy recommendations that can be proposed for effective implementation for renewable and sustainable urban energy planning?
2. Literature Review
3. Challenges of Renewable and Sustainable Energy Systems in Urban Areas
Sustainable Development Goals (SDGs)
4. Methodology
4.1. Fuzzy Logic
4.2. Fuzzy Best-Worst Method
4.3. Fuzzy TOPSIS
5. Case Study and Analysis
6. Discussion and Implications
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosseini, S.E.; Wahid, M.A. Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Sharifi, A.; Yamagata, Y. Principles and Criteria for Assessing Urban Energy Resilience: A Literature Review. Renew. Sustain. Energy Rev. 2016, 60, 1654–1677. [Google Scholar] [CrossRef]
- Molyneaux, L.; Wagner, L.; Froome, C.; Foster, J. Resilience and Electricity Systems: A Comparative Analysis. Energy Policy 2012, 47, 188–201. [Google Scholar] [CrossRef]
- Mulugetta, Y.; Urban, F. Deliberating on Low Carbon Development. Energy Policy 2010, 38, 7546–7549. [Google Scholar] [CrossRef]
- Yazdanie, M.; Orehounig, K. Advancing Urban Energy System Planning and Modeling Approaches: Gaps and Solutions in Perspective. Renew. Sustain. Energy Rev. 2021, 137, 110607. [Google Scholar] [CrossRef]
- Rutherford, J.; Coutard, O. Urban Energy Transitions: Places, Processes and Politics of Socio-Technical Change. Urban Stud. 2014, 51, 1353–1377. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014.
- Alhamwi, A.; Medjroubi, W.; Vogt, T.; Agert, C. GIS-Based Urban Energy Systems Models and Tools: Introducing a Model for the Optimisation of Flexibilisation Technologies in Urban Areas. Appl. Energy 2017, 191, 1–9. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A.; Aghili, N. The Scenario of Greenhouse Gases Reduction in Malaysia. Renew. Sustain. Energy Rev. 2013, 28, 400–409. [Google Scholar] [CrossRef]
- Schnoor, J.L. Energy and Global Warming: The Great Convergence; American Chemical Society Publications: Washington, DC, USA, 2004. [Google Scholar]
- Muradov, N.Z.; Veziroğlu, T.N. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int. J. Hydrogen Energy 2008, 33, 6804–6839. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Review of Solutions to Global Warming, Air Pollution, and Energy Security. Energy Environ. Sci. 2009, 2, 148–173. [Google Scholar] [CrossRef]
- European Commission. E. Paris Agreement; European Commission: Luxembourg, 2016.
- Manfren, M.; Caputo, P.; Costa, G. Paradigm Shift in Urban Energy Systems through Distributed Generation: Methods and Models. Appl. Energy 2011, 88, 1032–1048. [Google Scholar] [CrossRef]
- Stockholm städ. GrowSmarter–Smarta Urbana Lösningar; Städ: Stockholm, Sweden, 2018. [Google Scholar]
- Haarstad, H.; Wathne, M.W. Are Smart City Projects Catalyzing Urban Energy Sustainability? Energy Policy 2019, 129, 918–925. [Google Scholar] [CrossRef]
- California Energy Commission. Sustainable Urban Energy Planning. A Rodmap for Research and Funding; California Energy Commission: Sacramento, CA, USA, 2005.
- Keirstead, J.; Jennings, M.; Sivakumar, A. A Review of Urban Energy System Models: Approaches, Challenges and Opportunities. Renew. Sustain. Energy Rev. 2012, 16, 3847–3866. [Google Scholar] [CrossRef]
- Benenson, I.; Torrens, P.M. Geosimulation: Object-Based Modeling of Urban Phenomena. Comput. Environ. Urban Syst. 2004, 28, 1–8. [Google Scholar] [CrossRef]
- Li, L.; Sato, Y.; Zhu, H. Simulating Spatial Urban Expansion Based on a Physical Process. Landsc. Urban Plan. 2003, 64, 67–76. [Google Scholar] [CrossRef]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef]
- Bandini, S.; Mauri, G.; Serra, R. Cellular Automata: From a Theoretical Parallel Computational Model to Its Application to Complex Systems. Parallel Comput. 2001, 27, 539–553. [Google Scholar] [CrossRef]
- White, R.; Engelen, G. High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Comput. Environ. Urban Syst. 2000, 24, 383–400. [Google Scholar] [CrossRef]
- Huang, H.; Ooka, R.; Kato, S. Urban Thermal Environment Measurements and Numerical Simulation for an Actual Complex Urban Area Covering a Large District Heating and Cooling System in Summer. Atmos. Environ. 2005, 39, 6362–6375. [Google Scholar] [CrossRef]
- Ratti, C.; Baker, N.; Steemers, K. Energy Consumption and Urban Texture. Energy Build. 2005, 37, 762–776. [Google Scholar] [CrossRef]
- Kikegawa, Y.; Genchi, Y.; Yoshikado, H.; Kondo, H. Development of a Numerical Simulation System toward Comprehensive Assessments of Urban Warming Countermeasures Including Their Impacts upon the Urban Buildings’ Energy demands. Appl. Energy 2003, 76, 449–466. [Google Scholar] [CrossRef]
- Fernando, H.J.S.; Lee, S.M.; Anderson, J.; Princevac, M.; Pardyjak, E.; Grossman-Clarke, S. Urban Fluid Mechanics: Air Circulation and Contaminant Dispersion in Cities. Environ. Fluid Mech. 2001, 1, 107–164. [Google Scholar] [CrossRef]
- Cai, Y.P.; Huang, G.H.; Yang, Z.F.; Lin, Q.G.; Bass, B.; Tan, Q. Development of an Optimization Model for Energy Systems Planning in the Region of Waterloo. Int. J. Energy Res. 2008, 32, 988–1005. [Google Scholar] [CrossRef]
- Metaxiotis, K. Intelligent Information Systems and Knowledge Management for Energy: Applications for Decision Support, Usage, and Environmental Protection: Applications for Decision Support, Usage, and Environmental Protection; IGI Global: Hershey, PA, USA, 2009. [Google Scholar]
- Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer: New York, NY, USA, 2007; Volume 5. [Google Scholar] [CrossRef]
- Abraham, A.; Jain, L. Evolutionary Multiobjective Optimization. In Advanced Information and Knowledge Processing; Springer: London, UK, 2005; pp. 1–6. [Google Scholar] [CrossRef]
- Al-Shehri, A. A Simple Forecasting Model for Industrial Electric Energy Consumption. Int. J. Energy Res. 2000, 24, 719–726. [Google Scholar] [CrossRef]
- Hannan, M.A.; Al-Shetwi, A.Q.; Ker, P.J.; Begum, R.A.; Mansor, M.; Rahman, S.A.; Dong, Z.Y.; Tiong, S.K.; Mahlia, T.M.I.; Muttaqi, K.M. Impact of Renewable Energy Utilization and Artificial Intelligence in Achieving Sustainable Development Goals. Energy Rep. 2021, 7, 5359–5373. [Google Scholar] [CrossRef]
- Yasmeen, R.; Zhang, X.; Sharif, A.; Shah, W.U.H.; Sorin Dincă, M. The Role of Wind Energy towards Sustainable Development in Top-16 Wind Energy Consumer Countries: Evidence from STIRPAT Model. Gondwana Res. 2023, 121, 56–71. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, X.; Xue, Y.; Chang, X.; Xiang, B. A Review on Basic Theory and Technology of Agricultural Energy Internet. IET Renew. Power Gener. 2023. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Y.; Karuppiah, M.; Kumar, P.M. Artificial Intelligence on Economic Evaluation of Energy Efficiency and Renewable Energy Technologies. Sustain. Energy Technol. Assess. 2021, 47, 101358. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Mehmood, R.; Corchado, J.M. Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures. Sustainability 2021, 13, 8952. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Rathore, N.S.; Panwar, N.L. Renewable Energy Sources for Sustainable Development; New India Publishing: New Delhi, India, 2007. [Google Scholar]
- Ikram, M.; Ferasso, M.; Sroufe, R.; Zhang, Q. Assessing Green Technology Indicators for Cleaner Production and Sustainable Investments in a Developing Country Context. J. Clean. Prod. 2021, 322, 129090. [Google Scholar] [CrossRef]
- Giannetti, B.F.; Agostinho, F.; Eras, J.J.C.; Yang, Z.; Almeida, C.M.V.B. Cleaner Production for Achieving the Sustainable Development Goals. J. Clean. Prod. 2020, 271, 122127. [Google Scholar] [CrossRef]
- Yadav, A.; Pal, N.; Patra, J.; Yadav, M. Strategic Planning and Challenges to the Deployment of Renewable Energy Technologies in the World Scenario: Its Impact on Global Sustainable Development. Environ. Dev. Sustain. 2018, 22, 297–315. [Google Scholar] [CrossRef]
- Raihan, A.; Muhtasim, D.A.; Farhana, S.; Pavel, M.I.; Faruk, O.; Rahman, M.; Mahmood, A. Nexus between Carbon Emissions, Economic Growth, Renewable Energy Use, Urbanization, Industrialization, Technological Innovation, and Forest Area towards Achieving Environmental Sustainability in Bangladesh. Energy Clim. Chang. 2022, 3, 100080. [Google Scholar] [CrossRef]
- Raihan, A.; Rashid, M.; Voumik, L.C.; Akter, S.; Esquivias, M.A. The Dynamic Impacts of Economic Growth, Financial Globalization, Fossil Fuel, Renewable Energy, and Urbanization on Load Capacity Factor in Mexico. Sustainability 2023, 15, 13462. [Google Scholar] [CrossRef]
- Yang, X.; Khan, I. Dynamics among Economic Growth, Urbanization, and Environmental Sustainability in IEA Countries: The Role of Industry Value-Added. Environ. Sci. Pollut. Res 2022, 29, 4116–4127. [Google Scholar] [CrossRef]
- Amran, Y.H.A.; Amran, Y.H.M.; Alyousef, R.; Alabduljabbar, H. Renewable and Sustainable Energy Production in Saudi Arabia According to Saudi Vision 2030; Current Status and Future Prospects. J. Clean. Prod. 2020, 247, 119602. [Google Scholar] [CrossRef]
- Maka, A.O.M.; Alabid, J.M. Solar Energy Technology and Its Roles in Sustainable Development. Clean Energy 2022, 6, 476–483. [Google Scholar] [CrossRef]
- Hoang, A.T.; Pham, V.V.; Nguyen, X.P. Integrating Renewable Sources into Energy System for Smart City as a Sagacious Strategy towards Clean and Sustainable Process. J. Clean. Prod. 2021, 305, 127161. [Google Scholar] [CrossRef]
- Jaiswal, K.K.; Chowdhury, C.R.; Yadav, D.; Verma, R.; Dutta, S.; Jaiswal, K.S.; Sangmesh, B.; Karuppasamy, K.S.K. Renewable and Sustainable Clean Energy Development and Impact on Social, Economic, and Environmental Health. Energy Nexus 2022, 7, 100118. [Google Scholar] [CrossRef]
- Omer, A.M. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 2008, 12, 2265–2300. [Google Scholar] [CrossRef]
- Almeida, C.M.V.B.; Agostinho, F.; Giannetti, B.F.; Huisingh, D. Integrating Cleaner Production into Sustainability Strategies: An Introduction to This Special Volume. J. Clean. Prod. 2015, 96, 1–9. [Google Scholar] [CrossRef]
- Jyothi, R.K.; Thenepalli, T.; Ahn, J.W.; Parhi, P.K.; Chung, K.W.; Lee, J.-Y. Review of Rare Earth Elements Recovery from Secondary Resources for Clean Energy Technologies: Grand Opportunities to Create Wealth from Waste. J. Clean. Prod. 2020, 267, 122048. [Google Scholar] [CrossRef]
- Baños, R.; Manzano-Agugliaro, F.; Montoya, F.G.; Gil, C.; Alcayde, A.; Gómez, J. Optimization Methods Applied to Renewable and Sustainable Energy: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- Nevzorova, T.; Kutcherov, V. Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strategy Rev. 2019, 26, 100414. [Google Scholar] [CrossRef]
- Ghimire, L.P.; Kim, Y. An Analysis on Barriers to Renewable Energy Development in the Context of Nepal Using AHP. Renew. Energy 2018, 129, 446–456. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P.; Mamat, R. Solar PV and BIPV System: Barrier, Challenges and Policy Recommendation in India. Renew. Sustain. Energy Rev. 2018, 82, 3314–3322. [Google Scholar] [CrossRef]
- Sen, S.; Ganguly, S. Opportunities, Barriers and Issues with Renewable Energy Development—A Discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181. [Google Scholar] [CrossRef]
- Luthra, S.; Kumar, S.; Garg, D.; Haleem, A. Barriers to Renewable/Sustainable Energy Technologies Adoption: Indian Perspective. Renew. Sustain. Energy Rev. 2015, 41, 762–776. [Google Scholar] [CrossRef]
- Darmani, A.; Arvidsson, N.; Hidalgo, A.; Albors, J. What Drives the Development of Renewable Energy Technologies? Toward a Typology for the Systemic Drivers. Renew. Sustain. Energy Rev. 2014, 38, 834–847. [Google Scholar] [CrossRef]
- Gurung, A.; Kumar Ghimeray, A.; Hassan, S.H.A. The Prospects of Renewable Energy Technologies for Rural Electrification: A Review from Nepal. Energy Policy 2012, 40, 374–380. [Google Scholar] [CrossRef]
- Surendra, K.C.; Khanal, S.K.; Shrestha, P.; Lamsal, B. Current Status of Renewable Energy in Nepal: Opportunities and Challenges. Renew. Sustain. Energy Rev. 2011, 15, 4107–4117. [Google Scholar] [CrossRef]
- Schleich, J. Barriers to Energy Efficiency: A Comparison across the German Commercial and Services Sector. Ecol. Econ. 2009, 68, 2150–2159. [Google Scholar] [CrossRef]
- Kahraman, C.; Kaya, İ.; Cebi, S. A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy 2009, 34, 1603–1616. [Google Scholar] [CrossRef]
- Adhikari, S.; Mithulananthan, N.; Dutta, A.; Mathias, A.J. Potential of Sustainable Energy Technologies under CDM in Thailand: Opportunities and Barriers. Renew. Energy 2008, 33, 2122–2133. [Google Scholar] [CrossRef]
- Nepal, R. Roles and Potentials of Renewable Energy in Less-Developed Economies: The Case of Nepal. Renew. Sustain. Energy Rev. 2012, 16, 2200–2206. [Google Scholar] [CrossRef]
- Javadi, F.S.; Rismanchi, B.; Sarraf, M.; Afshar, O.; Saidur, R.; Ping, H.W.; Rahim, N.A. Global Policy of Rural Electrification. Renew. Sustain. Energy Rev. 2013, 19, 402–416. [Google Scholar] [CrossRef]
- Dulal, H.B.; Shah, K.U.; Sapkota, C.; Uma, G.; Kandel, B.R. Renewable Energy Diffusion in Asia: Can It Happen without Government Support? Energy Policy 2013, 59, 301–311. [Google Scholar] [CrossRef]
- Bhattacharya, S.C.; Jana, C. Renewable energy in India: Historical developments and prospects. Energy 2009, 34, 981–991. [Google Scholar] [CrossRef]
- Brown, M.A. Market Failures and Barriers as a Basis for Clean Energy Policies. Energy Policy 2001, 29, 1197–1207. [Google Scholar] [CrossRef]
- Maurya, P.K.; Mondal, S.; Kumar, V.; Singh, S.P. Roadmap to Sustainable Carbon-Neutral Energy and Environment: Can We Cross the Barrier of Biomass Productivity? Environ. Sci. Pollut. Res. Int. 2021, 28, 49327–49342. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Beardall, J.; Häder, D.-P.; Hall-Spencer, J.M.; Gao, G.; Hutchins, D.A. Effects of Ocean Acidification on Marine Photosynthetic Organisms under the Concurrent Influences of Warming, UV Radiation, and Deoxygenation. Front. Mar. Sci. 2019, 6, 322. [Google Scholar] [CrossRef]
- Riebesell, U.; Schulz, K.G.; Bellerby, R.G.J.; Botros, M.; Fritsche, P.; Meyerhöfer, M.; Neill, C.; Nondal, G.; Oschlies, A.; Zöllner, E.; et al. Enhanced biological carbon consumption in a high CO2 ocean. Nature 2007, 450, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Painuly, J.P. Barriers to Renewable Energy Penetration; a Framework for Analysis. Renew. Energy 2001, 24, 73–89. [Google Scholar] [CrossRef]
- Yadoo, A.; Cruickshank, H. The Role for Low Carbon Electrification Technologies in Poverty Reduction and Climate Change Strategies: A Focus on Renewable Energy Mini-Grids with Case Studies in Nepal, Peru and Kenya. Energy Policy 2012, 42, 591–602. [Google Scholar] [CrossRef]
- Amer, M.; Daim, T.U. Selection of Renewable Energy Technologies for a Developing County: A Case of Pakistan. Energy Sustain. Dev. 2011, 15, 420–435. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Dhakal, S.; Gippner, O.; Bambawale, M.J. Halting hydro: A review of the socio-technical barriers to hydroelectric power plants in Nepal. Energy 2011, 36, 3468–3476. [Google Scholar] [CrossRef]
- Ren, X.; Li, J.; He, F.; Lucey, B. Impact of Climate Policy Uncertainty on Traditional Energy and Green Markets: Evidence from Time-Varying Granger Tests. Renew. Sustain. Energy Rev. 2023, 173, 113058. [Google Scholar] [CrossRef]
- Sohail, M.T.; Xiuyuan, Y.; Usman, A.; Majeed, M.T.; Ullah, S. Renewable Energy and Non-Renewable Energy Consumption: Assessing the Asymmetric Role of Monetary Policy Uncertainty in Energy Consumption. Environ. Sci. Pollut. Res. Int. 2021, 28, 31575–31584. [Google Scholar] [CrossRef]
- Aastveit, K.A.; Natvik, G.J.; Sola, S. Economic Uncertainty and the Influence of Monetary Policy. J. Int. Money Financ. 2017, 76, 50–67. [Google Scholar] [CrossRef]
- Halkos, G.E.; Tzeremes, N.G. Carbon Dioxide Emissions and Governance: A Nonparametric Analysis for the G-20. Energy Econ. 2013, 40, 110–118. [Google Scholar] [CrossRef]
- Yaqoot, M.; Diwan, P.; Kandpal, T.C. Review of Barriers to the Dissemination of Decentralized Renewable Energy Systems. Renew. Sustain. Energy Rev. 2016, 58, 477–490. [Google Scholar] [CrossRef]
- Widya Yudha, S.; Tjahjono, B. Stakeholder Mapping and Analysis of the Renewable Energy Industry in Indonesia. Energies 2019, 12, 602. [Google Scholar] [CrossRef]
- Abdala, M.A. Governance of Competitive Transmission Investment in Weak Institutional Systems. Energy Econ. 2008, 30, 1306–1320. [Google Scholar] [CrossRef]
- Sohail, M.T.; Majeed, M.T.; Shaikh, P.A.; Andlib, Z. Environmental Costs of Political Instability in Pakistan: Policy Options for Clean Energy Consumption and Environment. Environ. Sci. Pollut. Res. Int. 2022, 29, 25184–25193. [Google Scholar] [CrossRef]
- Zhong, R.; Ren, X.; Akbar, M.W.; Zia, Z.; Sroufe, R. Striving towards Sustainable Development: How Environmental Degradation and Energy Efficiency Interact with Health Expenditures in SAARC Countries. Environ. Sci. Pollut. Res. Int. 2022, 29, 46898–46915. [Google Scholar] [CrossRef]
- Reddy, S.; Painuly, J.P. Diffusion of Renewable Energy Technologies—Barriers and Stakeholders’ Perspectives. Renew. Energy 2004, 29, 1431–1447. [Google Scholar] [CrossRef]
- Suberu, M.Y.; Mustafa, M.W.; Bashir, N.; Muhamad, N.A.; Mokhtar, A.S. Power Sector Renewable Energy Integration for Expanding Access to Electricity in Sub-Saharan Africa. Renew. Sustain. Energy Rev. 2013, 25, 630–642. [Google Scholar] [CrossRef]
- Kling, G.; Volz, U.; Murinde, V.; Ayas, S. The Impact of Climate Vulnerability on Firms’ Cost of Capital and Access to Finance. World Dev. 2021, 137, 105131. [Google Scholar] [CrossRef]
- Yadav, P.; Davies, P.J.; Abdullah, S. Reforming Capital Subsidy Scheme to Finance Energy Transition for the below Poverty Line Communities in Rural India. Energy Sustain. Dev. 2018, 45, 11–27. [Google Scholar] [CrossRef]
- Martinot, E.; Cabraal, A.; Mathur, S. World Bank/GEF Solar Home System Projects: Experiences and Lessons Learned 1993–2000. Renew. Sustain. Energy Rev. 2001, 5, 39–57. [Google Scholar] [CrossRef]
- Cabanillas-Carbonell, M.; Pérez-Martínez, J.; Zapata-Paulini, J. Contributions of the 5G Network with Respect to Poverty (SDG1). Syst. Lit. Rev. Sustain. 2023, 15, 11301. [Google Scholar] [CrossRef]
- Scheyvens, R.; Hughes, E. Can Tourism Help to “End Poverty in All Its Forms Everywhere”? The Challenge of Tourism Addressing SDG1. J. Sustain. Tour. 2019, 27, 1061–1079. [Google Scholar] [CrossRef]
- Barthel, S.; Isendahl, C.; Vis, B.N.; Drescher, A.; Evans, D.L.; van Timmeren, A. Global Urbanization and Food Production in Direct Competition for Land: Leverage Places to Mitigate Impacts on SDG2 and on the Earth System. Anthr. Rev. 2019, 6, 71–97. [Google Scholar] [CrossRef]
- Sunderland, T.; Oconnor, A.; Muir, G.; Nerfa, L.; Nodari, G.; Widmark, C.; Winkel, C.; Bahar, N.; Ickowitz, A. SDG2: Zero Hunger: Challenging the Hegmony of Monoculture Agriculture for Forests and People. In Sustainable Development Goals: Their Impacts on Forests and People; Cambridge University Press: Cambridge, MA, USA, 2019; pp. 48–71. [Google Scholar]
- Fernandez, R.M. SDG3 Good Health and Well-Being: Integration and Connection with Other SDGs. In Encyclopedia of the UN Sustainable Development Goals; Springer International Publishing: Cham, Switzerland, 2020; pp. 629–636. [Google Scholar] [CrossRef]
- Budhathoki, S.S.; Pokharel, P.K.; Good, S.; Limbu, S.; Bhattachan, M.; Osborne, R.H. The potential of health literacy to address the health related UN sustainable development goal 3 (SDG3) in Nepal: A rapid review. BMC Health Serv. Res. 2017, 17, 237. [Google Scholar] [CrossRef]
- Flores-Vivar, J.M.; García-Peñalvo, F.J. Reflections on the ethics, potential, and challenges of artificial intelligence in the framework of quality education (SDG4). Comunicar 2023, 31, 37–47. [Google Scholar] [CrossRef]
- Moriarty, K. Achieving SDG4 through a Human Rights Based Approach to Education; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Pandey, U.C.; Kumar, C. SDG5-Gender Equality and Empowerment of Women and Girls; Emerald Publishing Limited: Bingley, UK, 2019. [Google Scholar] [CrossRef]
- Gemeda, S.T.; Springer, E.; Gari, S.R.; Birhan, S.M.; Bedane, H.T. The Importance of Water Quality in Classifying Basic Water Services: The Case of Ethiopia, SDG6. 1, and Safe Drinking Water. PLoS ONE 2021, 16, e0248944. [Google Scholar] [CrossRef]
- Villavicencio Calzadilla, P.; Mauger, R. The UN’s New Sustainable Development Agenda and Renewable Energy: The Challenge to Reach SDG7 While Achieving Energy Justice. J. Energy Nat. Resour. Law 2018, 36, 233–254. [Google Scholar] [CrossRef]
- McCollum, D.; Gomez Echeverri, L.; Riahi, K.; Parkinson, S. SDG7: Ensure Access to Affordable, Reliable, Sustainable and Modern Energy for All: Key Interactions with Other Goals. In A Guide to SDG Interactions: From Science to Implementation; International Council for Science (ICSU): Paris, France, 2017. [Google Scholar]
- Meurs, M.; Seidelmann, L.; Koutsoumpa, M. How Healthy Is a “Healthy Economy”? Incompatibility between Current Pathways towards SDG3 and SDG8. Glob. Health 2019, 15, 83. [Google Scholar] [CrossRef]
- Küfeoğlu, S. SDG-9: Industry, Innovation and Infrastructure. In Emerging Technologies: Value Creation for Sustainable Development; Springer International Publishing: Cham, Switzerland, 2022; pp. 349–369. [Google Scholar] [CrossRef]
- Tomaselli, M.F.; Timko, J.; Kozak, R.; Bull, J.; Kearney, S.; Saddler, J.; Zhu, X. SDG 9: Industry, Innovation and Infrastructure-Anticipating the Potential Impacts on Forests and Forest-Based Livelihoods. In Sustainable Development Goals: Their Impacts on Forests and People; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Pandey, U.C.; Kumar, C.; Ayanore, M.; Shalaby, H.R. SDG10-Reduce Inequality within and among Countries; Emerald Publishing Limited: Bingley, UK, 2020. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, Z.; Xing, Q.; Sun, J.; Xia, T.; Yu, H. Localizing Indicators of SDG11 for an Integrated Assessment of Urban Sustainability—A Case Study of Hainan Province. Sustainability 2021, 13, 11092. [Google Scholar] [CrossRef]
- Akuraju, V.; Pradhan, P.; Haase, D.; Kropp, J.P.; Rybski, D. Relating SDG11 Indicators and Urban Scaling-An Exploratory Study. Sustain. Cities Soc. 2020, 52, 101853. [Google Scholar] [CrossRef]
- Al-Zubi, M.; Radovic, V. SDG11-Sustainable Cities and Communities: Towards Inclusive, Safe, and Resilient Settlements; Emerald Publishing Limited: Bingley, UK, 2018. [Google Scholar] [CrossRef]
- Rweyendela, A.G. Getting Closer to SDG12: Incorporating Industrial Ecology Principles into Project EIA. J. Environ. Plan. Manag. 2022, 65, 953–974. [Google Scholar] [CrossRef]
- Bauer, B.; Watson, D.; Gylling, A.C. Sustainable Consumption and Production: An Analysis of Nordic Progress towards SDG12, and the Way Ahead; Nordic Council of Ministers: Copenhagen, Denmark, 2018. [Google Scholar]
- Doni, F.; Gasperini, A.; Soares, J.T. What Is the SDG 13? In SDG13–Climate Action: Combating Climate Change and Its Impacts; Emerald Publishing Limited: Bingley, UK, 2020; pp. 21–30. [Google Scholar] [CrossRef]
- Louman, B.; Keenan, R.J.; Kleinschmit, D.; Atmadja, S.; Sitoe, A.A.; Nhantumbo, I.; de Camino Velozo, R.; Morales, J.P. SDG 13: Climate Action-Impacts on Forests and People. In Sustainable Development Goals: Their Impacts on Forests and People; Cambridge University Press: Cambridge, UK, 2019; pp. 419–444. [Google Scholar]
- Pandey, U.C.; Nayak, S.R.; Roka, K.; Jain, T.K. SDG14-Life below Water: Towards Sustainable Management of Our Oceans; Emerald Publishing Limited: Bingley, UK, 2021. [Google Scholar] [CrossRef]
- Gulseven, O.; Ahmed, G. The state of life on land (SDG 15) in the United Arab Emirates. Int. J. Soc. Ecol. Sustain. Dev. 2022, 13, 1–15. [Google Scholar] [CrossRef]
- Sayer, J.; Sheil, D.; Galloway, G.; Riggs, R.A.; Mewett, G.; Macdicken, K.G.; Arts, B.J.M.; Boedhihartono, A.K.; Langston, J.; Edwards, D.P. SDG 15 Life on Land-the Central Role of Forests in Sustainable Development. In Sustainable Development Goals: Their Impacts on Forest and People; Cambridge University Press: Cambridge, UK, 2019; pp. 482–509. [Google Scholar] [CrossRef]
- Lawrence, A.W.; Ihebuzor, N.; Lawrence, D.O. Comparative Analysis of Alignments between SDG16 and the Other Sustainable Development Goals. Int. Bus. Res. 2020, 13, 13. [Google Scholar] [CrossRef]
- Radović, V. SDG16-Peace and Justice: Challenges, Actions and the Way Forward; Emerald Publishing Limited: Bingley, UK, 2019. [Google Scholar] [CrossRef]
- Cabrera, Á.; Cutright, D. (Eds.) Higher Education and SDG17: Partnerships for the Goals; Emerald Publishing Limited: Bingley, UK, 2023. [Google Scholar] [CrossRef]
- Vaghar, S.; Wyatt-Buchan, S.; Dayal, S.; Banik, S.; Nahar, A. The Power of Intergenerational Partnership: Students, Universities, and SDG17. In Higher Education and SDG17: Partnerships for the Goals; Emerald Publishing Limited: Bingley, UK, 2023; pp. 93–112. [Google Scholar] [CrossRef]
- Thiel, M. SDG17: Partnerships for the Goals: STRENGTHENING Implementation through Global Cooperation; Emerald Publishing Limited: Bingley, UK, 2019. [Google Scholar] [CrossRef]
- Modanloo, V.; Elyasi, M.; Talebi-Ghadikolaee, H.; Ahmadi Khatir, F.; Akhoundi, B. The Use of MCDM Techniques to Assess Fluid Pressure on the Bending Quality of AA6063 Heat-Treated Tubes. J. Eng. Res. 2023. [Google Scholar] [CrossRef]
- Berberoglu, Y.; Kazancoglu, Y.; Sagnak, M. Circularity Assessment of Logistics Activities for Green Business Performance Management. Bus. Strat. Environ. 2023, 32, 4734–4749. [Google Scholar] [CrossRef]
- Sagnak, M.; Berberoglu, Y.; Memis, İ.; Yazgan, O. Sustainable Collection Center Location Selection in Emerging Economy for Electronic Waste with Fuzzy Best-Worst and Fuzzy TOPSIS. Waste Manag. 2021, 127, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Baydaş, M.; Pamučar, D. Determining Objective Characteristics of MCDM Methods under Uncertainty: An Exploration Study with Financial Data. Mathematics 2022, 10, 1115. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, H.; Guo, S. Comprehensive Performance Evaluation of Electricity Grid Corporations Employing a Novel MCDM Model. Sustainability 2018, 10, 2130. [Google Scholar] [CrossRef]
- Liu, A.; Xiao, Y.; Ji, X.; Wang, K.; Tsai, S.-B.; Lu, H.; Cheng, J.; Lai, X.; Wang, J. A Novel Two-Stage Integrated Model for Supplier Selection of Green Fresh Product. Sustainability 2018, 10, 2371. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar] [CrossRef]
- Chen, C.-T. Extensions of the TOPSIS for Group Decision-Making under Fuzzy Environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Tanveer, U.; Kremantzis, M.D.; Roussinos, N.; Ishaq, S.; Kyrgiakos, L.S.; Vlontzos, G. A Fuzzy TOPSIS Model for Selecting Digital Technologies in Circular Supply Chains. Supply Chain Anal. 2023, 4, 100038. [Google Scholar] [CrossRef]
- Borodina, O.; Kryshtal, H.; Hakova, M.; Neboha, T.; Olczak, P.; Koval, V. A Conceptual Analytical Model for the Decentralized Energy-Efficiency Management of the National Economy. Polityka Energetyczna Energy Policy J. 2022, 25, 5–22. [Google Scholar] [CrossRef]
- Hrinchenko, H.; Koval, V.; Shmygol, N.; Sydorov, O.; Tsimoshynska, O.; Matuszewska, D. Approaches to Sustainable Energy Management in Ensuring Safety of Power Equipment Operation. Energies 2023, 16, 6488. [Google Scholar] [CrossRef]
- Koval, V.; Sribna, Y.; Mykolenko, O.; Vdovenko, N. Environmental concept of energy security solutions of local communities based on energy logistics. SGEM 2019, 19, 283–290. [Google Scholar] [CrossRef]
- Arsawan, I.W.E.; Supartha, I.W.G.; Rustiarini, N.W.; Sita Laksmi, P.A. SMEs Resiliencies and Agility during Pandemic COVID-19: A Bibliography Analysis and Future Directions. Econ. Ecol. Socium 2021, 5, 19–28. [Google Scholar] [CrossRef]
- Sribna, Y.; Skakovska, S.; Paniuk, T.; Hrytsiuk, I. The Economics of Technology Transfer in the Environmental Safety of Enterprises for the Energy Transition. Econ. Ecol. Socium 2023, 7, 84–96. [Google Scholar] [CrossRef]
- Markevych, K.; Maistro, S.; Koval, V.; Paliukh, V. Mining Sustainability and Circular Economy in the Context of Economic Security in Ukraine. Min. Miner. Depos. 2022, 16, 101–113. [Google Scholar] [CrossRef]
- Si, F.; Du, E.; Zhang, N.; Wang, Y.; Han, Y. China’s Urban Energy System Transition towards Carbon Neutrality: Challenges and Experience of Beijing and Suzhou. Renew. Sustain. Energy Rev. 2023, 183, 113468. [Google Scholar] [CrossRef]
- Pandey, A.; Asif, M. Assessment of Energy and Environmental Sustainability in South Asia in the Perspective of the Sustainable Development Goals. Renew. Sustain. Energy Rev. 2022, 165, 112492. [Google Scholar] [CrossRef]
- Dowling, R.; McGuirk, P.; Maalsen, S. Multiscalar Governance of Urban Energy Transitions in Australia: The Cases of Sydney and Melbourne. Energy Res. Soc. Sci. 2018, 44, 260–267. [Google Scholar] [CrossRef]
- Carréon, J.R.; Worrell, E. Urban Energy Systems within the Transition to Sustainable Development. A research agenda for urban metabolism. Resour. Conserv. Recycl. 2018, 132, 258–266. [Google Scholar] [CrossRef]
- Chupryna, I.; Tormosov, R.; Abzhanova, D.; Ryzhakov, D.; Gonchar, V.; Plys, N. Scientific and Methodological Approaches to Risk Management of Clean Energy Projects Implemented in Ukraine on the Terms of Public-Private Partnership. In Proceedings of the 2022 IEEE International Conference on Smart Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 28–30 April 2022. [Google Scholar] [CrossRef]
- Shvydanenko, H.; Shvydanenko, O.; Duginets, G.; Boichenko, K.; Busarieva, T. The Impact of Green Finance on Renewable Energy Consumption in the COVID-19 Pandemic. In Sustainable Finance and the Global Health Crisis; Routledge: London, UK, 2023; pp. 146–173. [Google Scholar]
Number of Challenges | Challenges | References |
---|---|---|
C1 | Uncertain and weak energy policies | [54,55,56,57,58,59,60,61,62] |
C2 | Absence of adequate subsidies and funds | [54,56,63,64,65,66] |
C3 | Unsupportive environmental laws and regulation | [54] |
C4 | Political instability | [55,67,68,69] |
C5 | Environmental degradation | [57,70] |
C6 | Ecosystem and biodiversity destruction | [54,70,71,72] |
C7 | Lack of technical expertise and personnel | [54,56] |
C8 | Insufficient specialized training | [55,56,57,59,63,67,69,73,74,75] |
C9 | Restricted access to credit and capital | [54,55,56,62,64,65,67] |
C10 | Lack of financial support programs | [54] |
C11 | Increased costs and expenses | [55,62,64] |
C12 | Inadequate institutional capacity and infrastructure | [55,56,57,60,64,65,74,76] |
C13 | Limited public interest in renewable energy | [54,55,57,58,60,61,67,74] |
C14 | Absence of standardized technologies | [56] |
SDGs | Name of the SDG | Definition | Reference |
---|---|---|---|
SDG 1 | No Poverty | Eradicate poverty and all its variations. | [91,92] |
SDG 2 | Zero Hunger | End hunger, ensure food security, and promote sustainable agriculture. | [93,94] |
SDG 3 | Good Health and Well-being | Ensure the well-being and health of people at all stages of life. | [95,96] |
SDG 4 | Quality Education | Ensure inclusive, quality education and lifelong learning opportunities for everyone. | [97,98] |
SDG 5 | Gender Equality | Attain gender equality and empower women and girls. | [99] |
SDG 6 | Clean Water and Sanitation | Guarantee access to clean water and sustainable sanitation for all. | [100] |
SDG 7 | Affordable and Clean Energy | Provide access to affordable, sustainable, reliable, and modern energy for everyone. | [92,101,102] |
SDG 8 | Decent Work and Economic Growth | Promote lasting, equitable economic growth, full employment, and decent work. | [103] |
SDG 9 | Industry, Innovation, and Infrastructure | Develop resilient infrastructure, foster innovation, and encourage inclusive industrialization. | [104,105] |
SDG 10 | Reduced Inequality | Reduce inequality both within and between nations. | [106] |
SDG 11 | Sustainable Cities and Communities | Create inclusive, resilient, secure, and sustainable urban areas and human settlements. | [107,108,109] |
SDG 12 | Responsible Consumption and Production | Ensure sustainable consumption and production models. | [110,111] |
SDG 13 | Climate Action | Take immediate action to combat climate change and its effects. | [112,113] |
SDG 14 | Life Below Water | Protect and sustainably use marine resources and ecosystems for sustainable development. | [114] |
SDG 15 | Life on Land | Protect and restore terrestrial ecosystems, manage forests sustainably, combat desertification, and preserve biodiversity. | [115,116] |
SDG 16 | Peace, Justice, and Strong Institutions | Promote peaceful and inclusive societies, ensure access to justice, and build effective, accountable institutions. | [117,118] |
SDG 17 | Partnerships for the Goals | Strengthen the means to implement sustainable development goals and revitalize global partnerships. | [119,120,121] |
Expert No. | Job | Experience |
---|---|---|
1 | Professor | 21 |
2 | Professor | 39 |
3 | Assoc. Prof. | 17 |
4 | Assoc. Prof. | 15 |
5 | Assoc. Prof. | 18 |
6 | Agricultural Engineer | 30 |
7 | Organic Farming Controller | 16 |
8 | Sustainability Projects Specialist | 20 |
9 | Energy Trading Specialist | 22 |
10 | Supply Chain Manager | 37 |
Weights | L | M | U |
---|---|---|---|
c1 | 0.057495 | 0.11707 | 0.134144 |
c2 | 0.034638 | 0.046154 | 0.052885 |
c3 | 0.038959 | 0.057495 | 0.078046 |
c4 | 0.038959 | 0.057495 | 0.078046 |
c5 | 0.083554 | 0.167107 | 0.167107 |
c6 | 0.068112 | 0.161524 | 0.167107 |
c7 | 0.050132 | 0.083554 | 0.167107 |
c8 | 0.048533 | 0.08485 | 0.107683 |
c9 | 0.036424 | 0.051911 | 0.062651 |
c10 | 0.041671 | 0.06368 | 0.097225 |
c11 | 0.030797 | 0.03833 | 0.03833 |
c12 | 0.032384 | 0.043819 | 0.045408 |
c13 | 0.030797 | 0.035836 | 0.035836 |
c14 | 0.021307 | 0.023872 | 0.023872 |
Relative Closeness | Rank | |||
---|---|---|---|---|
SDG 1 | 0.393372049 | 0.412040791 | 0.511589548 | 14 |
SDG 2 | 0.209721356 | 0.57555503 | 0.732933067 | 7 |
SDG 3 | 0.356478189 | 0.404795319 | 0.531734409 | 13 |
SDG 4 | 0.340271901 | 0.514716948 | 0.602015978 | 12 |
SDG 5 | 0.669368399 | 0.068093568 | 0.092335023 | 17 |
SDG 6 | 0.149497979 | 0.610052464 | 0.803175707 | 5 |
SDG 7 | 0.111339513 | 0.640298772 | 0.851870886 | 2 |
SDG 8 | 0.272082469 | 0.506754038 | 0.650655219 | 10 |
SDG 9 | 0.236209119 | 0.51072325 | 0.683761036 | 9 |
SDG 10 | 0.471458365 | 0.31821772 | 0.402972467 | 16 |
SDG 11 | 0.088482032 | 0.658433251 | 0.881536723 | 1 |
SDG 12 | 0.203548413 | 0.552785214 | 0.730874834 | 8 |
SDG 13 | 0.119050032 | 0.624610277 | 0.839913425 | 3 |
SDG 14 | 0.302599615 | 0.463184402 | 0.604849921 | 11 |
SDG 15 | 0.137139626 | 0.606250742 | 0.815521384 | 4 |
SDG 16 | 0.431598942 | 0.317807239 | 0.424078753 | 15 |
SDG 17 | 0.169469313 | 0.563737825 | 0.768865707 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazancoglu, Y.; Berberoglu, Y.; Lafci, C.; Generalov, O.; Solohub, D.; Koval, V. Environmental Sustainability Implications and Economic Prosperity of Integrated Renewable Solutions in Urban Development. Energies 2023, 16, 8120. https://doi.org/10.3390/en16248120
Kazancoglu Y, Berberoglu Y, Lafci C, Generalov O, Solohub D, Koval V. Environmental Sustainability Implications and Economic Prosperity of Integrated Renewable Solutions in Urban Development. Energies. 2023; 16(24):8120. https://doi.org/10.3390/en16248120
Chicago/Turabian StyleKazancoglu, Yigit, Yalcin Berberoglu, Cisem Lafci, Oleksander Generalov, Denys Solohub, and Viktor Koval. 2023. "Environmental Sustainability Implications and Economic Prosperity of Integrated Renewable Solutions in Urban Development" Energies 16, no. 24: 8120. https://doi.org/10.3390/en16248120
APA StyleKazancoglu, Y., Berberoglu, Y., Lafci, C., Generalov, O., Solohub, D., & Koval, V. (2023). Environmental Sustainability Implications and Economic Prosperity of Integrated Renewable Solutions in Urban Development. Energies, 16(24), 8120. https://doi.org/10.3390/en16248120