Small-Signal Stability and Resonance Perspectives in Microgrid: A Review
Abstract
:1. Introduction
2. Microgrid Architectures
3. Small-signal Model for Power Electronic Devices
4. Small-Signal Stability in Microgrid
5. Interaction and Resonance in Microgrid
5.1. Interaction in Power System
5.2. Interaction in MG
6. Future Research
6.1. Dynamic Model of MG
6.2. Uncertainties in MGs
6.3. Resonance Assessment in MGs
7. Conclusions
Funding
Conflicts of Interest
References
- IRENA (International Renewable Energy Agency). World Energy Transitions Outlook 2022: 1.5 °C Pathway; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2022. [Google Scholar]
- IRENA (International Renewable Energy Agency). Installed Capacity Trends of Wind Power. Available online: https://www.irena.org/wind (accessed on 26 November 2022).
- Farrokhabadi, M.; Canizares, C.A.; Simpson-Porco, J.W.; Nasr, E.; Fan, L.; Mendoza-Araya, P.A.; Tonkoski, R.; Tamrakar, U.; Hatziargyriou, N.D.; Lagos, D.; et al. Microgrid Stability Definitions, Analysis, and Examples. IEEE Trans. Power Syst. 2020, 35, 13–29. [Google Scholar] [CrossRef]
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Canizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in Microgrid Control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Rojas, A.; Rousan, T. Microgrid Control Strategy. IEEE Power Energy Mag. 2017, 15, 72–79. [Google Scholar] [CrossRef]
- Krismanto, A.; Mithulananthan, N.; Setiadi, H.; Setyawan, E.; Abdillah, M. Impacts of grid-tied microgrid on stability and interaction of power systems considering RE uncertainties. Sustain. Energy Grids Netw. 2021, 28, 100537. [Google Scholar] [CrossRef]
- Krismanto, A.; Mithulananthan, N.; Krause, O. Microgrid Impact on Low Frequency Oscillation and Resonance in Power System. In Proceedings of the ISGT Asia Pacific 2016, Melbourne, Australia, 28 November–1 December 2016; Available online: https://164.248.212.185/Microgrid-Impact-on-Low-Frequency-Oscillation.pdf (accessed on 26 November 2022).
- Patrao, I.; Figueres, E.; Garcerá, G.; González-Medina, R. Microgrid architectures for low voltage distributed generation. Renew. Sustain. Energy Rev. 2015, 43, 10. Available online: https://196.160.120.134/Microgrid-architectures-for-low-voltage-distri.pdf (accessed on 26 November 2022). [CrossRef]
- Shuai, Z.; Sun, Y.; Shen, Z.J.; Tian, W.; Tu, C.; Li, Y.; Yin, X. Microgrid stability: Classification and a review. Renew. Sustain. Energy Rev. 2016, 58, 167–179. Available online: https://84.101.190.255/Microgrid stability Classification and a revie.pdf (accessed on 26 November 2022). [CrossRef]
- Bottrell, N.; Prodanovic, M.; Green, T. Dynamic Stability of a Microgrid with an Active Load. IEEE Trans. Power Electron. 2013, 28, 5107–5119. Available online: https://215.254.111.145/Dynamic-Stability-of-a-Microgrid-with.pdf (accessed on 26 November 2022). [CrossRef] [Green Version]
- Majumder, R. Some Aspects of Stability in Microgrids. IEEE Trans. Power Syst. 2013, 28, 3243–3252. [Google Scholar] [CrossRef]
- Rahim, N.A.; Quaicoe, J.E. Small Signal Model and Analysis of a Mulitple Feedback Control Scheme for Three Phase Voltage Source UPS Inverter. In Proceedings of the Power Electronics Specialist Conference, Baveno, Italy, 23–27 June 1996; pp. 188–194. Available online: https://211.213.252.125/Small-Signal-Model-and-Analysis-of-A-Multiple.pdf (accessed on 26 November 2022).
- Kaviani, A.; Yen, K.; Mirafzal, B. Dynamic Model of Three Phase Current Source Boost Inverter for Stand Alone Application. In Proceedings of the Applied Power Electronics Conference and Exposition, Orlando, FL, USA, 5–9 February 2012; pp. 218–224. Available online: https://0620850699/Dynamic-Model-of-Three-Phase-Current-Source.pdf (accessed on 26 November 2022).
- Mirafzal, B.; Saghaleini, M.; Kaviani, A.K. An SVPWM-Based Switching Pattern for Stand Alone and Grid Connected Three Phase Single Stage Boost Converter. IEEE Trans. Power Electron. 2010, 26, 10. Available online: https://210.130.108.55/An-SVPWM-Based-Switching-Pattern-for.pdf (accessed on 25 November 2022).
- Nimpitiwan, N.; Kaitwanidvilai, S. Static Output Feedback Robust Loop Shaping Control for Grid Connected Inverter using Genetic Algorithms. Int. J. Innov. Comput. Inf. Control 2012, 8, 6081–6093. Available online: https://100.232.110.74/Static-Output-Feedback-Robust-loop-Shaping.pdf (accessed on 19 November 2022).
- Hiti, S.; Boroyevich, D. Small Signal Modelling of Three Phase PWM Modulators. In Proceedings of the Power Electronics Specialists Conference, Baveno, Italy, 23–27 June 1996; IEEE Press: New York, NY, USA, 1996; Volume 1, pp. 550–555. Available online: https://218.220.103.56/Small-Signal-Modeling-of-Three-phase-PWM-Modul.pdf (accessed on 15 November 2022).
- Middlebrook, R.; Cuk, S. A General Unified Approach to Modelling Switching-Converter Power Stages. In Proceedings of the Power Electronics Specialists Conference, Cleveland, OH, USA, 8–10 June 1976; p. 14. [Google Scholar]
- Zeng, Z.; Yang, H.; Zhao, R. Study on small signal stability of microgrids: A review and a new approach. Renew. Sustain. Energy Rev. 2011, 15, 4818–4828. [Google Scholar] [CrossRef]
- Wang, S.; Su, J.; Yang, X.; Du, Y.; Tu, Y.; Xu, H. A review on the small signal stability of microgrid. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; pp. 1793–1798. [Google Scholar] [CrossRef]
- Maitra, A.; Pratt, A.; Hubert, T.; Wang, D.; Prabakar, K.; Handa, R.; Baggu, M.; McGranaghan, M. Microgrid Controllers: Expanding Their Role and Evaluating Their Performance. IEEE Power Energy Mag. 2017, 15, 41–49. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.-W. AC-Microgrid versus DC-Microgrid with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. Available online: https://218.58.112.154/AC-microgridsversusDC-microgridswithdistribute.pdf (accessed on 15 November 2022). [CrossRef]
- Wu, R.; Dewan, S.; Slemon, G. A PWM AC-to-DC Converter with Fixed Switching Frequency. IEEE Trans. Ind. Appl. 1990, 26, 6. Available online: https://0803104022/A PWM-AC-to-DC-Converter-with-Fixed-Switching.pdf (accessed on 10 November 2022). [CrossRef]
- Wu, R.; Dewan, S.B.; Slemon, G.R. Analysis of an AC-to-DC Voltage Source Converter using PWM with Phase and Amplitude Control. IEEE Trans. Ind. Appl. 1991, 27, 12. Available online: https://0878116090/Analysis of an ac-to-dc Voltage Source 1991.pdf (accessed on 20 October 2022). [CrossRef]
- Rahim, N.; Quaicoe, J. Multiple Feedback Loop Control Strategy for Single Phase Voltage Source Inverter. In Proceedings of the 1994 Power Electronics Specialist Conference, Taipei, Taiwan, 20–25 June 1994; Volume 2, pp. 958–964. Available online: https://0460809759/Multiple-Feedback-Loop-Control-Strategy-for.pdf (accessed on 20 October 2022).
- Rese, L.; Costa, S.; Silva, A.S. Enhanced Modeling and Control of VSIs in Microgrids Operating in Grid-Connected Mode. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–8. Available online: https://121.76.110.230/Enhanced-Modeling-and-Control-of-VSIs-in.pdf (accessed on 20 October 2022).
- Dijk, V.E.; Spruijt, H.J.N.; O’Sullivan, D.M.; Klassens, J.B. PWM-Switch Modeling of DC-DC Converters. IEEE Trans. Power Electron. 1995, 10, 7. Available online: https://101.204.102.156/PWM-Switch-Modeling-of-DC-DC-Converters.pdf (accessed on 15 November 2022).
- Erickson, R.W.; Maksimovic, D. Fundamental of Power Electronics Second Edition; Kluwer Academic Publisher: Drive Norwell, MA, USA, 2001. [Google Scholar]
- Krismanto, A.; Mithulananthan, N.; Krause, O. Small Signal Stability of Renewable Energy based Microgrid in Autonomous Operation. Sustain. Energy Grid Netw. J. 2018, 13, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Parol, M.; Rokicki, Ł. Voltage stability in low voltage microgrids in aspects of active and reactive power demand. Arch. Electr. Eng. 2016, 65, 19. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, J.; Seel, T.; Raisch, J.; Sezi, T. Voltage Stability and Reactive Power Sharing in Inverter-Based Microgrids with Consensus-Based Distributed Voltage Control. IEEE Trans. Control Syst. Technol. 2016, 24, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Guerrero, J.M.; Blaabjerg, F.; Chen, Z. A review of power electronics based microgrids. J. Power Electron. 2012, 12, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Deng, W.; Qi, Z. Investigation of the Dynamic Stability of Microgrid. IEEE Trans. Power Syst. 2014, 29, 698–706. Available online: https://204.159.118.22/Investigation-of-the-Dynamic-Stability-of-Micr.pdf (accessed on 20 October 2022). [CrossRef]
- Hamzeh, M.; Ghafouri, M.; Karimi, H.; Sheshyekani, K.; Guerrero, J.M. Power Oscillations Damping in DCMicrogrids. IEEE Trans. Energy Convers. 2016, 31, 970–980. Available online: https://154.4.106.88/Power-Oscillations-Damping-in-DC-Microgrids.pdf (accessed on 20 October 2022). [CrossRef]
- Rashidirad, N.; Hamzeh, M.; Sheshyekani, K.; Afjei, E. A Simplified Equivalent Model for the Analysis of Low-Frequency Stability of Multi-Bus DC Microgrids. IEEE Trans. Smart Grid 2017, 9, 6170–6182. Available online: https://177.70.202.67/A Simplified Equivalent Model for the Analysis.pdf (accessed on 20 October 2022). [CrossRef]
- Dobson, I.; Zhang, J.; Greene, S.; Engdahl, H.; Sauer, P.W. Is Strong Modal Resonance a Precursor to Power System Oscillations? IEEE Trans. Circuit Syst. Fundam. Theory Appl. 2001, 48, 340–349. Available online: https://99.93.194.209/Is-Strong-Modal-Resonance-a-Precursor-to-Power.pdf (accessed on 20 October 2022). [CrossRef] [Green Version]
- Katerei, F.; Iravani, M.R.; Lehn, P.W. Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources. IET Gen. Transm. Distrib. 2007, 1, 369–378. Available online: https://207.62.183.137/Small-signal dynamic-model-of-a-micro-grid.pdf (accessed on 20 October 2022). [CrossRef] [Green Version]
- Kroutikova, N.; Hernandez-Aramburo, C.A.; Green, T.C. State-space model of grid-connected inverters under current control mode. IET Electr. Power Appl. 2007, 1, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Pogaku, N.; Prodanovic, M.; Green, T.C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron. 2007, 22, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Krismanto, A.; Mithulananthan, N.; Lee, K.Y. Comprehensive Modelling and Small Signal Stability Analysis of RES-based Microgrid. In Proceedings of the 9th IFAC Symposium on Control of Power and Energy Systems CPES, New Delhi, India, 9–11 December 2015; Elsevier: Amsterdam, The Netherlands, 2015; pp. 282–287. Available online: https://204.222.114.95/Comprehensive-Modelling-and-Small-Signal-Stabi.pdf (accessed on 20 October 2022).
- Lopes, J.A.P.; Moreira, C.L.; Madureira, A.G. Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 2006, 21, 916–924. [Google Scholar] [CrossRef] [Green Version]
- Coelho, E.; Cortizo, P.C.; Garcia, P.F.D. Small-signal stability for parallel-connected inverters in stand-alone AC supply systems. IEEE Trans. Ind. Appl. 2002, 38, 533–542. [Google Scholar] [CrossRef]
- Karimi, H.; Nikkhajoei, H.; Iravani, R. Control of an Electronically-Coupled Distributed Resource Unit Subsequent to an Islanding Event. IEEE Trans. Power Deliv. 2008, 23, 493–500. Available online: https://72.111.107.171/Control of an Electronically-Coupled Distribut.pdf (accessed on 20 October 2022). [CrossRef]
- Etemadi, A.H.; Iravani, R. Eigenvalue and Robustness Analysis of a Decentralized Voltage Control Scheme for an Islanded Multi-DER Microgrid. In Proceedings of the Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. Available online: https://78.108.109.189/Eigenvalue-and-Robustness-Analysis-of-a.pdf (accessed on 20 October 2022).
- Rasheduzzaman, M.; Mueller, J.A.; Kimball, J.W. An Accurate Small-Signal Model of Inverter-Dominated Islanded Microgrids Using dq Reference Frame. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 1070–1080. Available online: https://205.228.117.138/An Accurate Small-Signal Model of Inverter-.pdf (accessed on 20 October 2022). [CrossRef]
- Barklund, E.; Pogaku, N.; Prodanovic, M.; Hernandez-Aramburo, C.; Green, T.C. Energy Management in Autonomous Microgrid Using Stability-Constrained Droop Control of Inverters. IEEE Trans. Power Electron. 2008, 23, 2346–2351. Available online: https://174.250.184.177/Energy-Management-in-Autonomous-Microgrid-Usin.pdf (accessed on 20 October 2022). [CrossRef]
- Bottrell, N.; Green, T.C. Control and Modelling for Power Electronics. 2012, pp. 1–8. Available online: https://161.141.109.80/Modeling-Microgrids-with-Active-Loads.pdf (accessed on 20 October 2022).
- Kahrobaeian, A.; Mohamed, Y.-R.I. Analysis and Mitigation of Low-Frequency Instabilities in Autonomous Medium-Voltage Converter-Based Microgrids with Dynamic Loads. IEEE Trans. Ind. Electron. 2014, 61, 1643–1658. Available online: https://173.217.114.17/Analysis and Mitigation of Low-Frequency.pdf (accessed on 20 October 2022). [CrossRef]
- Radwan, A.; Mohamed, Y.-R. Stabilization of Medium-Frequency Modes in Isolated Microgrids Supplying Direct Online Induction Motor Loads. IEEE Trans. Smart Grid 2014, 5, 358–370. Available online: https://143.157.116.113/Stabilization-of-Medium-Frequency-Modes.pdf (accessed on 20 October 2022). [CrossRef]
- Mohamed, Y.-R.I.; El-Saadany, E.F. Adaptive Decentralized Droop Controller to Preserve Power Sharing Stability of Paralleled Inverters in Distributed GenerationMicrogrids. IEEE Trans. Power Electron. 2008, 23, 2806–2816. Available online: https://75.42.185.218/Adaptive-Decentralized-Droop-Controller-to-Pre.pdf (accessed on 20 October 2022). [CrossRef]
- Leitner, S.; Yazdanian, M.; Mehrizi-Sani, A.; Muetze, A. Small-Signal Stability Analysis of an Inverter-Based Microgrid with Internal Model-Based Controllers. IEEE Trans. Smart Grid 2018, 9, 5393–5402. [Google Scholar] [CrossRef]
- Krismanto, A.U.; Nadarajah, M. Identification of Modal Interaction and Small Signal Stability in Autonomous Microgrid Operation. IET Gener. Transm. Distrib. 2017, 12, 247–257. [Google Scholar] [CrossRef]
- Krismanto, A.U.; Mithulananthan, N.; Lomi, A. Dynamic droop control in microgrid for stability enhancement considering RES variation. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Torino, Italy, 26–29 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Karimi, A.; Pirayesh, A.; Aghdam, T.S.; Ajalli, M. DC micro grid small signal stability analysis. In Proceedings of the 18th Electric Power Distribution Conference, Kermanshah, Iran, 30 April–1 May 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Zhao, F.; Li, N.; Yin, Z.; Tang, X. Small-signal modeling and stability analysis of DC microgrid with multiple type of loads. In Proceedings of the 2014 International Conference on Power System Technology, Chengdu, China, 20–22 October 2014; pp. 3309–3315. [Google Scholar] [CrossRef]
- Kwasinski, A.; Onwuchekwa, C.N. Dynamic Behavior and Stabilization of DC Microgrids with Instantaneous Constant-Power Loads. IEEE Trans. Power Electron. 2011, 26, 822–834. [Google Scholar] [CrossRef]
- Cespedes, M.; Xing, L.; Sun, J. Constant-Power Load System Stabilization by Passive Damping. IEEE Trans. Power Electron. 2011, 26, 1832–1836. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, W.; Cheng, Y.; Xing, B. Modeling and small-signal stability analysis of an islanded DC microgrid with dynamic loads. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 10–13 June 2015; pp. 866–871. [Google Scholar] [CrossRef]
- Liu, Z.; Su, M.; Sun, Y.; Han, H.; Hou, X.; Guerrero, J.M. Stability analysis of DC microgrids with constant power load under distributed control methods. Automatica 2018, 90, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Krismanto, A.; Mithulanthan, N. Probabilistic Small Signal Stability Analysis of Autonomous Wind-Diesel Microgrid. In Proceedings of the ISGT Asia Pacific 2017, Auckland, New Zealand, 4–7 December 2017. [Google Scholar]
- Krismanto, A.U.; Mithulananthan, N.; Kamwa, I. Oscillatory stability assessment of microgrid in autonomous operation with uncertainties. IET Renew. Power Gener. 2018, 12, 494–504. [Google Scholar] [CrossRef]
- Xu, X.; Lin, T.; Zha, X. Probabilistic Analysis of Small Signal Stability of Microgrid Using Point Estimate Method. In Proceedings of the Sustainable Power Generation and Supply 2009 SUPERGEN’09, Nanjing, China, 6–7 April 2009; Available online: https://0966507968/Probabilistic Analysis of Small Signal Stabili.pdf (accessed on 20 November 2022).
- Krismanto, A.; Nadarajah, M.; Lomi, A.; Setiadi, H.; Abdillah, M. Copula-Monte Carlo Based Probabilistic Oscillatory Stability Analysis of Microgrid. Int. J. Intell. Eng. Syst. 2021, 14, 479–491. [Google Scholar] [CrossRef]
- Hossain, J.; Pota, H.R. Robust Control for Grid Voltage Stability: High Penetration of Renewable Energy; Springer Science: Singapore, 2014. [Google Scholar]
- Kim, H.J.; Nam, T.; Hur, K.; Chang, B.; Chow, J.H.; Entriken, R. Dynamic interactions among multiple FACTS controllers—Survey. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, N.K.; Tiwari, A.N. Coordinated control and interactions between FACTS controller in multi-machine power system environment: An Overview and Issues. In Proceedings of the Fifteenth National Power Systems Conference (NPSC), Mumbai, India, 16–18 December 2008. [Google Scholar]
- Padiyar, K.R.; Kulkarni, A.M. Analysis of Subsynchronous Resonance. In Dynamics and Control of Electric Transmission and Microgrids; Wiley-IEEE Press: New York, NY, USA, 2018; pp. 341–389. [Google Scholar] [CrossRef]
- Anderson, P.; Agrawal, B.; Van Ness, J. Subsynchronous Resonance in Power System; Wiley-IEEE Press: New York, NY, USA, 1999. [Google Scholar]
- Fouad, A.A.; Khu, K.T. Damping of Torsional Oscillations in Power Systems with Series-Compensated Lines. IEEE Trans. Power Appar. Syst. 1978, PAS-97, 744–753. [Google Scholar] [CrossRef]
- Wasynczuk, O. Damping Subsynchronous Resonance Using Emergy Storage. IEEE Trans. Power Appar. Syst. 1982, PAS-101, 905–914. [Google Scholar] [CrossRef]
- Lei, X.; Buchholz, B.; Povh, D. Analysing subsynchronous resonance phenomena in the time- and frequency domain. Eur. Trans. Electr. Power 2000, 10, 203–211. [Google Scholar] [CrossRef]
- Neto, O.M.; Macdonald, D.C. Analysis of subsynchronous resonance in a multi-machine power system using series compensation. Int. J. Electr. Power Energy Syst. 2006, 28, 565–569. [Google Scholar] [CrossRef]
- Bengtsson, T.; Roxenborg, S.; Saha, M.M.; Lindström, P.O.; Eriksson, H.; Lindström, M. Case studies and experiences with Sub-synchronous resonance (SSR) detection technique. In Proceedings of the 2016 Power Systems Computation Conference (PSCC), Genoa, Italy, 20–24 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Padiyar, K.R.; Kothari, A.G. Study of the HVDC-torsional interactions through digital dynamic simulation. Electr. Mach. Power Syst. 1988, 14, 363–375. [Google Scholar] [CrossRef]
- Padiyar, K.R.; Kothari, A.G. Analysis of the HVDC turbine generator torsional interactions. Electr. Mach. Power Syst. 1989, 16, 303–317. [Google Scholar] [CrossRef]
- Choo, Y.C.; Agalgaonkar, A.P.; Muttaqi, K.M.; Perera, S.; Negnevitsky, M. Analysis of Subsynchronous Torsional Interaction of HVDC System Integrated Hydro Units with Small Generator-to-Turbine Inertia Ratios. IEEE Trans. Power Syst. 2014, 29, 1064–1076. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Zhu, J.; Liu, H.; Zhou, H.; Chen, J. PLL effect on subsynchronous torsional interaction with VSC-HVDC. J. Eng. 2017, 2017, 2119–2124. Available online: http://digital-library.theiet.org/content/journals/10.1049/joe.2017.0704 (accessed on 10 October 2022). [CrossRef]
- Ramos, A.J.P.; Tyll, H. Dynamic performance of a radial weak power system with multiple static VAr compensators. IEEE Trans. Power Syst. 1989, 4, 1316–1325. [Google Scholar] [CrossRef]
- Chokelal, R.S.C.; Jiang, J. Interaction and Coordination of Two Static VAR Compensators in Close Electrical Proximity. IFAC Proc. Vol. 2003, 36, 529–534. [Google Scholar] [CrossRef]
- Zou, Z.Y.; Jiang, Q.Y.; Cao, Y.J.; Wang, H.F. Normal form analysis of interactions among multiple SVC controllers in power systems. IEE Proc. Gener. Transm. Distrib. 2005, 152, 469–474. [Google Scholar] [CrossRef]
- Longquan, X.; Xianjun, X.; Shanfeng, L.; Xiaoqin, Z. Analysis Interaction for Joint Compensation of SVC and TCSC in Power System by Singular Value Decomposition. In Proceedings of the 2010 International Conference on Digital Manufacturing & Automation, Changcha, China, 18–20 December 2010; Volume 1, pp. 223–226. [Google Scholar] [CrossRef]
- Xu, L.; Dong, P.; Liu, M. A comparative analysis of the interaction between different FACTS and HVDC. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Jun, L.; Guangfu, T.; Xingyuan, L. Interaction Analysis and Coordination Control between SSSC and SVC. In Proceedings of the 2006 International Conference on Power System Technology, Chongqing, China, 22–26 October 2006; pp. 1–9. [Google Scholar] [CrossRef]
- Gibbard, M.J.; Pourbeik, P.; Vowless, D.J. Small Signal Stability, Control and Dynamic Performance of Power System; University of Adelaide Press: Adelaide, Australia, 2015. [Google Scholar]
- Lin, C.; Vittal, V.; Kliemann, W.; Fouad, A. Investigation of Modal Interaction and Its Effects on Control Performance in Stressed Power System Using Normal Form of Vector Fields. IEEE Trans. Power Syst. 1996, 11, 781–787. Available online: https://223.126.93.225/Investigation-of-modal-interaction-and-its-eff.pdf (accessed on 20 November 2022).
- Nomikos, B.M.; Vournas, C.D. Modal Interaction and PSS Design. In Proceedings of the IEEE Power Tech Conference, Porto, Portugal, 10–13 September 2001; Available online: https://0685134249/Modal-Interaction-and-PSS-design.pdf (accessed on 10 October 2022).
- Dobson, I.; Barocio, E. Perturbations of Weakly Resonant Power System Electromechanical Modes. IEEE Trans. Power Syst. 2005, 20, 330–337. Available online: https://0556700097/Perturbations-of-Weakly-Resonant-Power-System.pdf (accessed on 20 November 2022). [CrossRef]
- Krismanto, A.U.; Nadarajah, M.; Krause, O. Influence of renewable energy based microgrid on low frequency oscillation of power systems. In Proceedings of the Asia Pacific Power Energy Engineering Conference, Brisbane, QLD, Australia, 15–18 November 2015; IEEE Press: New York, NY, USA, 2015. Available online: https://0183212399/Influence-of-Renewable-Energy-based-Microgrid.pdf (accessed on 10 October 2022).
- Jalali, S.G.; Lasseter, R.H. Harmonic interaction of power systems with static switching circuits. In Proceedings of the Power Electronics Specialists Conference, 1991. PESC ’91 Record., 22nd Annual IEEE, Cambridge, MA, USA, 24–27 June 1991; pp. 330–337. [Google Scholar] [CrossRef]
- Reeve, J.; Rao, T.S. Dynamic Analysis of Harmonic Interaction between AC AND DC Power Systems. IEEE Trans. Power Appar. Syst. 1974, PAS-93, 640–646. [Google Scholar] [CrossRef]
- Masoum, M.A.S.; Fuchs, E.F. Chapter 5—Interaction of Harmonics with Capacitors. In Power Quality in Power Systems and Electrical Machines, 2nd ed.; Academic Press: Boston, MA, USA, 2015; pp. 429–488. [Google Scholar]
- San, G.; Zhang, W.; Guo, X.; Hua, C.; Xin, H.; Blaabjerg, F. Large-disturbance stability for power-converter-dominated microgrid: A review. Renew. Sustain. Energy Rev. 2020, 127, 109859. [Google Scholar] [CrossRef]
- Sharma, D.; Mishra, S. Disturbance-Observer-Based Frequency Regulation Scheme for Low-Inertia Microgrid Systems. IEEE Syst. J. 2020, 14, 782–792. [Google Scholar] [CrossRef]
- Yazdi, F.; Hosseinian, S.H. Variable cost model predictive control strategies for providing high-quality power to AC microgrids. IET Gener. Transm. Distrib. 2019, 13, 3623–3633. [Google Scholar] [CrossRef]
- Luo, A.; Xu, Q.; Ma, F.; Chen, Y. Overview of power quality analysis and control technology for the smart grid. J. Mod. Power Syst. Clean Energy 2016, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Saim, A.; Houari, A.; Ahmed, M.; Machmoum, M.; Guerrero, J. Active resonance damping and harmonics compensation in distributed generation based islanded microgrids. Electr. Power Syst. Res. 2020, 191, 106900. [Google Scholar] [CrossRef]
- Arghandeh, R.; Onen, A.; Jung, J.; Broadwater, R.P. Harmonic interactions of multiple distributed energy resources in power distribution networks. Electr. Power Syst. Res. 2013, 105, 124–133. [Google Scholar] [CrossRef]
- Hirase, Y.; Sugimoto, K.; Sakimoto, K.; Ise, T. Analysis of Resonance in Microgrids and Effects of System Frequency Stabilization Using a Virtual Synchronous Generator. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1287–1298. [Google Scholar] [CrossRef]
- He, J.; Li, Y.W.; Wang, R.; Zhang, C. Analysis and Mitigation of Resonance Propagation in Grid-Connected and Islanding Microgrids. IEEE Trans. Energy Convers. 2015, 30, 70–81. [Google Scholar] [CrossRef]
- Akhavan, A.; Mohammadi, H.R.; Vasquez, J.C.; Guerrero, J.M. Coupling effect analysis and control for grid-connected multi-microgrid clusters. IET Power Electron. 2020, 13, 1059–1070. [Google Scholar] [CrossRef]
- Enslin, J.; Hulshorst, W.; Atmadji, A.; Heskes, P.; Kotsopoulos, A.; Cobben, J.; Van Der Sluijs, P. Harmonic interaction between large numbers of photovoltaic inverters and the distribution network. In Proceedings of the 2003 IEEE Bologna Power Tech Conference Proceedings, Bologna, Italy, 23–26 June 2003; Volume 3, p. 6. [Google Scholar] [CrossRef]
- Ma, J.; Guan, W.; Xu, M.; Mu, Y. Research on Resonance Problem of Multi-power Converters in DC Microgrid. In Proceedings of the 2022 Power System and Green Energy Conference (PSGEC), Shanghai, China, 25–27 August 2022; pp. 13–17. [Google Scholar] [CrossRef]
- He, J.; Li, Y.W.; Bosnjak, D.; Harris, B. Investigation and Active Damping of Multiple Resonances in a Parallel-Inverter-Based Microgrid. IEEE Trans. Power Electron. 2013, 28, 234–246. [Google Scholar] [CrossRef]
- Rashidirad, N.; Hamzeh, M.; Sheshyekani, K.; Afjei, E. High-Frequency Oscillations and Their Leading Causes in DC Microgrids. IEEE Trans. Energy Convers. 2017, 32, 1479–1491. [Google Scholar] [CrossRef]
Microgrid (MG) | Functions |
---|---|
Commercial/industrial MG |
|
Community MG |
|
Institutional MG |
|
Military MG |
|
Remote MG |
|
Ref. | Modelling | Control Strategies | Methods |
---|---|---|---|
[22] | Converter is modelled as a fixed switching device | Predicted current control with fixed switching frequency (PCFF) | Experimental module of three-phase converter |
[23] | The converter model consists of steady-state DC model and low- and high-frequency AC model | Phase and amplitude control (PAC) with phase shift modulation index to control duty cycle | Experimental module of three-phase converter |
[12,24] | Dynamic models of voltage source single-phase and three-phase DC/AC using detailed modelling of time-averaged switching components | Inner current and outer voltage control loop | Experimental module of single-phase and three-phase converter |
[13,14,15,16,25] | Current source three-phase converter is modelled with modulation indices as control variables | Space vector (SV)-PWM control algorithm |
|
[17,26,27] | DC/DC converter is modelled using averaging technique | Variable duty cycle |
|
Ref. | Small-Signal Model | Critical Modes and Stability Issues | Oscillatory Frequency (Hz) | Methods |
---|---|---|---|---|
[11] |
|
| 30–95 | Matlab Programming and Simulink |
[28,39,51] |
|
| 2–10 | Matlab Programming and Simulink |
[32] |
|
| 8–80 | Matlab Programming and Simulink |
[33,34] | MG is modelled using impedance-based approach considering exact averaged model of DC-DC converter | Low-frequency oscillation modes, which are mainly determined by the droop controllers of DG unit | 20–40 |
|
[37] | Dynamic model of synchronous machine, converter power circuit, and control |
|
| |
[38,41,42,45] | Dynamic model of voltage source converter involving power droop controllers without considering dynamic of switching actions |
| 2–12 |
|
[41,42] | Simplified converter model as ideal voltage source with controllable amplitude and frequency | 2–12 |
| |
[43] | Linear time-invariant state-space model of MG involving control strategy, control parameters, and the LTI state space |
| 2–12 | PSCAD/EMTDC |
[44] |
| This mode is also influenced by the dynamics of the PLL that help dampen the oscillation generated by the phase angle. | 8–50.26 |
|
[10] |
|
| 2.5–20 |
|
[47,48] |
|
| 2.5–20 |
|
[49,52] |
| Low-frequency modes are dictated mainly by the power-sharing controllers and the power filters | 2–10 |
|
[59,60] |
|
| 2–10 |
|
Ref. | Interaction and Resonance Issues | Methods |
---|---|---|
[6] | Interaction between two different electromechanical modes | Matlab Programming and DigSilent Power Factory |
[28,51] | Low-frequency interaction between critical modes in the DG | Matlab Programming and Simulink |
[93,94] | Harmonics resonance due to the unbalanced and nonlinear load | Matlab Programming and Simulink |
[95,96,101] | Harmonics interaction |
|
[97,103] | Harmonics interaction due to the resonance on the LCL filter |
|
[98,99] | Harmonics resonance due to the different converter-based DG. |
|
[100] | Harmonic interaction between photovoltaic converter | Simulation software |
[102] | Resonance damping |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krismanto, A.U.; Mithulananthan, N.; Shah, R.; Setiadi, H.; Islam, M.R. Small-Signal Stability and Resonance Perspectives in Microgrid: A Review. Energies 2023, 16, 1017. https://doi.org/10.3390/en16031017
Krismanto AU, Mithulananthan N, Shah R, Setiadi H, Islam MR. Small-Signal Stability and Resonance Perspectives in Microgrid: A Review. Energies. 2023; 16(3):1017. https://doi.org/10.3390/en16031017
Chicago/Turabian StyleKrismanto, Awan Uji, Nadarajah Mithulananthan, Rakibuzzaman Shah, Herlambang Setiadi, and Md. Rabiul Islam. 2023. "Small-Signal Stability and Resonance Perspectives in Microgrid: A Review" Energies 16, no. 3: 1017. https://doi.org/10.3390/en16031017
APA StyleKrismanto, A. U., Mithulananthan, N., Shah, R., Setiadi, H., & Islam, M. R. (2023). Small-Signal Stability and Resonance Perspectives in Microgrid: A Review. Energies, 16(3), 1017. https://doi.org/10.3390/en16031017