Influence of Supercritical CO2 Fluid on CH4 and CO2 Diffusion in Vitrinite-Rich Coals and Inertinite-Rich Coals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Coal Samples
2.2. Geochemical Interaction of SCCO2 Fluid with Coal Samples
2.3. Pore Volume and Specific Surface Area Analysis
2.4. X-ray Photoelectron Spectroscopy Measurement
2.5. Diffusion–Adsorption Measurement
2.6. Gas Diffusivity Modelling
3. Results and Discussions
3.1. Gas Diffusivity and Bidisperse Modelling
3.2. Influencing Mechanism of SFE on Gas Diffusion
3.3. Implications of Maceral Composition for CO2 Sequestration
4. Conclusions
- (1)
- The bidisperse-pore diffusion model can well analyze CH4 and CO2 diffusion behaviors in all samples. In comparison with the original inertinite-rich coal samples, SFE increases the pore diffusivity of CH4 at both macro- and microscale and enhances the macropore diffusivity of CO2, but weakens the micropore diffusion rate of CO2. For the vitrinite-rich coal samples after SCCO2 interaction, an increase in macropore diffusivity and a decrease in micropore diffusivity of CH4 are recorded, while the opposite trend is noticed for macro- and micropore diffusion rate of CO2. The different SCCO2-induced changes in CH4 and CO2 diffusion in the vitrinite- and inertinite-rich coals illustrate the importance of maceral composition in SCCO2-coal interaction.
- (2)
- Pore parameter analysis shows that SFE increases macro/mesopore volume of all samples and enlarges micropore SSA of vitrinite-rich coals but degrades that of inertinite-rich coals. The XPS results show that SCCO2 interaction causes the increase of oxygen-containing species of vitrinite-rich coals, while it results in a decrease of oxygen-containing species of the inertinite-rich coals. The comprehensive result of pore parameters and functional group distribution in different maceral compositions accounting for the roles of SFE on CH4 and CO2 diffusion. As a result, different adverse effects may occur after the interaction of SCCO2 with vitrinite- and inertinite-rich coals. Therefore, the impact of SFE on CH4 and CO2 diffusion in coals with different maceral compositions should be fully evaluated in practical CO2-ECBM projects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blunden, J.; Arndt, D.S. State of the Climate in 2016. Bull. Am. Meteorol. Soc. 2017, 98, S1–S280. [Google Scholar] [CrossRef]
- Chabangu, N.; Beck, B.; Hicks, N.; Botha, G.; Viljoen, J.; Davids, S.; Cloete, M. The investigation of CO2 storage potential in the Zululand Basin in South Africa. Energy Procedia 2014, 63, 2789–2799. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Su, X.B.; Xia, D.P.; Hou, S.H.; Wang, Q.; Zhou, Y.X. Enhanced coalbed methane recovery by the modification of coal reservoir under the supercritical CO2 extraction and anaerobic digestion. Energy 2022, 259, 124914. [Google Scholar] [CrossRef]
- Li, Y.; Pan, S.Q.; Ning, S.Z.; Shao, L.Y.; Jing, Z.H.; Wang, Z.S. Coal measure metallogeny: Metallogenic system and implication for resource and environment. Sci. China Earth Sci. 2022, 65, 1211–1228. [Google Scholar] [CrossRef]
- White, C.M.; Smith, D.H.; Jones, K.L.; Goodman, L.A.; Jikich, S.A.; LaCount, R.B.; DuBose, S.B.; Ozdemir, E.; Morsi, B.I.; Schroeder, K.T. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery: A review. Energy Fuels 2005, 19, 659–724. [Google Scholar] [CrossRef]
- Orr, F.M., Jr. Onshore Geologic Storage of CO2. Science 2009, 325, 1656–1658. [Google Scholar] [CrossRef]
- Holliday, D.W.; Williams, G.M.; Holloway, S.; Savage, D.; Bannon, M.P. A Preliminary Feasibility Study for the Underground Disposal of Carbon Dioxide in the UK; British Geological Survey: Nottingham, UK, 1991; p. 24. [Google Scholar]
- Heidaryan, E.; Hatami, T.; Rahimi, M.; Moghadasi, J. Viscosity of pure carbon dioxide at supercritical region: Measurement and correlation approach. J. Supercrit. Fluids 2011, 56, 144–151. [Google Scholar] [CrossRef]
- Jarrahian, A.; Heidaryan, E. A novel correlation approach to estimate thermal conductivity of pure carbon dioxide in the supercritical region. J. Supercrit. Fluids 2012, 64, 39–45. [Google Scholar] [CrossRef]
- Heidaryan, E.; Jarrahian, A. Modified Redlich-Kwong equation of state for supercritical carbon dioxide. J. Supercrit. Fluids 2013, 81, 92–98. [Google Scholar] [CrossRef]
- Kolak, J.J.; Burruss, R.C. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system. Org. Geochem. 2014, 73, 56–69. [Google Scholar] [CrossRef]
- Ren, J.G.; Niu, Q.H.; Wang, Z.Z.; Wang, W.; Yuan, W.; Weng, H.B.; Sun, H.W.; Li, Y.C.; Du, Z.G. CO2 adsorption/desorption, induced deformation behavior, and permeability characteristics of different rank coals: Application for CO2-Enhanced coalbed methane recovery. Energy Fuels 2022, 36, 5709–5722. [Google Scholar] [CrossRef]
- Liu, X.Q.; Li, M.J.; Zhang, C.H.; Fang, R.H.; Zhong, N.N.; Xue, Y.; Zhou, Y.; Jiang, W.D.; Chen, X.Y. Mechanistic insight into the optimal recovery efficiency of CBM in sub-bituminous coal: Through molecular simulation. Fuel 2020, 266, 117137. [Google Scholar] [CrossRef]
- Sampath, K.H.S.M.; Sin, I.; Perera, M.S.A.; Matthai, S.K.; Ranjith, P.G.; Li, D.Y. Effect of supercritical-CO2 interaction time on the alterations in coal pore structure. J. Nat. Gas Sci. Eng. 2020, 76, 103214. [Google Scholar] [CrossRef]
- Chen, K.; Liu, X.F.; Wang, L.K.; Song, D.Z.; Nie, B.S.; Yang, T. Influence of sequestered supercritical CO2 treatment on the pore size distribution of coal across the rank range. Fuel 2021, 306, 121708. [Google Scholar] [CrossRef]
- Gao, S.S.; Jia, L.L.; Zhou, Q.J.; Cheng, H.F.; Wang, Y. Microscopic pore structure changes in coal induced by a CO2-H2O reaction system. J. Pet. Sci. Eng. 2022, 208, 109361. [Google Scholar] [CrossRef]
- Zhang, G.L.; Ranjith, P.G.; Li, Z.S.; Vongsvivut, J.; Gao, M.Z. Application of synchrotron ATR-FTIR microspectroscopy for chemical characterization of bituminous coals treated with supercritical CO2. Fuel 2021, 296, 120639. [Google Scholar] [CrossRef]
- Zhang, G.L.; Ranjith, P.G.; Lyu, Q. Direct evidence of CO2 softening effects on coal using nanoindentation. Energy 2022, 254, 124221. [Google Scholar] [CrossRef]
- Mirzaeian, M.; Hall, P.J.; Jirandehi, H.F. Study of structural change in Wyodak coal in high-pressure CO2 by small angle neutron scattering. J. Mater. Sci. 2010, 45, 5271–5281. [Google Scholar] [CrossRef]
- Liu, S.Q.; Sang, S.X.; Ma, J.S.; Wang, T.; Du, Y.; Fang, H.H. Effects of supercritical CO2 on micropores in bituminous and anthracite coal. Fuel 2019, 242, 96–108. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Z.C.; Xu, Y.; Fu, X.; Li, W.; Zhang, D.F. Impacts of long-term exposure to supercritical carbon dioxide on physicochemical properties and adsorption and desorption capabilities of moisture-equilibrated coals. Enegry Fuels 2021, 35, 12270–12287. [Google Scholar] [CrossRef]
- Zhang, D.F.; Li, C.; Zhangm, J.; Lun, Z.M.; Jia, S.Q.; Luo, C.J.; Jiang, W.P. Influences of dynamic entrainer-blended supercritical CO2 fluid exposure on high-pressure methane adsorption on coals. J. Nat. Gas Sci. Eng. 2019, 66, 180–191. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A.; Walker, R.; Morse, D. Coal lithotypes before and after saturation with CO2: Insights from micro- and mesoporosity, fluidity, and functional group distribution. Int. J. Coal Geol. 2010, 83, 467–474. [Google Scholar] [CrossRef]
- Sha, F.; Deng, B.Z.; Yin, G.Z.; Zhang, D.M.; Li, M.H.; Liu, P.; Liu, C. Kinetic behavior of heterogeneous sorption deformation on coal: Effect of maceral/micro-lithotype distribution. Int. J. Coal Geol. 2019, 216, 103324. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A.; Rupp, J. Meso- and micropore characteristics of coal lithotypes: Implications for CO2 adsorption. Energy Fuels 2008, 22, 4049–4061. [Google Scholar] [CrossRef]
- Cao, X.Y.; Mastalerz, M.; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J.D. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy. Int. J. Coal Geol. 2011, 88, 67–74. [Google Scholar] [CrossRef]
- Karacan, C.O.; Mitchell, G.D. Behavior and effect of different coal microlithotypes during gas transport for carbon dioxide sequestration into coal seams. Int. J. Coal Geol. 2003, 53, 201–217. [Google Scholar] [CrossRef]
- Maphala, T.; Wagner, N.J. Effects of CO2 storage in coal on coal properties. Energy Procedia 2012, 23, 426–438. [Google Scholar] [CrossRef]
- Mavhengere, P.; Maphala, T.; Wagner, N. Physical and structural effects of carbon dioxide storage on vitrinite-rich coal particles under subcritical and supercritical conditions. Int. J. Coal Geol. 2015, 150–151, 1–6. [Google Scholar] [CrossRef]
- Naveen, P.; Asif, M.; Ojha, K.; Panigrahi, D.C.; Vuthaluru, H.B. Sorption kinetics of CH4 and CO2 diffusion in coal theoretical and experimental study. Energy Fuels 2017, 31, 6825–6837. [Google Scholar] [CrossRef]
- Song, Y.; Quan, F.K.; Yuan, J.H. Diffusion of guest molecules in coal: Insights from simulation. Fuel 2022, 323, 124295. [Google Scholar]
- Pan, J.Z.; Connell, L.D.; Camilleri, M.; Connelly, L. Effects of matrix moisture on gas diffusion and flow in coal. Fuel 2003, 82, 1219–1229. [Google Scholar] [CrossRef]
- Bai, J.J.; Kang, Y.L.; Chen, M.J.; Liang, L.; You, L.J.; Li, X.C. Investigation of multi-gas transport behavior in shales via a pressure pulse method. Chem. Eng. J. 2019, 360, 1667–1677. [Google Scholar] [CrossRef]
- Liu, L.F.; Wang, Y.H.; Aryana, S.A. Insights into scale translation of methane transport in nanopores. J. Nat. Gas Sci. Eng. 2021, 96, 104220. [Google Scholar] [CrossRef]
- Liu, L.F.; Nieto-Draghi, C.; Lachet, V.; Heidaryan, E.; Aryana, S. A. Bridging confined phase behavior of CH4-CO2 binary systems across scales. J. Supercrit. Fluids 2022, 189, 105713. [Google Scholar] [CrossRef]
- Keshavarz, A.; Sakurovs, R.; Grigore, M.; Sayyafzadeh, M. Effect of maceral composition and coal rank on gas diffusion in Australian coals. Int. J. Coal Geol. 2017, 173, 65–75. [Google Scholar] [CrossRef]
- Guang, W.F.; Liu, X.Q.; Zhang, Z.Y.; Luo, P. Effects of sub- and supercritical CO2 on coal diffusivity and surface thermodynamics. Energy Fuels 2022, 36, 3737–3748. [Google Scholar] [CrossRef]
- Goodman, A.L.; Favors, R.N.; Larsen, J.W. Argonne coal structure rearrangement caused by sorption of CO2. Energy Fuels 2006, 20, 2537–2543. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Li, W.; Zhang, D.F.; Wang, H.H.; Jiang, W.P.; Zhu, L.; Tao, J.; Huo, P.L.; Zhang, J. Influence of CO2 exposure on adsorption kinetics of methane and CO2 on coals. J. Nat. Gas Sci. Eng. 2016, 34, 811–822. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.F.; Song, X.X. Multifractal analysis of Hg pore size distributions of tectonically deformed coals. Int. J. Coal Geol. 2015, 144–145, 138–152. [Google Scholar] [CrossRef]
- Unsworth, J.F.; Fowler, C.S.; Jones, L.F. Moisture in coal 2. Maceral effects on pore structure. Fuel 1989, 68, 18–26. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.F.; Song, X.X. Influence of fluid exposure on surface chemistry and pore-fracture morphology of various rank coals: Implications for methane recovery and CO2 storage. Energy Fuels 2017, 31, 12552–12569. [Google Scholar] [CrossRef]
- Busch, A.; Gensterblum, Y.; Krooss, B.M.; Littke, R. Methane and carbon dioxide adsorption-diffusion experiments on coal: Upscaling and modeling. Int. J. Coal Geol. 2004, 60, 151–168. [Google Scholar] [CrossRef]
- Wang, H.B.; Li, T.; Zou, Q.L.; Cheng, Z.H.; Yang, Z.K. Influences of path control effects on characteristics of gas migration in a coal reservoir. Fuel 2020, 267, 117212. [Google Scholar] [CrossRef]
- Goodman, A.L.; Busch, A.; Duffy, G.J.; Fitzgerald, J.E.; Gasem, K.A.M.; Gensterblum, Y.; Krooss, B.M.; Levy, J.; Ozdemir, E.; Pan, Z.; et al. An inter-laboratory comparison of CO2 isotherms measured on Argonne premium coal samples. Energy Fuels 2004, 18, 1175–1182. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Weitzsacker, C.L.; Gardella, J.A., Jr. Quantitative electron spectroscopic analysis of the surface chemistry of bituminous coals. Energy Fuels 1996, 10, 141–148. [Google Scholar] [CrossRef]
- Wanger, W.; Span, R. Special equations of state for methane, argon, and nitrogen for the temperature range from 270 to 350 K at pressures up to 30 MPa. Int. J. Thermophys. 1993, 14, 699–725. [Google Scholar]
- Span, R.; Wanger, W. A New equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef]
- Zhang, D.F.; Cui, Y.J.; Liu, B.; Li, S.G.; Song, W.L.; Lin, W.G. Supercritical pure methane and CO2 adsorption on various rank coals of China: Experiments and modeling. Energy Fuels 2011, 25, 1891–1899. [Google Scholar] [CrossRef]
- Harpalani, S.; Prusty, B.K.; Dutta, P. Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration. Energy Fuels 2006, 20, 1591–1599. [Google Scholar] [CrossRef]
- Siemons, N.; Busch, A. Measurement and interpretation of supercritical CO2 sorption on various coals. Int. J. Coal Geol. 2007, 69, 229–242. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Bustin, R.M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 2. Adsorption rate modeling. Fuel 1999, 78, 1345–1362. [Google Scholar] [CrossRef]
- Cui, X.J.; Bustin, R.M.; Dipple, G. Selective transport of CO2, CH4, and N2 in coals: Insights from modeling of experimental gas adsorption data. Fuel 2004, 83, 293–303. [Google Scholar] [CrossRef]
- Sakurovs, R.; Day, S.; Weir, S. Relationships between the critical properties of gases and their high pressure sorption behavior on coals. Energy Fuels 2010, 24, 1781–1787. [Google Scholar] [CrossRef]
- Wei, X.R.; Wand, G.X.; Massarotto, P.; Golding, S.D.; Rudolph, V. Numerical simulation of multicomponent gas diffusion and flow in coals for CO2 enhanced coalbed methane recovery. Chem. Eng. Sci. 2007, 62, 4193–4203. [Google Scholar] [CrossRef]
- Gensterblum, Y.; Busch, A.; Krooss, B.M. Molecular concept and experimental evidence of competitive adsorption of H2O, CO2 and CH4 on organic material. Fuel 2014, 115, 581–588. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wilcox, J. Molecular simulation studies of CO2 adsorption by carbon model compounds for carbon capture and sequestration applications. Environ. Sci. Technol. 2013, 47, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.J.; Kang, Y.L.; Chen, M.J.; Chen, Z.X.; You, L.J.; Li, X.C.; Chen, G. Impact of surface chemistry and pore structure on water vapor adsorption behavior in gas shale. Chem. Eng. J. 2020, 402, 126238. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.H.; Pan, Z.J.; Tong, W.S. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images. Fuel 2020, 260, 116352. [Google Scholar] [CrossRef]
- Liu, H.H.; Mou, J.H.; Cheng, Y.P. Impact of pore structure on gas adsorption and diffusion dynamics for long-flame coal. J. Nat. Gas Sci. Eng. 2015, 22, 203–213. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wilcox, J. Molecular simulation of CO2 adsorption in micro- and mesoporous carbons with surface heterogeneity. Int. J. Coal Geol. 2012, 104, 83–95. [Google Scholar] [CrossRef]
- Liu, C.J.; Sang, S.X.; Zhang, K.; Song, F.; Wang, H.W.; Fan, X.F. Effects of temperature and pressure on pore morphology of different rank coals: Implications for CO2 geological storage. J. CO2 Util. 2019, 34, 343–352. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Afeworki, M.; Gorbaty, M.L. Characterization of organically bound oxygen forms in lignites, peats, and pyrolyzed peats by X-ray photoelectron spectroscopy (XPS) and solid-state 13C NMR methods. Energy Fuels 2002, 16, 1450–1462. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Kwiatek, P.J. Quantification of organic oxygen species on the surface of fresh and reacted argonne premium coal. Energy Fuels 1995, 9, 841–848. [Google Scholar] [CrossRef]
- Huang, X.; Chu, W.; Sun, W.J.; Jiang, C.F.; Feng, Y.Y.; Xue, Y. Investigation of oxygen-containing group promotion effect on CO2-coal interaction by density functional theory. Appl. Surf. Sci. 2014, 299, 162–169. [Google Scholar] [CrossRef]
- Mirzaeian, M.; Hall, P.J. The interactions of coal with CO2 and its effects on coal structure. Energy Fuels 2006, 20, 2022–2027. [Google Scholar] [CrossRef]
- Hao, S.X.; Wen, J.; Yu, X.P.; Chu, W. Effect of the surface oxygen groups on methane adsorption on coals. Appl. Surf. Sci. 2013, 264, 433–442. [Google Scholar] [CrossRef]
- Cuervo, M.R.; Asedegbega-Nieto, E.; Díaz, E.; Ordóñeza, S.; Vega, A.; Dongil, A.B.; Rodríguez-Ramos, I. Modification of the adsorption properties of high surface area graphites by oxygen functional groups. Carbon 2008, 46, 2096–2106. [Google Scholar] [CrossRef]
- Lu, X.Q.; Jin, D.L.; Wei, S.X.; Zhang, M.M.; Zhu, Q.; Shi, X.F.; Deng, Z.G.; Guo, W.Y.; Shen, W.Z. Competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons: Effects of edge-functionalization. Nanoscale 2015, 7, 1002–1012. [Google Scholar] [CrossRef]
- Prinz, D.; Pyckhout-Hintzen, W.; Littke, R. Development of the meso- and macroporous structure of coals with rank as analysed with small angle neutron scattering and adsorption experiments. Fuel 2004, 83, 547–556. [Google Scholar] [CrossRef]
- Bae, J.-S.; Bhatia, S.K.; Rudolph, V.; Massarotto, P. Pore accessibility of methane and carbon dioxide in coals. Energy Fuels 2009, 23, 3319–3327. [Google Scholar] [CrossRef]
- Zhou, F.B.; Liu, S.Q.; Pang, Y.Q.; Li, J.L.; Xin, H.H. Effects of coal functional groups on adsorption microheat of coal bed methane. Energy Fuels 2015, 29, 1550–1557. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.B.; Wang, J.; Pan, Z.J. Variation in permeability during CO2-CH4 displacement in coal seams: Part 1—Experimental insights. Fuel 2020, 263, 116666. [Google Scholar] [CrossRef]
Sample Number | Ro,max (%) | Maceral Composition (vol, %) | Proximate Analysis (wt, %) | ||||
---|---|---|---|---|---|---|---|
Vitrinite | Inertinite | Minerals | Moisture | Ash | Volatile | ||
XS9 | 1.777 | 83.7 | 15.7 | 0.6 | 0.70 | 12.82 | 14.59 |
XS1 | 1.720 | 80.9 | 18.2 | 0.9 | 0.66 | 13.97 | 14.73 |
SSP17 | 1.745 | 12.3 | 87.3 | 0.4 | 1.00 | 6.88 | 15.14 |
SSP16 | 1.797 | 19.5 | 79.5 | 1.0 | 0.89 | 11.19 | 16.18 |
Sample Number | State | Da/Ra2 (s−1) | Di/Ri2 (s−1) | β | R2 |
---|---|---|---|---|---|
XS9 | before | 4.039 × 10−3 | 2.124 × 10−4 | 0.636 | 0.992 |
after | 6.678 × 10−3 | 1.746 × 10−4 | 0.716 | 0.986 | |
XS1 | before | 4.595 × 10−3 | 1.600 × 10−4 | 0.676 | 0.989 |
after | 5.155 × 10−3 | 1.460 × 10−4 | 0.668 | 0.983 | |
SSP17 | before | 2.190 × 10−3 | 6.896 × 10−5 | 0.617 | 0.985 |
after | 2.546 × 10−3 | 7.024 × 10−5 | 0.635 | 0.995 | |
SSP16 | before | 3.468 × 10−3 | 5.653 × 10−5 | 0.583 | 0.984 |
after | 5.662 × 10−3 | 6.444 × 10−5 | 0.603 | 0.985 |
Sample Number | State | Da/Ra2 (s−1) | Di/Ri2 (s−1) | β | R2 |
---|---|---|---|---|---|
XS9 | before | 3.800 × 10−2 | 1.349 × 10−4 | 0.902 | 0.992 |
after | 2.700 × 10−2 | 1.751 × 10−4 | 0.857 | 0.989 | |
XS1 | before | 3.600 × 10−2 | 1.611 × 10−4 | 0.874 | 0.995 |
after | 1.700 × 10−2 | 1.890 × 10−4 | 0.826 | 0.991 | |
SSP17 | before | 2.400 × 10−2 | 2.994 × 10−4 | 0.822 | 0.989 |
after | 3.000 × 10−2 | 2.521 × 10−4 | 0.805 | 0.990 | |
SSP16 | before | 1.500 × 10−2 | 2.981 × 10−4 | 0.765 | 0.986 |
after | 2.100 × 10−2 | 2.826 × 10−4 | 0.790 | 0.989 |
Sample Number | State | Meso- and Macropore | Micropore | ||
---|---|---|---|---|---|
SSA (m2/g) | PV (10−3 cm3/g) | SSA (m2/g) | PV (cm3/g) | ||
XS9 | before | 1.372 | 7.011 | 133.99 | 0.0537 |
after | 1.391 | 7.297 | 135.95 | 0.0545 | |
XS1 | before | 1.317 | 6.711 | 130.23 | 0.0522 |
after | 1.615 | 7.606 | 130.79 | 0.0524 | |
SSP17 | before | 1.207 | 5.239 | 129.29 | 0.0518 |
after | 1.409 | 5.536 | 126.21 | 0.0506 | |
SSP16 | before | 1.157 | 6.372 | 111.58 | 0.0447 |
after | 1.384 | 7.075 | 105.61 | 0.0423 |
Sample | State | Surface Composition (%) | Functional Groups (%) | |||
---|---|---|---|---|---|---|
C | Organic O | C-C/C-H | C-O | C=O | ||
XS9 | before | 81.58 | 4.26 | 85.12 | 14.88 | 0.00 |
after | 81.33 | 4.33 | 84.16 | 15.84 | 0.00 | |
XS1 | before | 80.74 | 4.33 | 79.61 | 20.39 | 0.00 |
after | 80.37 | 4.58 | 78.95 | 21.05 | 0.00 | |
SSP17 | before | 84.79 | 5.28 | 86.88 | 13.12 | 0.00 |
after | 87.81 | 4.98 | 88.57 | 11.43 | 0.00 | |
SSP16 | before | 69.42 | 6.57 | 80.64 | 18.36 | 1.00 |
after | 72.58 | 6.04 | 83.15 | 16.14 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Lin, W.; Liu, H.; Song, X.; Wei, Z. Influence of Supercritical CO2 Fluid on CH4 and CO2 Diffusion in Vitrinite-Rich Coals and Inertinite-Rich Coals. Energies 2023, 16, 1432. https://doi.org/10.3390/en16031432
Li W, Lin W, Liu H, Song X, Wei Z. Influence of Supercritical CO2 Fluid on CH4 and CO2 Diffusion in Vitrinite-Rich Coals and Inertinite-Rich Coals. Energies. 2023; 16(3):1432. https://doi.org/10.3390/en16031432
Chicago/Turabian StyleLi, Wei, Weili Lin, Hongfu Liu, Xiaoxia Song, and Zhenji Wei. 2023. "Influence of Supercritical CO2 Fluid on CH4 and CO2 Diffusion in Vitrinite-Rich Coals and Inertinite-Rich Coals" Energies 16, no. 3: 1432. https://doi.org/10.3390/en16031432
APA StyleLi, W., Lin, W., Liu, H., Song, X., & Wei, Z. (2023). Influence of Supercritical CO2 Fluid on CH4 and CO2 Diffusion in Vitrinite-Rich Coals and Inertinite-Rich Coals. Energies, 16(3), 1432. https://doi.org/10.3390/en16031432