A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines
Abstract
:1. Introduction
Motivations and Structure of the Work
- The literature about gears and bearing condition monitoring is largely dominant;
- Performance monitoring of wind turbines is an overlooked topic that should be addressed more systematically because non-negligible portions of producible energy could be recovered;
- The above objective would require a deeper investigation of the health status of components (such as the hydraulic blade pitch) to which few studies have been devoted, but the attention on this topic has been recently growing;
- The use of SCADA data for wind turbine condition monitoring is somehow lacking specificity in the fault location and in the prognosis, but recent developments in the literature are promising;
- The analysis of vibrations collected at gears and bearings is complicated and demanding (e.g., the geometry of the gear should be known in detail), but it is much more powerful for condition monitoring;
- The co-integration of multiple time scales analysis is an interesting research direction, which could help leverage the pros and circumvent the cons of the various types of employed data.
2. Need for Wind Turbine Condition Monitoring
3. Data-Driven Approach Overview
3.1. Data Descriptions
- Volume: A typical wind farm can create between 60 to 100 SCADA signals, which, when sampled every second, would result in around 0.2 GB of raw data per turbine. Each wind turbine would have 20 to 30 sensors.
- Velocity is the frequency at which modern wireless and acoustic sensors create and send data.
- Variety: CM systems must include sensor data with pictures, video (perhaps shot by drones), free-text action reports, and other types of data.
- Reliability: Ideally, data should not contain missing values, impossible values, or inconsistent values; in this case, automatic or semi-automatic data cleaning (scrubbing) operations are usually required. This demand grows when there are more data sources, especially if they are heterogeneous.
3.2. Feature Operations (Covering Selection and Extraction)
4. Review of Methodologies Used for Wind Turbines O&M Tasks
4.1. Bearing Failure
4.2. Gearbox Failure
4.3. Generator Failure
4.4. Blade Pitch System Failure
4.5. Yaw Failure
4.6. Underperformance and Power Coefficient
4.7. Anomaly Detection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rystad Energy. Energy Voice. 2020. Available online: https://www.energyvoice.com/renewables-energy-transition/wind/uk-wind/274960/uk-renewable-energy-capacity-double-2026/ (accessed on 1 October 2022).
- Shafiee, M.; Sørensen, J.D. Maintenance Optimization and Inspection Planning of Wind Energy Assets: Models, Methods and Strategies. Reliab. Eng. Syst. Saf. 2017, 192, 105993. [Google Scholar] [CrossRef]
- Satymov, R.; Bogdanov, D.; Breyer, C. Global-local analysis of cost-optimal onshore wind turbine configurations considering wind classes and hub heights. Energy 2022, 256, 124629. [Google Scholar] [CrossRef]
- Pandit, R.; Infield, D.; Santos, M. Accounting for Environmental Conditions in Data-Driven Wind Turbine Power Models. IEEE Trans. Sustain. Energy 2023, 14, 168–177. [Google Scholar] [CrossRef]
- Tautz-Weinert, J.; Watson, S.J. Using SCADA data for wind turbine condition monitoring—A review. IET Renew. Power Gener. 2017, 11, 382–394. [Google Scholar] [CrossRef]
- Pandit, R.; Astolfi, D.; Hong, J.; Infield, D.; Santos, M. SCADA data for wind turbine data-driven condition/performance monitoring: A review on state-of-art, challenges and future trends. Wind. Eng. 2022, 0309524X221124031. [Google Scholar] [CrossRef]
- Koukoura, S.; Scheu, M.N.; Kolios, A. Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability. Reliab. Eng. Syst. Saf. 2021, 208, 107404. [Google Scholar] [CrossRef]
- Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Machine learning methods for wind turbine condition monitoring: A review. Renew. Energy 2019, 133, 620–635. [Google Scholar] [CrossRef]
- Turnbull, A.; Carroll, J.; Koukoura, S.; McDonald, A. Prediction of wind turbine generator bearing failure through analysis of high frequency vibration data and the application of support vector machine algorithms. In Proceedings of the 7th International Conference on Renewable Power Generation, DTU, Lyngby, Denmark, 26 August–27 September 2018. [Google Scholar]
- Fischer, K.; Coronado, D. Condition Monitoring of wind Turbines: State of the Art, User Experience and Recommendations; FraunhoferIWES: Bremerhaven, Germany, 2015. [Google Scholar]
- Sinha, Y.; Steel, J. A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis. Renew. Sustain. Energy Rev. 2015, 42, 735–742. [Google Scholar] [CrossRef]
- Reder, M.; Gonzalez, E.; Melero, J. Wind turbine failures—Tackling current problems in failure data analysis. The science of making torque from wind (TORQUE 2016). In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2016; Volume 753, p. 072027. [Google Scholar]
- Qiao, W.; Lu, D. A survey on wind turbine condition monitoring and fault diagnosis-part I: Components and subsystems. IEEE Trans. Industr. Electron. 2015, 62, 6536–6545. [Google Scholar]
- Artigao, E.; Martín-Martínez, S.; Honrubia-Escribano, A.; Gómez-Lázaro, E. Wind turbine reliability: A comprehensive review towards effective condition monitoring development. Appl. Energy 2018, 228, 1569–1583. [Google Scholar] [CrossRef]
- Salameh, J.; Cauet, S.; Etien, E.; Sakout, A.; Rambault, L. Gearbox condition monitoring in wind turbines: A review. Mech. Syst. Signal Process. 2018, 111, 251–264. [Google Scholar] [CrossRef]
- Kordestani, M.; Rezamand, M.; Carriveau, R.; Ting, D.S.K.; Saif, M. Failure Diagnosis of Wind Turbine Bearing Using Feature Extraction and a Neuro-Fuzzy Inference System (ANFIS). In Advances in Computational Intelligence IWANN 2019; Lecture Notes in Computer Science; Rojas, I., Joya, G., Catala, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 11506. [Google Scholar] [CrossRef]
- Aziz, U.; Charbonnier, S.; Bérenguer, C.; Lebranchu, A.; Prevost, F. SCADA data based realistic simulation framework to evaluate environmental impact on performance of wind turbine condition monitoring systems. In Proceedings of the 2019 4th Conference on Control and Fault Tolerant Systems (SysTol), Casablanca, Morocco, 18–20 September 2019; pp. 360–365. [Google Scholar] [CrossRef]
- Chen, X.; Xu, W.; Liu, Y.; Islam, M.R. Bearing Corrosion Failure Diagnosis of Doubly Fed Induction Generator in Wind Turbines Based on Stator Current Analysis. IEEE Trans. Ind. Electron. 2020, 67, 3419–3430. [Google Scholar] [CrossRef]
- Castellani, F.; Astolfi, D.; Natili, F. SCADA Data Analysis Methods for Diagnosis of Electrical Faults to Wind Turbine Generators. Appl. Sci. 2021, 11, 3307. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Deb, D.; Carroll, J.; Muresan, V.; Unguresan, M.-L. Wind Turbine Gearbox Condition Monitoring Based on Class of Support Vector Regression Models and Residual Analysis. Sensors 2020, 20, 6742. [Google Scholar] [CrossRef]
- Bearing Damage and Failure Analysis. Available online: https://www.skf.com/binaries/pub12/Images/0901d1968064c148-Bearing-failures---14219_2-EN_tcm_12-297619.pdf (accessed on 20 January 2023).
- Herp, J.; Ramezani, M.H.; Bach-Andersen, M.; Pedersen, N.L.; Nadimi, E.S. Bayesian state prediction of wind turbine bearing failure. Renew. Energy 2018, 116, 164–172. [Google Scholar] [CrossRef]
- Fu, J.; Chu, J.; Guo, P.; Chen, Z. Condition Monitoring of Wind Turbine Gearbox Bearing Based on Deep Learning Model. IEEE Access 2019, 7, 57078–57087. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, D.; Si, Y.; Tian, X.; Qian, P. A condition monitoring method of wind turbines based on Long Short-Term Memory neural network. In Proceedings of the 2019 25th International Conference on Automation and Computing (ICAC), Lancaster, UK, 5–7 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Encalada-Dávila, Á.; Puruncajas, B.; Tutivén, C.; Vidal, Y. Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA Data. Sensors 2021, 21, 2228. [Google Scholar] [CrossRef]
- Guo, Y.; Sheng, S.; Phillips, C.; Keller, J.; Veers, P.; Williams, L. A methodology for reliability assessment and prognosis of bearing axial cracking in wind turbine gearboxes. Renew. Sustain. Energy Rev. 2020, 127, 109888. [Google Scholar] [CrossRef]
- Corley, B.; Koukoura, S.; Carroll, J.; McDonald, A. Combination of Thermal Modelling and Machine Learning Approaches for Fault Detection in Wind Turbine Gearboxes. Energies 2021, 14, 1375. [Google Scholar] [CrossRef]
- Maatallah, H.; Fuente, M.J.; Ouni, K. Condition monitoring of wind turbine bearings progressive degradation using principal component analysis. In Proceedings of the 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 10–12 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Teng, W.; Zhang, X.; Liu, Y.; Kusiak, A.; Ma, Z. Prognosis of the Remaining Useful Life of Bearings in a Wind Turbine Gearbox. Energies 2017, 10, 32. [Google Scholar] [CrossRef]
- Shi, X.; Li, W.; Gao, Q.; Guo, H. Research on Fault Classification of Wind Turbine Based on IMF Kurtosis and PSO-SOM-LVQ. In Proceedings of the 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 December 2017; pp. 191–196. [Google Scholar] [CrossRef]
- Wang, J.; Liang, Y.; Zheng, Y.; Gao, R.X.; Zhang, F. An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples. Renew. Energy 2020, 145, 642–650. [Google Scholar] [CrossRef]
- Elasha, F.; Shanbr, S.; Li, X.; Mba, D. Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning. Sensors 2019, 19, 3092. [Google Scholar] [CrossRef] [PubMed]
- Nejad, A.R.; Odgaard, P.F.; Gao, Z.; Moan, T. A prognostic method for fault detection in wind turbine drivetrains. Eng. Fail. Anal. 2014, 42, 324–336. [Google Scholar] [CrossRef]
- Natili, F.; Daga, A.P.; Castellani, F.; Garibaldi, L. Multi-Scale Wind Turbine Bearings Supervision Techniques Using Industrial SCADA and Vibration Data. Appl. Sci. 2021, 11, 6785. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, J.; Liu, D.; Tang, Y.; Zhang, F. Condition Monitoring of Wind Turbine Main Bearing Based on Multivariate Time Series Forecasting. Energies 2022, 15, 1951. [Google Scholar] [CrossRef]
- Mollasalehi, E.; Wood, D.; Sun, Q. Indicative Fault Diagnosis of Wind Turbine Generator Bearings Using Tower Sound and Vibration. Energies 2017, 10, 1853. [Google Scholar] [CrossRef]
- Igba, J.; Alemzadeh, K.; Durugbo, C.; Eiriksson, E.T. Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes. Renew. Energy 2016, 91, 90–106. [Google Scholar] [CrossRef]
- Qian, P.; Ma, X.; Wang, Y. Condition monitoring of wind turbines based on extreme learning machine. In Proceedings of the 21st International Conference on Automation and Computing, Glasgow, UK, 11–12 September 2015; pp. 1–6. [Google Scholar]
- Pan, Y.; Hong, R.; Chen, J.; Wu, W. A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox. Renew. Energy 2020, 152, 138–154. [Google Scholar] [CrossRef]
- Pan, Y.; Hong, R.; Chen, J.; Singh, J.; Jia, X. Performance degradation assessment of a wind turbine gearbox based on multi-sensor data fusion. Mech. Mach. Theory 2019, 137, 509–526. [Google Scholar] [CrossRef]
- Elforjani, M. Diagnosis and prognosis of real world wind turbine gears. Renew. Energy 2020, 147, 1676–1693. [Google Scholar] [CrossRef]
- Elforjani, M.; Shanbr, S.; Bechhoefer, E. Detection of faulty high speed wind turbine bearing using signal intensity estimator technique. Wind Energy 2018, 21, 53–69. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, L.; Feng, Y.; Xu, Y. An Approach of Quantifying Gear Fatigue Life for Wind Turbine Gearboxes Using Supervisory Control and Data Acquisition Data. Energies 2017, 10, 1084. [Google Scholar] [CrossRef]
- Chen, N.; Yu, R.; Chen, Y.; Xie, H. Hierarchical method for wind turbine prognosis using SCADA data. IET Renew. Power Gener. 2017, 11, 403–410. [Google Scholar] [CrossRef]
- Marti-Puig, P.; Blanco, M.A.; Serra-Serra, M.; Solé-Casals, J. Wind Turbine Prognosis Models Based on SCADA Data and Extreme Learning Machines. Appl. Sci. 2021, 11, 590. [Google Scholar] [CrossRef]
- Verma, A.; Zappalá, D.; Sheng, S.; Watson, S.J. Wind turbine gearbox fault prognosis using high-frequency SCADA data. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2022; Volume 2265, p. 032067. [Google Scholar]
- Cheng, F.; Qu, L.; Qiao, W. Fault prognosis and remaining useful life prediction of wind turbine gearboxes using current signal analysis. IEEE Trans. Sustain. Energy 2017, 9, 157–167. [Google Scholar]
- Carroll, J.; McDonald, A.; McMillan, D. Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines. Wind Energy 2016, 19, 1107–1119. [Google Scholar]
- Castellani, F.; Pandit, R.; Natili, F.; Belcastro, F.; Astolfi, D. Advanced Methods for Wind Turbine Performance Analysis Based on SCADA Data and CFD Simulations. Energies 2023, 16, 1081. [Google Scholar] [CrossRef]
- Artigao, E.; Honrubia-Escribano, A.; Gómez-Lázaro, E. In-service wind turbine DFIG diagnosis using current signature analysis. IEEE Trans. Ind. Electron. 2019, 67, 2262–2271. [Google Scholar] [CrossRef]
- Artigao, E.; Sapena-Bano, A.; Honrubia-Escribano, A.; Martinez-Roman, J.; Puche-Panadero, R.; Gómez-Lázaro, E. Long-term operational data analysis of an in-service wind turbine DFIG. IEEE Access 2019, 7, 17896–17906. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, D.; Dong, A.; Lin, J.; Kang, D.; Shang, L. Fault prognosis of wind turbine generator using SCADA data. In Proceedings of the 2016 North American Power Symposium (NAPS), Denver, CO, USA, 18–20 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, D.; Dong, A.; Kang, D.; Lv, Q.; Shang, L. Fault prediction and diagnosis of wind turbine generators using SCADA data. Energies 2017, 10, 1210. [Google Scholar] [CrossRef]
- Jin, X.; Xu, Z.; Qiao, W. Condition monitoring of wind turbine generators using SCADA data analysis. IEEE Trans. Sustain. Energy 2020, 12, 202–210. [Google Scholar] [CrossRef]
- Chen, B.; Matthews, P.C.; Tavner, P.J. Automated on-line fault prognosis for wind turbine pitch systems using supervisory control and data acquisition. IET Renew. Power Gener. 2015, 9, 503–513. [Google Scholar] [CrossRef]
- Astolfi, D.; Castellani, F.; Lombardi, A.; Terzi, L. Data-driven wind turbine aging models. Electr. Power Syst. Res. 2021, 201, 107495. [Google Scholar] [CrossRef]
- Astolfi, D.; Castellani, F.; Terzi, L. An operation data-based method for the diagnosis of zero-point shift of wind turbines yaw angle. J. Sol. Energy Eng. 2020, 142, 024501. [Google Scholar] [CrossRef]
- Astolfi, D.; Pandit, R.; Celesti, L.; Vedovelli, M.; Lombardi, A.; Terzi, L. Data-Driven Assessment of Wind Turbine Performance Decline with Age and Interpretation Based on Comparative Test Case Analysis. Sensors 2022, 22, 3180. [Google Scholar] [CrossRef]
- Wei, L.; Qian, Z.; Zareipour, H.; Zhang, F. Comprehensive aging assessment of pitch systems combining SCADA and failure data. IET Renew. Power Gener. 2022, 16, 198–210. [Google Scholar] [CrossRef]
- Wei, L.; Qian, Z.; Zareipour, H. Wind turbine pitch system condition monitoring and fault detection based on optimized relevance vector machine regression. IEEE Trans. Sustain. Energy 2019, 11, 2326–2336. [Google Scholar] [CrossRef]
- Niu, M.Z.; Chen, J.; Feng, Y.; Wang, H. Fault diagnosis of wind power yawing slewing bearing based on support vector machine. J. Nanjing Univ. Technol. 2014, 36, 117–122. [Google Scholar]
- Žvokelj, M.; Zupan, S.; Prebil, I. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis. J. Sound Vib. 2016, 370, 394–423. [Google Scholar] [CrossRef]
- Pan, Y.; Hong, R.; Chen, J.; Qin, Z.; Feng, Y. Incipient fault detection of wind turbine large-size slewing bearing based on circular domain. Measurement 2019, 137, 130–142. [Google Scholar] [CrossRef]
- Yin, S.; Wang, G.; Karimi, H.R. Data-driven design of robust fault detection system for wind turbines. Mechatronics 2014, 24, 298–306. [Google Scholar] [CrossRef]
- Jing, B.; Qian, Z.; Pei, Y.; Zhang, L.; Yang, T. Improving wind turbine efficiency through detection and calibration of yaw misalignment. Renew. Energy 2020, 160, 1217–1227. [Google Scholar] [CrossRef]
- Bao, Y.; Yang, Q. A data-mining compensation approach for yaw misalignment on wind turbine. IEEE Trans. Ind. Inform. 2021, 17, 8154–8164. [Google Scholar] [CrossRef]
- Pandit, R.; Infield, D.; Dodwell, T. Operational variables for improving industrial wind turbine yaw misalignment early fault detection capabilities using data-driven techniques. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Pandit, R.K.; Infield, D. SCADA-based wind turbine anomaly detection using Gaussian process models for wind turbine condition monitoring purposes. IET Renew. Power Gener. 2018, 12, 1249–1255. [Google Scholar] [CrossRef]
- Qu, C.; Lin, Z.; Chen, P.; Liu, J.; Chen, Z.; Xie, Z. An improved data-driven methodology and field-test verification of yaw misalignment calibration on wind turbines. Energy Convers. Manag. 2022, 266, 115786. [Google Scholar] [CrossRef]
- Gao, L.; Hong, J. Data-driven yaw misalignment correction for utility-scale wind turbines. J. Renew. Sustain. Energy 2021, 13, 063302. [Google Scholar] [CrossRef]
- Asghar, A.; Liu, X. Estimation of wind turbine power coefficient by adaptive neuro-fuzzy methodology. Neurocomputing 2017, 238, 227–233. [Google Scholar] [CrossRef]
- Yang, J.; Wang, L.; Song, D.; Huang, C.; Huang, L.; Wang, J. Incorporating environmental impacts into zero-point shifting diagnosis of wind turbines yaw angle. Energy 2022, 238, 121762. [Google Scholar] [CrossRef]
- Hu, R.L.; Leahy, K.; Konstantakopoulos, I.C.; Auslander, D.M.; Spanos, C.J.; Agogino, A.M. Using Domain Knowledge Features for Wind Turbine Diagnostics. In Proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 18–20 December 2016; pp. 300–307. [Google Scholar] [CrossRef]
- Pandit, R.K.; Infield, D. Comparative assessments of binned and support vector regression-based blade pitch curve of a wind turbine for the purpose of condition monitoring. Int. J. Energy Environ. Eng. 2019, 10, 181–188. [Google Scholar] [CrossRef]
- Kusiak, A.; Verma, A. Monitoring Wind Farms With Performance Curves. IEEE Trans. Sustain. Energy 2013, 4, 192–199. [Google Scholar] [CrossRef]
- Pandit, R.; Infield, D. Comparative Analysis of Binning and Support Vector Regression for Wind Turbine Rotor Speed Based Power Curve Use in Condition Monitoring. In Proceedings of the IEEE 53rd International Universities Power Engineering Conference (UPEC), Glasgow, UK, 4–7 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Pandit, R.; Infield, D. Comparative study of binning and gaussian process based rotor curves of a wind turbine for the purpose of condition monitoring. In Proceedings of the 3rd International Conference on Offshore Renewable Energy, Glasgow, UK, 28–29 August 2018. [Google Scholar]
Wind Turbine Parameters | Average Value | Max. Value | Min. Value |
---|---|---|---|
TSR | 0.6640 | 30.758 | 0.4119 |
Pitch angle (degree) | 0 | 5 | −5 |
Power coefficient | 0.1707 | 0.4868 | −5.4984 |
Average of | Front and Rear Bearing temp Rotor temp Stator temp |
Difference Between | Max. and min. wind speed Max. and average wind speed Min. and average wind speed Front and rear bearing temperatures Nacelle ambient temperature Generator temperature and nacelle temperature |
Ratio of | Average power to available power (from wind, technical reasons, force, external reasons) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandit, R.K.; Astolfi, D.; Durazo Cardenas, I. A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines. Energies 2023, 16, 1654. https://doi.org/10.3390/en16041654
Pandit RK, Astolfi D, Durazo Cardenas I. A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines. Energies. 2023; 16(4):1654. https://doi.org/10.3390/en16041654
Chicago/Turabian StylePandit, Ravi Kumar, Davide Astolfi, and Isidro Durazo Cardenas. 2023. "A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines" Energies 16, no. 4: 1654. https://doi.org/10.3390/en16041654
APA StylePandit, R. K., Astolfi, D., & Durazo Cardenas, I. (2023). A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines. Energies, 16(4), 1654. https://doi.org/10.3390/en16041654