High-Resolution Load Forecasting on Multiple Time Scales Using Long Short-Term Memory and Support Vector Machine
Abstract
:1. Introduction
2. Introduction and Development of Intelligence Algorithms for Load Forecasting
2.1. The Principle of LSTM
2.2. The Principle of SVM
2.2.1. Linear Support Vector Regression
2.2.2. Non-Linear Support Vector Regression
2.2.3. Adapting the Algorithms for Load Forecasting
3. Applying Two Algorithms for Load Forecasting
3.1. Prediction Time Horizons Determination
- Ultra-short-term load prediction (USTLP) is to forecast load value after half an hour
- Short-term load prediction (STLP) is to predict load values in the next day
- Medium-term load prediction (MTLP) is to predict load values in the next week
- Long-term load prediction (LTLP) is to predict load values in the next month
3.2. Data Collection and Processing
3.3. Error Evaluation Index
3.4. Load Prediction Flow Chart of the Two Algorithms
4. Prediction Results of Using the Two Algorithms
4.1. Algorithms Model Structure and Hyperparameters
4.2. Prediction Results Presentation
4.3. Comparison of Prediction Performance for Two Algorithms
4.4. Blind Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tanneberger, F.; Abel, S.; Couwenberg, J.; Dahms, T.; Gaudig, G.; Günther, A.; Kreyling, J.; Peters, J.; Pongratz, J.; Joosten, H. Towards net zero CO2 in 2050: An emission reduction pathway for organic soils in Germany. Mires Peat. 2021, 27, 5. [Google Scholar]
- Liu, J.; Wang, J.; Cardinal, J. Evolution and reform of UK electricity market. Renew. Sustain. Energy Rev. 2022, 161, 112317. [Google Scholar] [CrossRef]
- Littlechild, S. Exploring customer satisfaction in Great Britain’s retail energy sector part III: A proposed Overall Customer Satisfaction score. Util. Policy 2021, 73, 101–299. [Google Scholar] [CrossRef]
- Venayagamoorthy, G.K. Intelligent sense-making for smart grid stability. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–3. [Google Scholar]
- Wang, C.; Liu, J.; Cheng, H.; Zhuang, Y.; Zhao, Z. A modified one-cycle control for Vienna rectifiers with functionality of input power factor regulation and input current distortion mitigation. Energies 2019, 12, 3375. [Google Scholar] [CrossRef]
- UK Power System Balancing Costs Rise 48% in 2021 as BM Prices Rocket. Available online: https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/electric-power/012122-uk-power-system-balancing-costs-rise-48-in-2021-as-bm-prices-rocket (accessed on 2 December 2022).
- Liu, J.; Zhang, S.; Wang, J. Development and Comparison of Two Computational Intelligence Algorithms for Electrical Load Forecasts with Multiple Time Scales. In Proceedings of the 2022 Power System and Green Energy Conference (PSGEC), Shanghai, China, 25–27 August 2022; pp. 637–643. [Google Scholar]
- Hajirahimi, Z.; Khashei, M. Hybrid structures in time series modeling and forecasting: A review. Eng. Appl. Artif. Intell. 2019, 86, 83–106. [Google Scholar] [CrossRef]
- Shah, I.; Jan, F.; Ali, S. Functional data approach for short-term electricity demand forecasting. Math. Probl. Eng. 2022, 2022, 6709779. [Google Scholar] [CrossRef]
- Jan, F.; Shah, I.; Ali, S. Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis. Energies 2022, 15, 3423. [Google Scholar] [CrossRef]
- Divina, F.; Gilson, A.; Goméz-Vela, F.; García Torres, M.; Torres, J.F. Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting. Energies 2018, 11, 949. [Google Scholar] [CrossRef]
- Khan, S.; Alghulaiakh, H. ARIMA model for accurate time series stocks forecasting. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 7. [Google Scholar] [CrossRef]
- Liu, H.; Yan, G.; Duan, Z.; Chen, C. Intelligent modeling strategies for forecasting air quality time series: A review. Appl. Soft Comput. 2021, 102, 106957. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Reddy, D.S.; Prasad, P.R.C. Prediction of vegetation dynamics using NDVI time series data and LSTM. Model. Earth Syst. Environ. 2018, 4, 409–419. [Google Scholar] [CrossRef]
- Dong, M.; Grumbach, L.S. A Hybrid Distribution Feeder Long-Term Load Forecasting Method Based On Sequence Prediction. IEEE Trans. Smart Grid 2020, 11, 470–482. [Google Scholar] [CrossRef]
- Ünlü, K.D. A Data-Driven Model to Forecast Multi-Step Ahead Time Series of Turkish Daily Electricity Load. Electronics 2022, 11, 1524. [Google Scholar] [CrossRef]
- Aragón, G.; Puri, H.; Grass, A.; Chala, S.; Beecks, C. Incremental Deep-Learning for Continuous Load Prediction in Energy Management Systems. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar]
- Zhang, Y.; Li, D.; Yang, B. Application of Long-Short Term Memory Network and its Variants in Short-term Power Load Time Series Forecasting. In Proceedings of the 2020 International Conference on Smart Grids and Energy Systems (SGES), Perth, Australia, 23–26 November 2020; pp. 197–202. [Google Scholar]
- Guo, X.; Zhao, Q.; Zheng, D.; Ning, Y.; Gao, Y. A short-term load forecasting model of multi-scale CNN-LSTM hybrid neural network considering the real-time electricity price. Energy Rep. 2020, 6, 1046–1053. [Google Scholar] [CrossRef]
- Jin, Y.; Guo, H.; Wang, J.; Song, A. A Hybrid System Based on LSTM for Short-Term Power Load Forecasting. Energies 2020, 13, 6241. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, Q.; Xiao, D. Application of LSTM-LightGBM Non-linear Combined Model to Power Load Forecasting. J. Phys. Conf. Ser. 2022, 2294, 012–035. [Google Scholar] [CrossRef]
- Hu, H.; Xia, X.; Luo, Y.; Zhang, C.; Nazir, M.S.; Peng, T. Development and application of an evolutionary deep learning framework of LSTM based on improved grasshopper soptimisation algorithm for short-term load forecasting. J. Build. Eng. 2022, 57, 104975. [Google Scholar] [CrossRef]
- Alsharekh, M.F.; Habib, S.; Dewi, D.A.A.; Albattah, W.; Islam, M.; Albahli, S. Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM. Sensors 2022, 22, 6913. [Google Scholar] [CrossRef]
- Schölkopf, B.; Luo, Z.; Vovk, V. Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hao, P.-Y.; Kung, C.-F.; Chang, C.-Y.; Ou, J.-B. Predicting stock price trends based on financial news articles and using a novel twin support vector machine with fuzzy hyperplane. Appl. Soft Comput. 2021, 98, 106806. [Google Scholar] [CrossRef]
- Shao, M.; Wang, X.; Bu, Z.; Chen, X.; Wang, Y. Prediction of energy consumption in hotel buildings via support vector machines. Sustain. Cities Soc. 2020, 57, 102128. [Google Scholar] [CrossRef]
- Tay, F.E.H.; Cao, L.J. ε-descending support vector machines for financial time series forecasting. Neural Process. Lett. 2002, 15, 179–195. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, G.; Tian, Y.-j.; Yue, J. Two-phase multi-kernel LP-SVR for feature sparsification and forecasting. Neurocomputing 2016, 214, 594–606. [Google Scholar] [CrossRef]
- Jie, Z.; Siyuan, W. Thermal Load Forecasting Based on PSO-SVR. In Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018; pp. 2676–2680. [Google Scholar]
- Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep learning with long short-term memory for time series prediction. IEEE Commun. Mag. 2019, 57, 114–119. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Yan, R.; Gao, R.X. Long short-term memory for machine remaining life prediction. J. Manuf. Syst. 2018, 48, 78–86. [Google Scholar] [CrossRef]
- Jing, L.; Gulcehre, C.; Peurifoy, J.; Shen, Y.; Tegmark, M.; Soljačić, M.; Bengio, Y. Gated orthogonal recurrent units: On learning to forget. Neural Comput. 2019, 31, 765–783. [Google Scholar] [CrossRef] [PubMed]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef]
- Brahma, D.K.R. Prediction of Book Availability in the Library Management System Using Machine Learning; Central Institute of Technology: Perth, Australia, 2019. [Google Scholar]
- Wang, J.; Song, G. A deep spatial-temporal ensemble model for air quality prediction. Neurocomputing 2018, 314, 198–206. [Google Scholar] [CrossRef]
- Nakisa, B.; Rastgoo, M.N.; Rakotonirainy, A.; Maire, F.; Chandran, V. Long short term memory hyperparameter optimisation for a neural network based emotion recognition framework. IEEE Access 2018, 6, 49325–49338. [Google Scholar] [CrossRef]
- Yu, C.; Qi, X.; Ma, H.; He, X.; Wang, C.; Zhao, Y. LLR: Learning learning rates by LSTM for training neural networks. Neurocomputing 2020, 394, 41–50. [Google Scholar] [CrossRef]
- Benkedjouh, T.; Medjaher, K.; Zerhouni, N.; Rechak, S. Remaining useful life estimation based on non-linear feature reduction and support vector regression. Eng. Appl. Artif. Intell. 2016, 26, 1751–1760. [Google Scholar] [CrossRef]
- Fallah, S.N.; Ganjkhani, M.; Shamshirband, S.; Chau, K.-w. Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview. Energies 2019, 12, 393. [Google Scholar] [CrossRef]
- Afshin, M.; Sadeghian, A. PCA-based least squares support vector machines in week-ahead load forecasting. In Proceedings of the 2007 IEEE/IAS Industrial & Commercial Power Systems Technical Conference, Edmonton, AB, Canada, 6–11 May 2007; pp. 1–6. [Google Scholar]
- Lisi, F.; Shah, I. Forecasting next-day electricity demand and prices based on functional models. Energy Syst. 2020, 11, 947–979. [Google Scholar] [CrossRef]
- Cherkassky, V.; Ma, Y. Selection of meta-parameters for support vector regression. In Proceedings of the International Conference on Artificial Neural Networks, Madrid, Spain, 28–30 August 2020; pp. 687–693. [Google Scholar]
- Fabbri, A.G.; Chung, C.-J. On blind tests and spatial prediction models. Nat. Resour. Res. 2008, 17, 107–118. [Google Scholar] [CrossRef]
- Dahl, M.; Brun, A.; Kirsebom, O.S.; Andresen, G.B. Improving short-term heat load forecasts with calendar and holiday data. Energies 2018, 11, 1678. [Google Scholar] [CrossRef]
LSTM | ||||
Layer number | Nodes number | Batch size | Epoch time (s) | |
USTLP | 10 | 10 | 39 | 132 |
STLP | 10 | 40 | 13 | 403 |
MTLP | 10 | 50 | 6 | 494 |
LTLP | 10 | 100 | 4 | 2085 |
SVM | ||||
training time (s) | ||||
USTLP | 1 | 0.03 | 37 | |
STLP | 1 | 0.01 | 499 | |
MTLP | 0.2 | 0.01 | 613 | |
LTLP | 0.1 | 0.005 | 1192 |
Window Size | Step Size | |
---|---|---|
USTLP | 48 | 1 |
STLP | 48 × 7 | 48 |
MTLP | 48 × 7 × 4 | 48 |
LTLP | 48 × 7 × 4 | 48 |
LSTM | ||||
USTLP | STLP | MTLP | LTLP | |
RMSE | 0.016 | 0.018 | 0.114 | 0.310 |
MAE | 0.010 | 0.015 | 0.109 | 0.304 |
MAPE (%) | 2.501 | 3.577 | 25.073 | 69.947 |
SVM | ||||
USTLP | STLP | MTLP | LTLP | |
RMSE | 0.015 | 0.032 | 0.048 | 0.063 |
MAE | 0.011 | 0.022 | 0.034 | 0.047 |
MAPE (%) | 2.531 | 5.039 | 7.819 | 10.841 |
LSTM | ||||||
Spring | Summer | Autumn | Winter | Average | ||
USTLP | RMSE | 0.017 | 0.017 | 0.012 | 0.013 | 0.015 |
MAE | 0.014 | 0.013 | 0.09 | 0.010 | 0.031 | |
MAPE | 3.223 | 2.999 | 2.008 | 2.3014 | 2.633 | |
STLP | RMSE | 0.014 | 0.019 | 0.015 | 0.023 | 0.018 |
MAE | 0.011 | 0.014 | 0.013 | 0.020 | 0.015 | |
MAPE | 2.582 | 3.231 | 3.043 | 4.617 | 3.393 | |
MTLP | RMSE | 0.080 | 0.125 | 0.146 | 0.138 | 0.122 |
MAE | 0.076 | 0.122 | 0.143 | 0.132 | 0.118 | |
MAPE | 17.487 | 28.071 | 32.907 | 30.374 | 27.210 | |
LTLP | RMSE | 0.283 | 0.347 | 0.269 | 0.325 | 0.306 |
MAE | 0.280 | 0.343 | 0.262 | 0.319 | 0.301 | |
MAPE | 64.425 | 78.921 | 60.284 | 73.399 | 69.257 | |
SVM | ||||||
Spring | Summer | Autumn | Winter | Average | ||
USTLP | RMSE | 0.015 | 0.018 | 0.012 | 0.020 | 0.016 |
MAE | 0.011 | 0.015 | 0.010 | 0.018 | 0.014 | |
MAPE | 2.191 | 2.617 | 2.103 | 2.834 | 2.436 | |
STLP | RMSE | 0.039 | 0.058 | 0.020 | 0.035 | 0.038 |
MAE | 0.031 | 0.049 | 0.016 | 0.026 | 0.031 | |
MAPE | 5.903 | 7.551 | 3.273 | 5.365 | 5.523 | |
MTLP | RMSE | 0.037 | 0.048 | 0.049 | 0.049 | 0.046 |
MAE | 0.028 | 0.040 | 0.042 | 0.042 | 0.038 | |
MAPE | 6.444 | 7.735 | 9.987 | 9.158 | 8.331 | |
LTLP | RMSE | 0.031 | 0.062 | 0.078 | 0.071 | 0.061 |
MAE | 0.025 | 0.047 | 0.059 | 0.052 | 0.046 | |
MAPE | 6.155 | 8.453 | 11.936 | 9.886 | 9.108 |
LSTM | ||||||
Weekday | Weekend | Term time | Holiday | Average | ||
USTLP | RMSE | 0.015 | 0.014 | 0.012 | 0.013 | 0.014 |
MAE | 0.011 | 0.010 | 0.009 | 0.010 | 0.010 | |
MAPE | 3.455 | 2.311 | 2.074 | 2.309 | 2.537 | |
STLP | RMSE | 0.015 | 0.021 | 0.021 | 0.018 | 0.019 |
MAE | 0.011 | 0.018 | 0.017 | 0.015 | 0.015 | |
MAPE | 2.546 | 4.148 | 3.913 | 3.455 | 3.516 | |
Term time | Holiday | Average | ||||
MTLP | RMSE | 0.111 | 0.144 | 0.128 | ||
MAE | 0.107 | 0.141 | 0.124 | |||
MAPE | 34.377 | 45.301 | 39.839 | |||
LTLP | RMSE | 0.274 | 0.322 | 0.298 | ||
MAE | 0.271 | 0.319 | 0.295 | |||
MAPE | 62.354 | 73.402 | 67.878 | |||
SVM | ||||||
Weekday | Weekend | Term time | Holiday | Average | ||
USTLP | RMSE | 0.020 | 0.014 | 0.021 | 0.021 | 0.019 |
MAE | 0.016 | 0.010 | 0.017 | 0.017 | 0.015 | |
MAPE | 2.727 | 2.544 | 3.108 | 3.362 | 2.935 | |
STLP | RMSE | 0.048 | 0.021 | 0.050 | 0.033 | 0.038 |
MAE | 0.040 | 0.016 | 0.036 | 0.026 | 0.030 | |
MAPE | 6.757 | 3.992 | 6.081 | 5.129 | 5.490 | |
Term time | Holiday | Average | ||||
MTLP | RMSE | 0.048 | 0.058 | 0.053 | ||
MAE | 0.040 | 0.050 | 0.045 | |||
MAPE | 7.735 | 10.409 | 9.072 | |||
LTLP | RMSE | 0.062 | 0.059 | 0.061 | ||
MAE | 0.047 | 0.049 | 0.048 | |||
MAPE | 8.453 | 13.012 | 10.733 |
LSTM | SVM | ||
---|---|---|---|
USTLP | RMSE | 0.004 | 0.002 |
MAE | 0.003 | 0.002 | |
MAPE (%) | 1.142 | 0.656 | |
STLP | RMSE | 0.22 | 0.041 |
MAE | 0.17 | 0.035 | |
MAPE (%) | 3.105 | 6.747 | |
MTLP | RMSE | 0.095 | 0.046 |
MAE | 0.071 | 0.037 | |
MAPE (%) | 16.326 | 8.087 | |
LTLP | RMSE | 0.257 | 0.140 |
MAE | 0.253 | 0.108 | |
MAPE (%) | 58.731 | 14.559 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Liu, J.; Wang, J. High-Resolution Load Forecasting on Multiple Time Scales Using Long Short-Term Memory and Support Vector Machine. Energies 2023, 16, 1806. https://doi.org/10.3390/en16041806
Zhang S, Liu J, Wang J. High-Resolution Load Forecasting on Multiple Time Scales Using Long Short-Term Memory and Support Vector Machine. Energies. 2023; 16(4):1806. https://doi.org/10.3390/en16041806
Chicago/Turabian StyleZhang, Sizhe, Jinqi Liu, and Jihong Wang. 2023. "High-Resolution Load Forecasting on Multiple Time Scales Using Long Short-Term Memory and Support Vector Machine" Energies 16, no. 4: 1806. https://doi.org/10.3390/en16041806
APA StyleZhang, S., Liu, J., & Wang, J. (2023). High-Resolution Load Forecasting on Multiple Time Scales Using Long Short-Term Memory and Support Vector Machine. Energies, 16(4), 1806. https://doi.org/10.3390/en16041806