A Review on the Internalization of Externalities in Electricity Generation Expansion Planning
Abstract
:1. Introduction
2. Externalities and Electricity Generation
2.1. The Concept of Externalities
2.2. Externalities of Electricity Production
3. Methodology
- Published in the defined timeframe for the analysis;
- Related to the generation of electricity;
- Clear definition of the geographical scope of the work;
- Clear definition of which externalities were included in the study; and
- Research papers published in journals (conferences and review papers excluded).
4. Results
5. Discussion and Future Research Directions
5.1. A Regional Perspective Can Bring Additional Benefits to the GEP Problem
5.2. Expanding the Models beyond GHG Is Fundamental for a Whole Sustainable Perspective
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cerqueira, P.A.; Soukiazis, E.; Proença, S. Assessing the Linkages between Recycling, Renewable Energy and Sustainable Development: Evidence from the OECD Countries. Environ. Dev. Sustain. 2021, 23, 9766–9791. [Google Scholar] [CrossRef]
- McCollum, D.L.; Echeverri, L.G.; Busch, S.; Pachauri, S.; Parkinson, S.; Rogelj, J.; Krey, V.; Minx, J.C.; Nilsson, M.; Stevance, A.S.; et al. Connecting the Sustainable Development Goals by Their Energy Inter-Linkages. Environ. Res. Lett. 2018, 13, 033006. [Google Scholar] [CrossRef]
- Fuso Nerini, F.; Tomei, J.; To, L.S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Castán Broto, V.; Anandarajah, G.; et al. Mapping Synergies and Trade-Offs between Energy and the Sustainable Development Goals. Nat. Energy 2018, 3, 10–15. [Google Scholar] [CrossRef]
- Sadeghi, H.; Rashidinejad, M.; Abdollahi, A. A Comprehensive Sequential Review Study through the Generation Expansion Planning. Renew. Sustain. Energy Rev. 2017, 67, 1369–1394. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Zhang, Y.; Fan, Y.; Bao, G.; Wang, X. Multi-Period Generation Expansion Planning for Sustainable Power Systems to Maximize the Utilization of Renewable Energy Sources. Sustainability 2020, 12, 1083. [Google Scholar] [CrossRef]
- Santos, H.L.; Legey, L.F.L. A Model for Long-Term Electricity Expansion Planning with Endogenous Environmental Costs. Int. J. Electr. Power Energy Syst. 2013, 51, 98–105. [Google Scholar] [CrossRef]
- Istrate, I.R.; García-Gusano, D.; Iribarren, D.; Dufour, J. Long-Term Opportunities for Electricity Production through Municipal Solid Waste Incineration When Internalising External Costs. J. Clean. Prod. 2019, 215, 870–877. [Google Scholar] [CrossRef]
- Oehlmann, M.; Glenk, K.; Lloyd-Smith, P.; Meyerhoff, J. Quantifying Landscape Externalities of Renewable Energy Development: Implications of Attribute Cut-Offs in Choice Experiments. Resour. Energy Econ. 2021, 65, 101240. [Google Scholar] [CrossRef]
- Matamala, C.; Moreno, R.; Sauma, E.; Calabrese, J.; Osses, P. Why Reducing Socio-Environmental Externalities of Electricity System Expansions Can Boost the Development of Solar Power Generation: The Case of Chile. Sol. Energy 2021, 217, 58–69. [Google Scholar] [CrossRef]
- Pietrapertosa, F.; Cosmi, C.; Di Leo, S.; Loperte, S.; Macchiato, M.; Salvia, M.; Cuomo, V. Assessment of Externalities Related to Global and Local Air Pollutants with the NEEDS-TIMES Italy Model. Renew. Sustain. Energy Rev. 2010, 14, 404–412. [Google Scholar] [CrossRef]
- Gies, E. The Real Cost of Energy: All Energy Production Has Environmental and Societal Effects. but Calculating Them- A Nd Pricing Energy Accordingly-Is No Easy Task. Nature 2017, 551, S145–S147. [Google Scholar] [CrossRef] [PubMed]
- Dranka, G.G.; Ferreira, P. Planning for a Renewable Future in the Brazilian Power System. Energy 2018, 164, 496–511. [Google Scholar] [CrossRef]
- Gils, H.C.; Simon, S.; Soria, R. 100% Renewable Energy Supply for Brazil-The Role of Sector Coupling and Regional Development. Energies 2017, 10, 1859. [Google Scholar] [CrossRef]
- Moreira, J.M.L.; Cesaretti, M.A.; Carajilescov, P.; Maiorino, J.R. Sustainability Deterioration of Electricity Generation in Brazil. Energy Policy 2015, 87, 334–346. [Google Scholar] [CrossRef]
- Santos, M.J.; Ferreira, P.; Araújo, M.; Portugal-Pereira, J.; Lucena, A.F.P.; Schaeffer, R. Scenarios for the Future Brazilian Power Sector Based on a Multi-Criteria Assessment. J. Clean. Prod. 2017, 167, 938–950. [Google Scholar] [CrossRef]
- Ghosh, B.; Panigrahi, C.K.; Samanta, S. Externalities of Clean Energy Technologies: A Study. J. Phys. Conf. Ser. 2019, 1253, 012027. [Google Scholar] [CrossRef]
- Cornes, R.; Sandler, T. The Theory of Externalities, Public Goods, and Club Goods; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Derani, C.D.; Neto, A.d.A. Valoração Econômica Dos Bens Ambientais. Hiléia Revista de Direito Ambiental da Amazônia 2007, 9, 49–69. [Google Scholar]
- Pigou, A.C. The Economics of Welfare, 3rd ed.; Palgrave Macmillan: London, UK, 1928; ISBN 1137375639. [Google Scholar]
- Pearce, D.W.; Turner, R.K. Economics of Natural Resources and the Environment; Johns Hopkins University Press: Baltimore, MD, USA, 1990; ISBN 9780801839870. [Google Scholar]
- Mankiw, N.G. Macroeconomics, 7th ed.; Worth Publishers: New York, NY, USA, 2017; Volume 91, ISBN 9781429218870. [Google Scholar]
- Trapp, G.S.; Rodrigues, L.H. Evaluation of the Total Systemic Cost of Wind Power Generation in Face of the Replacement of Hydroelectric and Thermoelectric Sources Considering Socioeconomic and Environmental Externalities. Gest. Prod. 2016, 23, 556–569. [Google Scholar] [CrossRef]
- Field, B.C.; Olewiler, N.D. Environmental Economics, 4th ed.; McGraw-Hill Ryerson Higher Education, 2015; ISBN 9780070893108. Available online: https://www.amazon.com/Environmental-Economics-Nancy-Olewiler-Barry/dp/0070893101 (accessed on 26 November 2022).
- Becker, U.; Becker, T.; Gerlach, J. The True Costs of Automobility: External Costs of Cars Overview on Existing Estimates in EU-27 Chair of Transport Ecology; Technische Universität Dresden: Dresden, Germany, 2016; Volume 49. [Google Scholar]
- Nguyen, T.T.L.; Laratte, B.; Guillaume, B.; Hua, A. Quantifying Environmental Externalities with a View to Internalizing Them in the Price of Products, Using Different Monetization Models. Resour. Conserv. Recycl. 2016, 109, 13–23. [Google Scholar] [CrossRef]
- Rafaj, P.; Kypreos, S. Internalisation of External Cost in the Power Generation Sector: Analysis with Global Multi-Regional MARKAL Model. Energy Policy 2007, 35, 828–843. [Google Scholar] [CrossRef]
- Elliott, J.; Foster, I.; Kortum, S.; Munson, T.; Cervantes, F.P.; Weisbach, D. Trade and Carbon Taxes. Am. Econ. Rev. 2010, 100, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Moch, F. Principios de Economía, 3rd ed.; Mc Graw Hill: Madrid, Spain, 2006; ISBN 8448146565. [Google Scholar]
- Söderholm, P.; Sundqvist, T. Pricing Environmental Externalities in the Power Sector: Ethical Limits and Implications for Social Choice. Ecol. Econ. 2003, 46, 333–350. [Google Scholar] [CrossRef]
- Rochedo, P.R.R.; Soares-Filho, B.; Schaeffer, R.; Viola, E.; Szklo, A.; Lucena, A.F.P.; Koberle, A.; Davis, J.L.; Rajão, R.; Rathmann, R. The Threat of Political Bargaining to Climate Mitigation in Brazil. Nat. Clim. Chang. 2018, 8, 695–698. [Google Scholar] [CrossRef]
- Streimikiene, D.; Roos, I.; Rekis, J. External Cost of Electricity Generation in Baltic States. Renew. Sustain. Energy Rev. 2009, 13, 863–870. [Google Scholar] [CrossRef]
- Streimikiene, D.; Alisauskaite-Seskiene, I. External Costs of Electricity Generation Options in Lithuania. Renew. Energy 2014, 64, 215–224. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Monyei, C.G. Positive Externalities of Decarbonization: Quantifying the Full Potential of Avoided Deaths and Displaced Carbon Emissions from Renewable Energy and Nuclear Power. Environ. Sci. Technol. 2021, 55, 5258–5271. [Google Scholar] [CrossRef]
- Bielecki, A.; Ernst, S.; Skrodzka, W.; Wojnicki, I. The Externalities of Energy Production in the Context of Development of Clean Energy Generation. Environ. Sci. Pollut. Res. 2020, 27, 11506–11530. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Kim, J.; Yang, M. The Hidden Costs of Energy and Mobility: A Global Meta-Analysis and Research Synthesis of Electricity and Transport Externalities. Energy Res. Soc. Sci. 2021, 72, 101885. [Google Scholar] [CrossRef]
- Donato, H.; Donato, M. Etapas Na Condução de Uma Revisão Sistemática. Acta Med. Port. 2019, 32, 227–235. [Google Scholar] [CrossRef]
- Petrou, S.; Kwon, J.; Madan, J. A Practical Guide to Conducting a Systematic Review and Meta-Analysis of Health State Utility Values. Pharmacoeconomics 2018, 36, 1043–1061. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Unsihuay-Vila, C.; Marangon-Lima, J.W.; Zambroni De Souza, A.C.; Perez-Arriaga, I.J. Multistage Expansion Planning of Generation and Interconnections with Sustainable Energy Development Criteria: A Multiobjective Model. Int. J. Electr. Power Energy Syst. 2011, 33, 258–270. [Google Scholar] [CrossRef]
- Becker, N.; Soloveitchik, D.; Olshansky, M. Incorporating Environmental Externalities into the Capacity Expansion Planning: An Israeli Case Study. Energy Convers. Manag. 2011, 52, 2489–2494. [Google Scholar] [CrossRef]
- Kim, S.; Koo, J.; Lee, C.J.; Yoon, E.S. Optimization of Korean Energy Planning for Sustainability Considering Uncertainties in Learning Rates and External Factors. Energy 2012, 44, 126–134. [Google Scholar] [CrossRef]
- Gitizadeh, M.; Kaji, M.; Aghaei, J. Risk Based Multiobjective Generation Expansion Planning Considering Renewable Energy Sources. Energy 2013, 50, 74–82. [Google Scholar] [CrossRef]
- Ribeiro, F.; Ferreira, P.; Araújo, M. Evaluating Future Scenarios for the Power Generation Sector Using a Multi-Criteria Decision Analysis (MCDA) Tool: The Portuguese Case. Energy 2013, 52, 126–136. [Google Scholar] [CrossRef]
- Brand, B.; Missaoui, R. Multi-Criteria Analysis of Electricity Generation Mix Scenarios in Tunisia. Renew. Sustain. Energy Rev. 2014, 39, 251–261. [Google Scholar] [CrossRef]
- Zhang, D.; Xiong, W.; Tang, C.; Liu, Z.; Zhang, X. Determining the Appropriate Amount of Subsidies for Wind Power: The Integrated Renewable Power Planning (IRPP) Model and Its Application in China. Sustain. Energy Technol. Assess. 2014, 6, 141–148. [Google Scholar] [CrossRef]
- Pereira, S.; Ferreira, P.; Vaz, A.I.F. Short-Term Electricity Planning with Increase Wind Capacity. Energy 2014, 69, 12–22. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, Y.; Kang, J.; Zhang, X.; Hu, Z. Nonlinear Integrated Resource Strategic Planning Model and Case Study in China’s Power Sector Planning. Energy 2014, 67, 27–40. [Google Scholar] [CrossRef]
- Lakhani, R.; Doluweera, G.; Bergerson, J. Internalizing Land Use Impacts for Life Cycle Cost Analysis of Energy Systems: A Case of California’s Photovoltaic Implementation. Appl. Energy 2014, 116, 253–259. [Google Scholar] [CrossRef]
- Habib, M.A.; Chungpaibulpatana, S. Electricity Generation Expansion Planning with Environmental Impact Abatement: Case Study of Bangladesh. Energy Procedia 2014, 52, 410–420. [Google Scholar] [CrossRef]
- Barteczko-Hibbert, C.; Bonis, I.; Binns, M.; Theodoropoulos, C.; Azapagic, A. A Multi-Period Mixed-Integer Linear Optimisation of Future Electricity Supply Considering Life Cycle Costs and Environmental Impacts. Appl. Energy 2014, 133, 317–334. [Google Scholar] [CrossRef]
- Aryanpur, V.; Shafiei, E. Optimal Deployment of Renewable Electricity Technologies in Iran and Implications for Emissions Reductions. Energy 2015, 91, 882–893. [Google Scholar] [CrossRef]
- Štreimikiene, D.; Šliogeriene, J.; Turskis, Z. Multi-Criteria Analysis of Electricity Generation Technologies in Lithuania. Renew. Energy 2016, 85, 148–156. [Google Scholar] [CrossRef]
- Santos, M.J.; Ferreira, P.; Araújo, M. A Methodology to Incorporate Risk and Uncertainty in Electricity Power Planning. Energy 2016, 115, 1400–1411. [Google Scholar] [CrossRef]
- Rajesh, K.; Bhuvanesh, A.; Kannan, S.; Thangaraj, C. Least Cost Generation Expansion Planning with Solar Power Plant Using Differential Evolution Algorithm. Renew. Energy 2016, 85, 677–686. [Google Scholar] [CrossRef]
- Chen, H.; Tang, B.-J.; Liao, H.; Wei, Y.-M. A Multi-Period Power Generation Planning Model Incorporating the Non-Carbon External Costs: A Case Study of China. Appl. Energy 2016, 183, 1333–1345. [Google Scholar] [CrossRef]
- Juroszek, Z.; Kudelko, M. A Model of Optimization for Local Energy Infrastructure Development. Energy 2016, 96, 625–643. [Google Scholar] [CrossRef]
- Shakouri, G.H.; Aliakbarisani, S. At What Valuation of Sustainability Can We Abandon Fossil Fuels? A Comprehensive Multistage Decision Support Model for Electricity Planning. Energy 2016, 107, 60–77. [Google Scholar] [CrossRef]
- Georgiou, P.N. A Bottom-up Optimization Model for the Long-Term Energy Planning of the Greek Power Supply Sector Integrating Mainland and Insular Electric Systems. Comput. Oper. Res. 2016, 66, 292–312. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Wu, J.-H.; Hsu, Y.-J. Two-Stage Stochastic Programming Model for the Regional-Scale Electricity Planning under Demand Uncertainty. Energy 2016, 116, 1145–1157. [Google Scholar] [CrossRef]
- Wierzbowski, M.; Lyzwa, W.; Musial, I. MILP Model for Long-Term Energy Mix Planning with Consideration of Power System Reserves. Appl. Energy 2016, 169, 93–111. [Google Scholar] [CrossRef]
- Kosugi, T. Endogenizing the Probability of Nuclear Exit in an Optimal Power-Generation Mix Model. Energy 2016, 100, 102–114. [Google Scholar] [CrossRef]
- Patrizio, P.; Leduc, S.; Chinese, D.; Kraxner, F. Internalizing the External Costs of Biogas Supply Chains in the Italian Energy Sector. Energy 2017, 125, 85–96. [Google Scholar] [CrossRef]
- Pereira, S.; Ferreira, P.; Vaz, A.I.F. Generation Expansion Planning with High Share of Renewables of Variable Output. Appl. Energy 2017, 190, 1275–1288. [Google Scholar] [CrossRef]
- Awopone, A.K.; Zobaa, A.F.; Banuenumah, W. Techno-Economic and Environmental Analysis of Power Generation Expansion Plan of Ghana. Energy Policy 2017, 104, 13–22. [Google Scholar] [CrossRef]
- Afful-Dadzie, A.; Afful-Dadzie, E.; Awudu, I.; Banuro, J.K. Power Generation Capacity Planning under Budget Constraint in Developing Countries. Appl. Energy 2017, 188, 71–82. [Google Scholar] [CrossRef]
- Tang, B.-J.; Li, R.; Li, X.-Y.; Chen, H. An Optimal Production Planning Model of Coal-Fired Power Industry in China: Considering the Process of Closing down Inefficient Units and Developing CCS Technologies. Appl. Energy 2017, 206, 519–530. [Google Scholar] [CrossRef]
- Rodgers, M.D.; Coit, D.W.; Felder, F.A.; Carlton, A. Generation Expansion Planning Considering Health and Societal Damages—A Simulation-Based Optimization Approach. Energy 2018, 164, 951–963. [Google Scholar] [CrossRef]
- Mahlangu, N.; Thopil, G.A. Life Cycle Analysis of External Costs of a Parabolic Trough Concentrated Solar Power Plant. J. Clean. Prod. 2018, 195, 32–43. [Google Scholar] [CrossRef] [Green Version]
- García-Gusano, D.; Istrate, I.R.; Iribarren, D. Life-Cycle Consequences of Internalising Socio-Environmental Externalities of Power Generation. Sci. Total Environ. 2018, 612, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Guo, Z.; Liu, P.; Li, Z. Advances in Clean and Low-Carbon Power Generation Planning. Comput. Chem. Eng. 2018, 116, 296–305. [Google Scholar] [CrossRef]
- Liang, Y.; Yu, B.; Wang, L. Costs and Benefits of Renewable Energy Development in China’s Power Industry. Renew. Energy 2019, 131, 700–712. [Google Scholar] [CrossRef]
- Rodgers, M.; Coit, D.; Felder, F.; Carlton, A. Assessing the Effects of Power Grid Expansion on Human Health Externalities. Socioecon. Plann. Sci. 2019, 66, 92–104. [Google Scholar] [CrossRef]
- Quiroga, D.; Sauma, E.; Pozo, D. Power System Expansion Planning under Global and Local Emission Mitigation Policies. Appl. Energy 2019, 239, 1250–1264. [Google Scholar] [CrossRef]
- Khan, I. Power Generation Expansion Plan and Sustainability in a Developing Country: A Multi-Criteria Decision Analysis. J. Clean. Prod. 2019, 220, 707–720. [Google Scholar] [CrossRef]
- Chen, S.; Liu, P.; Li, Z. Multi-Regional Power Generation Expansion Planning with Air Pollutants Emission Constraints. Renew. Sustain. Energy Rev. 2019, 112, 382–394. [Google Scholar] [CrossRef]
- Chiu, M.-C.; Hsu, H.-W.; Wu, M.-C.; Lee, M.-Y. Future Thinking on Power Planning: A Balanced Model of Regions, Seasons and Environment with a Case of Taiwan. Futures 2020, 122, 102599. [Google Scholar] [CrossRef]
- Shahid, M.; Ullah, K.; Imran, K.; Mahmood, I.; Mahmood, A. Electricity Supply Pathways Based on Renewable Resources: A Sustainable Energy Future for Pakistan. J. Clean. Prod. 2020, 263, 121511. [Google Scholar] [CrossRef]
- Dranka, G.G.; Ferreira, P.; Vaz, A.I.F. Cost-Effectiveness of Energy Efficiency Investments for High Renewable Electricity Systems. Energy 2020, 198, 117198. [Google Scholar] [CrossRef]
- Lv, T.; Yang, Q.; Deng, X.; Xu, J.; Gao, J. Generation Expansion Planning Considering the Output and Flexibility Requirement of Renewable Energy: The Case of Jiangsu Province. Front. Energy Res. 2020, 8, 39. [Google Scholar] [CrossRef]
- Pereira, A.; Sauma, E. Power Systems Expansion Planning with Time-Varying CO2 Tax. Energy Policy 2020, 144, 111630. [Google Scholar] [CrossRef]
- Allahdadi Mehrabadi, R.; Parsa Moghaddam, M.; Sheikh-El-Eslami, M.K. Generation Expansion Planning in Multi Electricity Markets Considering Environmental Impacts. J. Clean. Prod. 2020, 243, 118611. [Google Scholar] [CrossRef]
- Gbadamosi, S.L.; Nwulu, N.I. A Multi-Period Composite Generation and Transmission Expansion Planning Model Incorporating Renewable Energy Sources and Demand Response. Sustain. Energy Technol. Assess. 2020, 39, 100726. [Google Scholar] [CrossRef]
- Fitiwi, D.Z.; Lynch, M.; Bertsch, V. Enhanced Network Effects and Stochastic Modelling in Generation Expansion Planning: Insights from an Insular Power System. Socioecon. Plann. Sci. 2020, 71, 100859. [Google Scholar] [CrossRef]
- Shahid, M.; Ullah, K.; Imran, K.; Mahmood, A.; Arentsen, M. LEAP Simulated Economic Evaluation of Sustainable Scenarios to Fulfill the Regional Electricity Demand in Pakistan. Sustain. Energy Technol. Assess. 2021, 46, 101292. [Google Scholar] [CrossRef]
- Verástegui, F.; Lorca, Á.; Olivares, D.; Negrete-Pincetic, M. Optimization-Based Analysis of Decarbonization Pathways and Flexibility Requirements in Highly Renewable Power Systems. Energy 2021, 234, 121242. [Google Scholar] [CrossRef]
- Sani, L.; Khatiwada, D.; Harahap, F.; Silveira, S. Decarbonization Pathways for the Power Sector in Sumatra, Indonesia. Renew. Sustain. Energy Rev. 2021, 150, 111507. [Google Scholar] [CrossRef]
- Musonye, X.S.; Davíðsdóttir, B.; Kristjánsson, R.; Ásgeirsson, E.I.; Stefánsson, H. Environmental and Techno-Economic Assessment of Power System Expansion for Projected Demand Levels in Kenya Using TIMES Modeling Framework. Energy Sustain. Dev. 2021, 63, 51–66. [Google Scholar] [CrossRef]
- Hussain, A.; Perwez, U.; Ullah, K.; Kim, C.-H.; Asghar, N. Long-Term Scenario Pathways to Assess the Potential of Best Available Technologies and Cost Reduction of Avoided Carbon Emissions in an Existing 100% Renewable Regional Power System: A Case Study of Gilgit-Baltistan (GB), Pakistan. Energy 2021, 221, 119855. [Google Scholar] [CrossRef]
- Furtado, R. The Incorporation of Environmental Costs into Power System Planning in Brazil; University of London: London, UK, 1996. [Google Scholar]
- Lund, H.; Arler, F.; Østergaard, P.A.; Hvelplund, F.; Connolly, D.; Mathiesen, B.V.; Karnøe, P. Simulation versus Optimisation: Theoretical Positions in Energy System Modelling. Energies 2017, 10, 840. [Google Scholar] [CrossRef]
- Da Rosa, A. Fundamentals of Renewable Energy Processes, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 9780123746399. [Google Scholar]
- Ferreira, P.; Lima, F.; Ribeiro, F.; Vieira, F. A Mixed-Method Approach for the Assessment of Local Community Perception towards Wind Farms. Sustain. Energy Technol. Assess. 2019, 33, 44–52. [Google Scholar] [CrossRef]
- Oree, V.; Sayed Hassen, S.Z.; Fleming, P.J. Generation Expansion Planning Optimisation with Renewable Energy Integration: A Review. Renew. Sustain. Energy Rev. 2017, 69, 790–803. [Google Scholar] [CrossRef]
- OECD. How Persistent Are Regional Disparities in Employment? OECD: Paris, France, 2005; ISBN 9264010459. [Google Scholar]
- Zemo, K.H.; Panduro, T.E.; Termansen, M. Impact of Biogas Plants on Rural Residential Property Values and Implications for Local Acceptance. Energy Policy 2019, 129, 1121–1131. [Google Scholar] [CrossRef]
- Dorrell, J.; Lee, K. The Cost of Wind: Negative Economic Effects of Global Wind Energy Development. Energies 2020, 13, 3667. [Google Scholar] [CrossRef]
- Debnath, K.B.; Mourshed, M. Challenges and Gaps for Energy Planning Models in the Developing-World Context. Nat. Energy 2018, 3, 172–184. [Google Scholar] [CrossRef]
- Urban, F.; Benders, R.M.J.; Moll, H.C. Modelling Energy Systems for Developing Countries. Energy Policy 2007, 35, 3473–3482. [Google Scholar] [CrossRef]
- Gebremeskel, D.; Bekele, G.; Ahlgren, E.O. Energy System Modeling Tools: Review and Comparison in the Context of Developing Countries. In Proceedings of the 2020 IEEE PES/IAS PowerAfrica, PowerAfrica 2020, Nairobi, Kenya, 25–28 August 2020. [Google Scholar] [CrossRef]
- Santika, W.G.; Anisuzzaman, M.; Bahri, P.A.; Shafiullah, G.M.; Rupf, G.V.; Urmee, T. From Goals to Joules: A Quantitative Approach of Interlinkages between Energy and the Sustainable Development Goals. Energy Res. Soc. Sci. 2019, 50, 201–214. [Google Scholar] [CrossRef]
- Aravena, C.; Hutchinson, W.G.; Longo, A. Environmental Pricing of Externalities from Different Sources of Electricity Generation in Chile. Energy Econ. 2012, 34, 1214–1225. [Google Scholar] [CrossRef]
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F.; Zhao, J.H. Review on Multi-Criteria Decision Analysis Aid in Sustainable Energy Decision-Making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Sartori, D.; Catalano, G.; Genco, M.; Pancott, C.; Sirtori, E.; Vignetti, S.; Bo, C. Del Economic Appraisal Tool Fo Cohesion Policy 2014–2020: Guide to Cost-Benefit Analysis of Investment Projects; Directorate-General for Regional and Urban Policy: Brussel, Belgium, 2015; ISBN 978-92-79-34796-2.
Keywords | Number of Articles Science Direct | Number of Articles Web of Science |
---|---|---|
“Generation expansion planning” OR GEP | 10,734 | 3701 |
“Generation expansion planning” OR GEP OR “electricity planning” | 11,460 | 9806 |
(“Generation expansion planning” OR GEP OR “electricity planning” OR “power planning” OR “electrical plan” or “electricity energy plan”) | 14,451 | 10,974 |
(“Generation expansion planning” OR GEP OR “electricity planning” OR “power planning” OR “electrical plan” or “electricity energy plan) AND (externality OR “externalities OR “external cost” OR “external tax”) | 3289 | 4909 |
Authors | Year | Method for GEP | Socio-Environmental Effects Addressed | Inclusion of Externalities | Region |
---|---|---|---|---|---|
[39] | 2011 | Optimization | CO2 emissions (life cycle) | Objective function (emissions) | Unspecified case study |
[40] | 2011 | Optimization (Wien Automatic System Planning-WASP-IV) | CO2 emissions, particulate matter (PM), NOx, and SO2, | Objective function (cost) | Israel |
[41] | 2012 | Optimization | CO2 emissions | Objective function (cost) | Korea |
[42] | 2013 | Optimization | CO2 emissions | Objective function (emissions) | Hypothetical case |
[6] | 2013 | Optimization | Unspecified estimated total environmental cost | Objective function (cost) | Brazil |
[43] | 2013 | MCDA | Employment, visual impact, noise pollution, local income, CO2 emissions, land use, public health, water consumption | Independent criteria. Participation of decision makers | Portugal |
[44] | 2014 | MCDA | CO2 emissions, PM, NOx, SO2, nuclear waste | Independent criteria. Participation of decision makers | Tunisia |
[45] | 2014 | Scenario analysis | NOx, PM, greenhouse gas (GHG) | Levelized cost of energy scenarios | Fujian, China |
[46] | 2014 | Optimization | CO2 emissions | Objective function (cost) | Portugal |
[47] | 2014 | Optimization | CO2, NOx and SO2 emissions, other unspecified estimated total environmental cost | Objective function (cost) and restrictions | China |
[48] | 2014 | Scenario analysis (System advisor Model-SAM) | Land use | Life cycle cost, scenarios | California, USA |
[49] | 2014 | Scenario analysis (Long-range Energy Alternatives Planning-LEAP) | CO2 emissions | Scenarios | Bangladesh |
[50] | 2014 | Optimization | GHG (life cycle), ozone layer, acidification and photochemical pollution | Objective function (CHG emissions) | UK |
[51] | 2015 | Optimization | CO2 emissions | Objective function (cost) | Iran |
[52] | 2016 | MCDA | Several (20), e.g., job creation, economic security, contribution to education, science and culture, social acceptance and perception, climate change and pollution, waste creation, or adaptation to local natural conditions | Independent criteria. Participation of decision makers | Lithuania |
[53] | 2016 | Optimization | CO2 emissions | Objective function (cost) | Portugal |
[54] | 2016 | Optimization | Unspecified estimated environmental cost of emissions | Objective function (cost) and restrictions | India |
[55] | 2016 | Optimization | CO2 emissions and others (unspecified) | Objective function (cost) | China |
[56] | 2016 | Optimization | CO2 emissions, PM, NOx, and SO2, | Objective function (cost) | Kietrz, Poland |
[57] | 2016 | Optimization | CO2 emissions and nuclear waste, land and water use, job creation, social acceptance, and security | Objective function (cost) | Iran |
[58] | 2016 | Optimization | CO2, NOx, and SO2 emissions | Objective function (cost) and restrictions | Greece |
[59] | 2016 | Optimization | CO2 emissions | Restrictions | Taiwan |
[60] | 2016 | Optimization | CO2 emissions | Objective function (cost) | Poland |
[61] | 2016 | Optimization | CO2 emissions. nuclear accidents | Objective function (cost) and restrictions. | Japan |
[62] | 2017 | Optimization | CO2, CH4, N2O, NH3, non-methane emissions volatile organic compounds (NMVOC), SO2, NOx, and PM10 (life cycle) | Objective function (cost) | Italy |
[63] | 2017 | Optimization | CO2 emissions | Objective function (cost) | Portugal |
[64] | 2017 | Scenario analysis (LEAP) | CO2 emissions | Scenarios | Ghana |
[65] | 2017 | Optimization | CO2 emissions | Objective function (cost) and restrictions | Ghana |
[66] | 2017 | Optimization | CO2 emissions | Objective function (cost) and restrictions | China |
[15] | 2017 | MCDA | employment, visual impact, noise pollution, local income, CO2 emissions, land use, public health, water consumption (life cycle) | Independent criteria, participation of decision makers | Brazil |
[67] | 2018 | Optimization (COBRA model) | Emissions of NOX, SO2, CO2, CH4) and public health | Objective function (cost) and restrictions | Northeast, USA |
[68] | 2018 | Scenario analysis (input-output models) | CO2 emissions, public health, loss of biodiversity, local effect on crops and damage to materials (life cycle) | Design/technology analysis | South Africa |
[69] | 2018 | Optimization (LEAP and OSeMOSYS) | CO2 emissions and human health (life cycle) | Objective function (cost) | Spain |
[12] | 2018 | Scenario analysis (EnergyPLAN model) | CO2 emissions | Scenarios | Brazil |
[70] | 2018 | Optimization | CO2 emissions | Objective function (cost) | China |
[71] | 2019 | Optimization (LEAP and OSeMOSYS) | CO2 emissions | Scenario analysis | China |
[72] | 2019 | Optimization (COBRA model) | CO2 emissions, PM, NOx, SO2 and ozone | Objective function (cost) and restrictions | Northeast, USA |
[73] | 2019 | Optimization | CO2 emissions, PM, NOx, and SOx | Objective function (cost) | Chile |
[74] | 2019 | MCDA | Sevaral (19), e.g., job creation, noise, public health, regional development, relocation of people, water use, CO2 emissions, or land use. | Independent criteria, participation of decision makers | Bangladesh |
[75] | 2019 | Optimization | NOx, and SO2 emissions | Restrictions | China |
[76] | 2020 | Optimization | CO2 emissions, PM, NOx, and SOx, | Objective function (emissions) | Taiwan |
[77] | 2020 | Scenario analysis (LEAP) | Emissions of CH4, NOx, CO, CO2 and SO2, N2O, SOx, volatile organic compounds and PM | Scenarios | Pakistan |
[78] | 2020 | Optimization | CO2 emissions | Objective function (cost) | Brazil |
[79] | 2020 | Optimization | CO2 emissions, NOx, and SO2, | Restrictions | Jiangsu, China |
[80] | 2020 | Optimization | CO2 emissions | Objective function (cost) | Chile |
[81] | 2020 | Optimization | CO2 emissions | Objective function (cost) | Iran |
[82] | 2020 | Optimization | CO2 emissions, NOx, and SO2, | Objective function (cost) | Hypothetical case in Nigeria |
[83] | 2020 | Optimization | CO2 emissions | Objective function (cost) | Ireland |
[84] | 2021 | Scenario analysis (LEAP) | Emissions of CH4, NOx, CO, CO2 and SO2, N2O, SOx, volatile organic compounds and PM | Scenarios | Pakistan |
[85] | 2021 | Optimization | CO2 emissions | Objective function (cost) | Chile |
[86] | 2021 | Optimization (LEAP and OSeMOSYS) | CO2 emissions | Scenario analysis | Sumatra, Indonesia |
[87] | 2021 | Optimization | CO2 emissions (life cycle) | Objective function (cost) and restrictions | Kenya |
[88] | 2021 | Optimization (LEAP) | CO2 emissions | Scenario analysis | Gilgit-Baltistan, Pakistan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, C.R.d.S.; Ferreira, P. A Review on the Internalization of Externalities in Electricity Generation Expansion Planning. Energies 2023, 16, 1840. https://doi.org/10.3390/en16041840
Costa CRdS, Ferreira P. A Review on the Internalization of Externalities in Electricity Generation Expansion Planning. Energies. 2023; 16(4):1840. https://doi.org/10.3390/en16041840
Chicago/Turabian StyleCosta, Carlos Roberto de Sousa, and Paula Ferreira. 2023. "A Review on the Internalization of Externalities in Electricity Generation Expansion Planning" Energies 16, no. 4: 1840. https://doi.org/10.3390/en16041840
APA StyleCosta, C. R. d. S., & Ferreira, P. (2023). A Review on the Internalization of Externalities in Electricity Generation Expansion Planning. Energies, 16(4), 1840. https://doi.org/10.3390/en16041840