Analysis of the Influence of the Skin Effect on the Efficiency and Power of the Receiver in the Periodic WPT System
Abstract
:1. Introduction
2. Analyzed Models Composed of Plane Coils
2.1. Numerical Approach
2.2. Analytical Approach
3. Analysis of the Calculated Values Obtained by Two Methods
3.1. Analysis Conditions and Calculated Values of Lumped Parameters
3.2. System Operating with the Maximum Power Transfer Efficiency
3.2.1. Results for a Small Coil
3.2.2. Results for a Large Coil
3.3. System Operating with the Maximum Load Power
3.3.1. Results for a Small Coil
3.3.2. Results for a Large Coil
3.4. Distribution of Magnetic Flux Density
4. Conclusions
- (a)
- in the maximum efficiency procedure:
- (1)
- for the small coil (r = 0.01 m):
- n = 10: 6% (h = 0.005 m), 8% (h = 0.01 m);
- n = 20: 3% (h = 0.005 m), 9% (h = 0.01 m);
- n = 30: 3% (h = 0.005 m), 7% (h = 0.01 m);
- n = 40: 3% (h = 0.005 m), 7% (h = 0.01 m);
- (2)
- for the large coil (r = 0.025 m):
- n = 50: 1% (h = 0.0125 m), 5% (h = 0.025 m);
- n = 60: 1% (h = 0.0125 m), 5% (h = 0.025 m);
- n = 70: 1% (h = 0.0125 m), 4% (h = 0.025 m);
- (b)
- in the maximum load power procedure:
- (3)
- for the small coil (r = 0.01 m):
- n = 10: 178 mW (h = 0.005 m), 195 mW (h = 0.01 m);
- n = 20: 100 mW (h = 0.005 m), 107 mW (h = 0.01 m);
- n = 30: 77 mW (h = 0.005 m), 80 mW (h = 0.01 m);
- n = 40: 67 mW (h = 0.005 m), 71 mW (h = 0.01 m);
- (4)
- for the large coil (r = 0.025 m):
- n = 50: 16 mW (h = 0.0125 m), 16 mW (h = 0.025 m);
- n = 60: 15 mW (h = 0.0125 m), 14 mW (h = 0.025 m);
- n = 70: 13 mW (h = 0.0125 m), 13 mW (h = 0.025 m).
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, L.; Ma, D.; Tang, H. A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging. Renew. Sustain. Energy Rev. 2018, 91, 490–503. [Google Scholar] [CrossRef]
- Alberto, J.; Reggiani, U.; Sandrolini, L.; Albuquerque, H. Fast calculation and analysis of the equivalent impedance of a wireless power transfer system using an array of magnetically coupled resonators. PIER B 2018, 80, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Batra, T.; Schaltz, E.; Ahn, S. Effect of ferrite addition above the base ferrite on the coupling factor of wireless power transfer for vehicle applications. J. Appl. Phys. 2015, 117, 17D517. [Google Scholar] [CrossRef]
- Yang, Y.; El Baghdadi, M.; Lan, Y.; Benomar, Y.; Van Mierlo, J.; Hegazy, O. Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles. Energies 2018, 11, 1716. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Kusaka, K.; Itoh, J.I. Reduction in radiation noise level for inductive power transfer systems using spread spectrum techniques. IEEE Trans. Power Electron. 2018, 33, 3076–3085. [Google Scholar] [CrossRef]
- Kan, T.; Mai, R.; Mercier, P.P.; Mi, C.C. Design and analysis of a three-phase wireless charging system for lightweight autonomous underwater vehicles. IEEE Trans. Power Electron. 2017, 3, 6622–6632. [Google Scholar] [CrossRef]
- Tang, S.C.; Lun, T.L.T.; Guo, Z.; Kwok, K.W.; McDannold, N.J. Intermediate range wireless power transfer with segmented coil transmitters for implantable heart pumps. IEEE Trans. Power Electron. 2017, 32, 3844–3857. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Peng, F.; Li, Y.; Yang, T.; Wang, B.; Fang, D. A wireless magnetic resonance energy transfer system for micro implantable medical sensors. Sensors 2012, 12, 10292–10308. [Google Scholar] [CrossRef]
- Fitzpatrick, D.C. Implantable Electronic Medical Devices; Academic Press: San Diego, CA, USA, 2014; pp. 7–35. [Google Scholar]
- Kang, S.H.; Choi, J.H.; Jung, C.W. Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications. IEEE Trans. Consum. Electron. 2015, 61, 160–166. [Google Scholar]
- Barman, S.D.; Reza, A.W.; Kumar, N.N.; Karim, M.E.; Munir, A.B. Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications. Renew. Sust. Energ. Rev. 2015, 51, 1525–1552. [Google Scholar] [CrossRef]
- Sugino, M.; Kondo, H.; Takeda, S. Linear motion type transfer robot using the wireless power transfer system. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 508–509. [Google Scholar]
- Wu, Q.; Tao, M.; Kwan Ng, D.W.; Chen, W.; Schober, R. Energy-efficient resource allocation for wireless powered communication networks. IEEE Trans. Wirel. Commun. 2016, 15, 2312–2327. [Google Scholar] [CrossRef] [Green Version]
- Choroszucho, A.; Butryło, B. Local attenuation of electromagnetic field generated by wireless communication system inside the building. Przegląd Elektrotechniczny 2011, 87, 123–127. [Google Scholar]
- Vamvakas, P.; Tsiropoulou, E.E.; Vomvas, M.; Papavassiliou, S. Adaptive power management in wireless powered communication networks: A user-centric approach. In Proceedings of the IEEE 38th Sarnoff Symposium, Newark, NJ, USA, 18–20 September 2017; pp. 1–6. [Google Scholar]
- Khang, S.T.; Lee, D.J.; Hwang, I.J.; Yeo, T.D.; Yu, J.W. Microwave power transfer with optimal number of rectenna arrays for midrange applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 155–159. [Google Scholar] [CrossRef]
- De Santi, C.; Meneghini, M.; Caria, A.; Dogmus, E.; Zegaoui, M.; Medjdoub, F.; Kalinic, B.; Cesca, T.; Zanoni, E. GaN-based laser wireless power transfer system. Materials 2018, 11, 153. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Deng, Z.; Zhang, K.; Wang, B. Precise attitude control of multirotary-joint solar-power satellite. J. Guid. Control Dyn. 2018, 41, 1435–1442. [Google Scholar] [CrossRef]
- Micus, S.; Padani, L.; Haupt, M.; Gresser, G.T. Textile-Based Coils for Inductive Wireless Power Transmission. Appl. Sci. 2021, 11, 4309. [Google Scholar] [CrossRef]
- Luo, Z.; Wei, X. Analysis of square and circular planar spiral coils in wireless power transfer system for electric vehicles. IEEE Trans. Ind. Electron. 2018, 65, 331–341. [Google Scholar] [CrossRef]
- Chen, L.; Liu, S.; Zhou, Y.C.; Cui, T.J. An optimizable circuit structure for high-efficiency wireless power transfer. IEEE Trans. Ind. Electron. 2013, 60, 339–349. [Google Scholar] [CrossRef]
- Sołjan, Z.; Hołdyński, G.; Zajkowski, M. CPC-Based Minimizing of Balancing Compensators in Four-Wire Nonsinusoidal Asymmetrical Systems. Energies 2021, 14, 1815. [Google Scholar] [CrossRef]
- Raven, M.S. Skin effect in the time and frequency domain—Comparison of power series and Bessel function solutions. J. Phys. Commun. 2018, 3, 035028. [Google Scholar] [CrossRef]
- Abou Houran, M.; Yang, X.; Chen, W. Free Angular-Positioning Wireless Power Transfer Using a Spherical Joint. Energies 2018, 11, 3488. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Lorenz, R.D. Development and validation of model for 95%-efficiency 220-w wireless power transfer over a 30-cm air gap. IEEE Trans. Ind. Appl. 2011, 47, 2495–2504. [Google Scholar] [CrossRef]
- Raven, M.S. Experimental measurements of the skin effect and internal inductance at low frequencies. Acta Tech. 2016, 60, 51–69. [Google Scholar]
- Steckiewicz, A. Efficient Transfer of the Medium Frequency Magnetic Field Using Anisotropic Metamaterials. Energies 2023, 16, 334. [Google Scholar] [CrossRef]
- Xun, J.-H.; Mu, Y.; Zhang, K.; Liu, H.; Li, L. The Efficiency Improvement of Multiple Receivers in Wireless Power Transmission by Integrating Metasurfaces. Materials 2022, 15, 6943. [Google Scholar] [CrossRef]
- Villa, J.L.; Sallan, J.; Sanz Osorio, J.F.; Llombart, A. High-misalignment tolerant compensation topology for icpt systems. IEEE Trans. Ind. Electron. 2012, 59, 945–951. [Google Scholar] [CrossRef]
- Zhong, W.; Lee, C.K.; Hui, S.Y.R. General analysis on the use of Tesla’s resonators in domino forms for wireless power transfer. IEEE Trans. Ind. Electron. 2013, 60, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.X.; Vilathgamuwa, D.M.; Foo, G.; Ong, A.; Sampath, P.K.; Madawala, U.K. Cascaded multilevel converter based bidirectional inductive power transfer (BIPT) system. In Proceedings of the 2014 International Power Electronics Conference (IPEC-Hiroshima 2014—ECCE ASIA), Hiroshima, Japan, 18–21 May 2014; pp. 2722–2728. [Google Scholar]
- Hao, H.; Covic, G.A.; Boys, J.T. A parallel topology for inductive power transfer power supplies. IEEE Trans. Power Electron. 2014, 29, 1140–1151. [Google Scholar] [CrossRef]
- Mai, R.; Lu, L.; Li, Y.; Lin, T.; He, Z. Circulating Current Reduction Strategy for Parallel-Connected Inverters Based IPT Systems. Energies 2017, 10, 261. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Liu, Y.; Wei, B.; Wu, X.; Jiang, C.; Jiang, B.; Wei, C. Phase synchronization and current sharing strategy for multiple overlapped transmitters IPT system. Energy Rep. 2022, 8, 1103–1111. [Google Scholar] [CrossRef]
- Awai, I.; Komori, T. A simple and versatile design method of resonator-coupled wireless power transfer system. In Proceedings of the 2010 International Conference on Communications, Circuits and Systems, ICCCAS 2010—Proceedings, Chengdu, China, 28–30 July 2010; pp. 616–620. [Google Scholar]
- Lee, W.-S.; Son, W.-I.; Oh, K.-S.; Yu, J.-W. Contactless energy transfer systems using antiparallel resonant loops. IEEE Trans. Ind. Electron. 2013, 60, 6093746. [Google Scholar] [CrossRef]
- Wang, B.; Yerazunis, W.; Teo, K.H. Wireless power transfer: Metamaterials and array of coupled resonators. Proc. IEEE 2013, 101, 1359–1368. [Google Scholar] [CrossRef] [Green Version]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method; Artech House: Boston, MA, USA, 2005. [Google Scholar]
- Choroszucho, A.; Butryło, B. Inhomogeneities and dumping of high frequency electromagnetic field in the space close to porous wall. Przegląd Elektrotechniczny 2012, 88, 263–266. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis & Fundamentals, 7th ed.; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Introduction to the RF Module, COMSOL; Version: COMSOL 4.3b; COMSOL Inc.: Burlington, MA, USA, 2013.
- RF Module User’s Guide, COMSOL; Version: COMSOL 4.3b; COMSOL Inc.: Burlington, MA, USA, 2013.
- Stankiewicz, J.M.; Choroszucho, A. Efficiency of the Wireless Power Transfer System with Planar Coils in the Periodic and Aperiodic Systems. Energies 2022, 15, 115. [Google Scholar] [CrossRef]
- Mohan, S.S.; del Mar Hershenson, M.; Boyd, S.P.; Lee, T.H. Simple Accurate Expressions for Planar Spiral Inductances. IEEE J. Solid-State Circuits 1999, 34, 1419–1424. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Su, J.; Lai, J. Accurate Expressions of Mutual Inductance and Their Calculation of Archimedean Spiral Coils. Energies 2019, 12, 2017. [Google Scholar] [CrossRef] [Green Version]
r (m) | n | h (m) | |
---|---|---|---|
0.01 | 10 | 0.005 | 0.01 |
20 | 0.005 | 0.01 | |
30 | 0.005 | 0.01 | |
40 | 0.005 | 0.01 | |
0.025 | 50 | 0.0125 | 0.025 |
60 | 0.0125 | 0.025 | |
70 | 0.0125 | 0.025 |
n | Rc (Ω) | Zeff (Ω) at 1 MHz | Zpow (Ω) at 1 MHzx | ||
---|---|---|---|---|---|
h = 0.005 m | h = 0.01 m | h = 0.005 m | h = 0.01 m | ||
10 | 0.32 | 2.42 | 0.63 | 18.01 | 1.21 |
20 | 0.58 | 8.73 | 2.08 | 133 | 7.54 |
30 | 0.75 | 15.26 | 3.61 | 310 | 17.33 |
40 | 0.86 | 18.69 | 4.39 | 408 | 22.52 |
n | Rc (Ω) | Zeff (Ω) at 1 MHz | Zpow (Ω) at 1 MHz | ||
---|---|---|---|---|---|
h = 0.0125 m | h = 0.025 m | h = 0.0125 m | h = 0.025 m | ||
50 | 3.57 | 137 | 31.54 | 5219 | 279 |
60 | 4.06 | 180 | 41.71 | 7951 | 428 |
70 | 4.48 | 218 | 50.75 | 10627 | 575 |
n | Rc_ac at 1 MHz (Ω) | Zeff_ac (Ω) at 1 MHz | Zpow_ac (Ω) at 1 MHz | ||
---|---|---|---|---|---|
h = 0.005 m | h = 0.01 m | h = 0.005 m | h = 0.01 m | ||
10 | 0.42 | 2.43 | 0.68 | 14 | 1.10 |
20 | 0.75 | 8.74 | 2.14 | 102 | 6.11 |
30 | 0.98 | 15.28 | 3.67 | 239 | 13.74 |
40 | 1.11 | 18.71 | 4.45 | 314 | 17.79 |
n | Rc_ac at 1 MHz (Ω) | Zeff_ac (Ω) at 1 MHz | Zpow_ac (Ω) at 1 MHz | ||
---|---|---|---|---|---|
h = 0.0125 m | h = 0.025 m | h = 0.0125 m | h = 0.025 m | ||
50 | 4.63 | 137 | 31.67 | 4021 | 217 |
60 | 5.27 | 180 | 41.85 | 6124 | 332 |
70 | 5.82 | 218 | 50.88 | 8188 | 445 |
n | η (%) at 1 MHz | |||
---|---|---|---|---|
With Skin Effect | Without Skin Effect | |||
h = 0.005 m | h = 0.01 m | h = 0.005 m | h = 0.01 m | |
10 | 70.48 | 23.62 | 76.43 | 31.77 |
20 | 84.26 | 48.19 | 87.72 | 56.81 |
30 | 87.97 | 57.89 | 90.66 | 65.28 |
40 | 88.76 | 59.98 | 91.31 | 67.07 |
h = 0.0125 m | h = 0.025 m | h = 0.0125 m | h = 0.025 m | |
50 | 93.43 | 74.11 | 94.90 | 79.35 |
60 | 94.31 | 77.66 | 95.59 | 82.28 |
70 | 94.83 | 79.18 | 95.99 | 83.48 |
n | ∆η (%) at 1 MHz | |
---|---|---|
h = 0.005 m | h = 0.01 m | |
10 | 6 | 8 |
20 | 3 | 9 |
30 | 3 | 7 |
40 | 3 | 7 |
h = 0.0125 m | h = 0.025 m | |
50 | 1 | 5 |
60 | 1 | 5 |
70 | 1 | 4 |
n | Pr (mW) at 1 MHz | |||
---|---|---|---|---|
With Skin Effect | Without Skin Effect | |||
h = 0.005 m | h = 0.01 m | h = 0.005 m | h = 0.01 m | |
10 | 578 | 369 | 756 | 564 |
20 | 333 | 295 | 433 | 402 |
30 | 255 | 238 | 332 | 318 |
40 | 225 | 211 | 292 | 282 |
h = 0.0125 m | h = 0.025 m | h = 0.0125 m | h = 0.025 m | |
50 | 54 | 53 | 70 | 69 |
60 | 47 | 47 | 62 | 61 |
70 | 43 | 43 | 56 | 56 |
n | ∆Pr (mW) at 1 MHz | |
---|---|---|
h = 0.005 m | h = 0.01 m | |
10 | 178 | 195 |
20 | 100 | 107 |
30 | 77 | 80 |
40 | 67 | 71 |
h = 0.0125 m | h = 0.025 m | |
50 | 16 | 16 |
60 | 15 | 14 |
70 | 13 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stankiewicz, J.M. Analysis of the Influence of the Skin Effect on the Efficiency and Power of the Receiver in the Periodic WPT System. Energies 2023, 16, 2009. https://doi.org/10.3390/en16042009
Stankiewicz JM. Analysis of the Influence of the Skin Effect on the Efficiency and Power of the Receiver in the Periodic WPT System. Energies. 2023; 16(4):2009. https://doi.org/10.3390/en16042009
Chicago/Turabian StyleStankiewicz, Jacek Maciej. 2023. "Analysis of the Influence of the Skin Effect on the Efficiency and Power of the Receiver in the Periodic WPT System" Energies 16, no. 4: 2009. https://doi.org/10.3390/en16042009